1932

Abstract

This article reviews progress in understanding the fluid dynamics and moist thermodynamics of tropical cyclone vortices. The focus is on the dynamics and moist thermodynamics of vortex intensification and structure. We discuss previous ideas on many facets of the subject and articulate also some open questions. The advances reviewed herein provide new insight and tools for interpreting complex vortex-convective phenomenology in simulated and observed tropical cyclones.

[Erratum, Closure]

An erratum has been published for this article:
Recent Developments in the Fluid Dynamics of Tropical Cyclones
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010816-060022
2017-01-03
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/fluid/49/1/annurev-fluid-010816-060022.html?itemId=/content/journals/10.1146/annurev-fluid-010816-060022&mimeType=html&fmt=ahah

Literature Cited

  1. Abarca SF, Montgomery MT. 2013. Essential dynamics of secondary eyewall formation. J. Atmos. Sci. 70:3216–420 [Google Scholar]
  2. Abarca SF, Montgomery MT, McWilliams JC. 2015. The azimuthally-averaged boundary layer structure of a numerically simulated major hurricane. J. Adv. Model. Earth Syst. 7:1207–19 [Google Scholar]
  3. Anthes RA. 1974. The dynamics and energetics of mature tropical cyclones. Rev. Geophys. Space Phys. 12:495–522 [Google Scholar]
  4. Batchelor GK. 1967. An Introduction to Fluid Dynamics Cambridge, UK: Cambridge Univ. Press
  5. Bell MM, Montgomery MT. 2008. Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Weather Rev. 136:2023–46 [Google Scholar]
  6. Bell MM, Montgomery MT. 2010. Sheared deep vortical convection in pre-depression Hagupit during TCS08. Geophys. Res. Lett. 37:L06802 [Google Scholar]
  7. Bell MM, Montgomery MT, Emanuel KA. 2012. Air-sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci. 69:3197–222 [Google Scholar]
  8. Bister M, Emanuel KA. 1998. Dissipative heating and hurricane intensity. Meteorol. Atmos. Phys. 50:233–40 [Google Scholar]
  9. Bister M, Renno N, Paulius O, Emanuel KA. 2010. Comment on Makarieva et al. `A critique of some modern applications of the Carnot heat engine concept: The dissipative heat engine cannot exist.'. Proc. R. Soc. A 467:1–6 [Google Scholar]
  10. Braun SA, Montgomery MT, Mallen KJ, Reasor PD. 2010. Simulation and interpretation of the genesis of Tropical Storm Gert (2005) as part of the NASA Tropical Cloud Systems and Processes Experiment. J. Atmos. Sci. 67:999–1025 [Google Scholar]
  11. Bryan GH. 2013. Notes and correspondence comments on “Sensitivity of tropical-cyclone models to the surface drag coefficient.” Q. J. R. Meteorol. Soc. 139:1957–60 [Google Scholar]
  12. Bryan GH, Rotunno R. 2009a. Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci. 66:3042–60 [Google Scholar]
  13. Bryan GH, Rotunno R. 2009b. The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Weather Rev. 137:1770–89 [Google Scholar]
  14. Bryan GH, Rotunno R, Chen Y. 2009. The effects of turbulence on hurricane intensity. Proc. 29th Conf. Hurric. Tropical Meteorol. 663042–60 Boston: Am. Meteorol. Soc. [Google Scholar]
  15. Camargo SJ, Tippett MK, Sobel AH, Vecchi GA, Zhao M. 2014. Testing the performance of tropical cyclone genesis indices in future climates using the HIRAM model. J. Clim. 27:9171–96 [Google Scholar]
  16. Chan JCL. 2005. The physics of tropical cyclone motion. Annu. Rev. Fluid Mech. 37:99–128 [Google Scholar]
  17. Chan KTF, Chan JCL. 2014. Impacts of vortex intensity and outer winds on tropical cyclone size. Q. J. R. Meteorol. Soc. 141:525–37 [Google Scholar]
  18. Chavas DR, Emanuel K. 2014. Equilibrium tropical cyclone size in an idealized state of axisymmetric radiative convective equilibrium. J. Atmos. Sci. 71:1663–80 [Google Scholar]
  19. Chen Y, Brunet G, Yau MK. 2003. Spiral bands in a simulated hurricane. Part II: wave activity diagnosis. J. Atmos. Sci. 60:1239–56 [Google Scholar]
  20. DeMaria M, Kaplan J. 1994. Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Clim. 7:1324–34 [Google Scholar]
  21. DeMaria M, Mainelli M, Shay LK, Knaffand JA, Kaplan J. 2005. Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Weather Forecast. 20:531–43 [Google Scholar]
  22. DeMaria M, Pickle JD. 1988. A simplified system of equations for simulation of tropical cyclones. J. Atmos. Sci. 45:1542–54 [Google Scholar]
  23. Dritschel DG, Waugh D. 1992. Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids 4:1737–44 [Google Scholar]
  24. Emanuel KA. 1986. An air-sea interaction theory for tropical cyclones. Part I: steady state maintenance. J. Atmos. Sci. 43:585–604 [Google Scholar]
  25. Emanuel KA. 1988. The maximum intensity of hurricanes. J. Atmos. Sci. 45:1143–55 [Google Scholar]
  26. Emanuel KA. 1989. The finite amplitude nature of tropical cyclogenesis. J. Atmos. Sci. 46:3431–56 [Google Scholar]
  27. Emanuel KA. 1991. The theory of hurricanes. Annu. Rev. Fluid Mech. 23:179–96 [Google Scholar]
  28. Emanuel KA. 1994. Atmospheric Convection New York: Oxford Univ. Press
  29. Emanuel KA. 1995. Sensitivity of tropical cyclone to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci. 52:3969–76 [Google Scholar]
  30. Emanuel KA. 1997. Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci. 54:1014–26 [Google Scholar]
  31. Emanuel KA. 1999. Thermodynamic control of hurricane intensity. Nature 401:665–69 [Google Scholar]
  32. Emanuel KA. 2003. Tropical cyclones. Annu. Rev. Earth Planet. Sci. 31:75–104 [Google Scholar]
  33. Emanuel KA. 2012. Self-stratification of tropical cyclone outflow. Part II: implications for storm intensification. J. Atmos. Sci. 69:988–96 [Google Scholar]
  34. Emanuel KA, Neelin JD, Bretherton CS. 1994. On large-scale circulations of convecting atmospheres. Q. J. R. Meteorol. Soc. 120:1111–43 [Google Scholar]
  35. Emanuel KA, Rotunno R. 2011. Self-stratification of tropical cyclone outflow. Part I: implications for storm structure. J. Atmos. Sci. 68:2236–49 [Google Scholar]
  36. Fang J, Zhang F. 2011. Evolution of multiscale vortices in the development of Hurricane Dolly (2008). J. Atmos. Sci. 68:103–22 [Google Scholar]
  37. Franklin JL, Lord SJ, Feuer SE Jr., Marks FD. 1993. The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon. Weather Rev. 121:2433–51 [Google Scholar]
  38. Frisius T. 2015. What controls the size of a tropical cyclone? Investigations with an axisymmetric model. Q. J. R. Meteorol. Soc. 141:2457–70 [Google Scholar]
  39. Fudeyasu H, Wang Y. 2011. Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: outer-core spinup process. J. Atmos. Sci. 68:430–49 [Google Scholar]
  40. Gall R, Franklin J, Marks F, Rappaport EN, Toepfer F. 2013. The Hurricane Forecast Improvement Project. Bull. Am. Meteorol. Soc. 94:329–43 [Google Scholar]
  41. Garner S. 2015. The relationship between hurricane potential intensity and CAPE. J. Atmos. Sci. 72:141–63 [Google Scholar]
  42. Gill AE. 1982. Atmosphere-Ocean Dynamics New York: Academic, 4th ed..
  43. Gopalakrishnan SG, Marks F, Zhang X, Bao JW, Yeh KS, Atlas R. 2011. The experimental HWRF system: a study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Weather Rev. 139:1762–84 [Google Scholar]
  44. Greenspan HP, Howard LN. 1963. On a time-dependent motion of a rotating fluid. J. Fluid Mech. 17:385–404 [Google Scholar]
  45. Hack JJ, Schubert WH. 1986. Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci. 43:1559–73 [Google Scholar]
  46. Hakim GJ. 2011. The mean state of axisymmetric hurricanes in statistical equilibrium. J. Atmos. Sci. 68:1364–76 [Google Scholar]
  47. Hausman SA, Ooyama KV, Schubert WH. 2006. Potential vorticity structure of simulated hurricanes. J. Atmos. Sci. 63:87–108 [Google Scholar]
  48. Hawkins HF, Imbembo SM. 1976. The structure of a small, intense hurricane—Inez 1966. Mon. Weather Rev. 104:418–42 [Google Scholar]
  49. Hawkins HF, Rubsam DT. 1968. Hurricane Hilda, 1964. Mon. Weather Rev. 96:617–36 [Google Scholar]
  50. Haynes P, McIntyre ME. 1987. On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci. 44:828–41 [Google Scholar]
  51. Hendricks EA, Montgomery MT, Davis CA. 2004. On the role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci. 61:1209–32 [Google Scholar]
  52. Heymsfield GM, Halverson JB, Simpson J, Tian L, Bui TP. 2001. ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteorol. 40:1310–30 [Google Scholar]
  53. Holton JR. 2004. An Introduction to Dynamic Meteorology New York: Academic, 4th ed..
  54. Houze RA. 2014. Clouds Dynamics New York: Academic, 2nd ed..
  55. Jones CW, Watson EJ. 1963. Two dimensional boundary layers. Laminar Boundary Layers L Rosenhead 198–257 New York: Oxford Univ. Press [Google Scholar]
  56. Julien K, Legg S, McWilliams JC, Werne J. 1996. Rapidly rotating turbulent Rayleigh-Bénard convection. J. Fluid Mech. 322:243–73 [Google Scholar]
  57. Kepert JD. 2006a. Observed boundary-layer wind structure and balance in the hurricane core. Part I. Hurricane Georges. J. Atmos. Sci. 63:2169–93 [Google Scholar]
  58. Kepert JD. 2006b. Observed boundary-layer wind structure and balance in the hurricane core. Part II. Hurricane Mitch. J. Atmos. Sci. 63:2194–211 [Google Scholar]
  59. Kepert JD, Schwendike J, Ramsay H. 2016. Why is the tropical cyclone boundary layer not “well mixed”. ? J. Atmos. Sci. 73:957–73 [Google Scholar]
  60. Khairoutdinov M, Emanuel K. 2013. Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst. 5:816–25 [Google Scholar]
  61. Kieu C. 2015. Revisiting dissipative heating in tropical cyclone maximum potential intensity. Q. J. R. Meteorol. Soc. 141:2497–504 [Google Scholar]
  62. Kilroy G, Smith RK. 2013. A numerical study of rotating convection during tropical cyclogenesis. Q. J. R. Meteorol. Soc. 139:1255–69 [Google Scholar]
  63. Kilroy G, Smith RK. 2015. Tropical-cyclone convection: the effects of a vortex boundary layer wind profile on deep convection. Q. J. R. Meteorol. Soc. 141:714–26 [Google Scholar]
  64. Kilroy G, Smith RK. 2016. Tropical-cyclone convection: the effects of a near tropical storm strength vortex on deep convection. Q. J. R. Meteorol. Soc. In press
  65. Kilroy G, Smith RK, Montgomery MT. 2016. Why do model tropical cyclones grow progressively in size and decay in intensity after reaching maturity?. J. Atmos. Sci. 73:487–503 [Google Scholar]
  66. Klemp JB. 1987. Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech. 19:369–402 [Google Scholar]
  67. Lansky IM, O'Neil TM, Schecter DA. 1997. A theory of vortex merger. Phys. Rev. Lett. 79:1479–82 [Google Scholar]
  68. Li T, Ge X, Peng M, Wang W. 2012. Dependence of tropical cyclone intensification on the Coriolis parameter. Trop. Cycl. Res. Rev. 1:242–53 [Google Scholar]
  69. Lussier LL, Rutherford B, Montgomery MT, Boothe MA, Dunkerton TJ. 2015. Examining the roles of the easterly wave critical layer and vorticity accretion during the tropical cyclogenesis of Hurricane Sandy. Mon. Weather Rev. 143:1703–22 [Google Scholar]
  70. Marks FD, Black PG, Montgomery MT, Burpee RW. 2008. Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Weather Rev. 136:1237–59 [Google Scholar]
  71. Melander MV, Zabusky NJ, McWilliams JC. 1988. Symmetric vortex merger in two dimensions: causes and conditions. J. Fluid Mech. 195:303–40 [Google Scholar]
  72. Merrill RT. 1988. Environmental influences on hurricane intensification. J. Atmos. Sci. 45:1678–87 [Google Scholar]
  73. Moeng CH, McWilliams JC, Rotunno R, Sullivan PP, Weil J. 2004. Investigating 2D modeling of atmospheric convection in the PBL. J. Atmos. Sci. 61:889–903 [Google Scholar]
  74. Montgomery MT, Bell MM, Aberson SD, Black ML. 2006a. Hurricane Isabel (2003): new insights into the physics of intense storms. Part I: mean vortex structure and maximum intensity estimates. Bull Am. Meteorol. Soc. 87:1335–48 [Google Scholar]
  75. Montgomery MT, Enagonio J. 1998. Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci. 55:3176–207 [Google Scholar]
  76. Montgomery MT, Nguyen SV, Smith RK, Persing J. 2009. Do tropical cyclones intensify by WISHE?. Q. J. R. Meteorol. Soc. 135:1697–714 [Google Scholar]
  77. Montgomery MT, Nichols ME, Cram TA, Saunders AB. 2006b. A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci. 63:355–86 [Google Scholar]
  78. Montgomery MT, Persing J, Smith RK. 2015. Putting to rest WISHE-ful misconceptions. J. Adv. Model. Earth Syst. 7:92–109 [Google Scholar]
  79. Montgomery MT, Smith RK. 2014. Paradigms for tropical cyclone intensification. Aust. Meteorol. Ocean. Soc. J. 64:37–66 [Google Scholar]
  80. Montgomery MT, Zhang JA, Smith RK. 2014. An analysis of the observed low-level structure of rapidly intensifying and mature Hurricane Earl (2010). Q. J. R. Meteorol. Soc. 140:2132–46 [Google Scholar]
  81. Nguyen CM, Smith RK, Zhu H, Ulrich W. 2002. A minimal axisymmetric hurricane model. Q. J. R. Meteorol. Soc. 128:2641–61 [Google Scholar]
  82. Nguyen VS, Smith RK, Montgomery MT. 2008. Tropical-cyclone intensification and predictability in three dimensions. Q. J. R. Meteorol. Soc. 134:563–82 [Google Scholar]
  83. Nong S, Emanuel KA. 2003. A numerical study of the genesis of concentric eyewalls in hurricanes. Q. J. R. Meteorol. Soc. 129:3323–38 [Google Scholar]
  84. Ooyama KV. 1969. Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 26:3–40 [Google Scholar]
  85. Ooyama KV. 1982. Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteorol. Soc. Jpn. 60:369–80 [Google Scholar]
  86. Persing J, Montgomery MT. 2003. Hurricane superintensity. J. Atmos. Sci. 60:2349–71 [Google Scholar]
  87. Persing J, Montgomery MT, McWilliams J, Smith RK. 2013. Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys. 13:12299–341 [Google Scholar]
  88. Rappin ED, Morgan MC, Tripoli GJ. 2011. The impact of outflow environment on tropical cyclone intensification and structure. J. Atmos. Sci. 68:177–94 [Google Scholar]
  89. Raymond DJ, Carillo CL. 2011. The vorticity budget of developing Typhoon Nuri (2008). Atmos. Chem. Phys. 11:147–63 [Google Scholar]
  90. Raymond DJ, Gjorgjievska S, Sessions SL, Fuchs Z. 2014. Tropical cyclogenesis and mid-level vorticity. Aust. Meteorol. Ocean. Soc. J. 64:11–25 [Google Scholar]
  91. Reasor PD, Montgomery MT. 2015. Evaluation of a heuristic model for tropical cyclone resilience. J. Atmos. Sci. 72:1765–82 [Google Scholar]
  92. Reasor PD, Montgomery MT, Bosart LF. 2005. Mesoscale observations of the genesis of Hurricane Dolly (1996). J. Atmos. Sci. 62:3151–71 [Google Scholar]
  93. Riemer M, Montgomery MT. 2011. Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys. 11:9395–414 [Google Scholar]
  94. Riemer M, Montgomery MT, Nicholls ME. 2010. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys. 10:3163–88 [Google Scholar]
  95. Rogers RF, Aberson S, Black M, Black P, Cione J. et al. 2006. The Intensity Forecasting Experiment: a NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Am. Meteorol. Soc. 87:1523–37 [Google Scholar]
  96. Rogers RF, Reasor PD, Zhang JA. 2015. Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Weather Rev. 143:536–62 [Google Scholar]
  97. Rotunno R. 2013. The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech. 45:59–84 [Google Scholar]
  98. Rotunno R. 2014. Secondary circulations in rotating-flow boundary layers. Aust. Meteorol. Ocean. Soc. J. 64:27–35 [Google Scholar]
  99. Rotunno R, Bryan GH. 2012. Effects of parameterized diffusion on simulated hurricanes. J. Atmos. Sci. 69:2284–99 [Google Scholar]
  100. Rotunno R, Emanuel KA. 1987. An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci. 44:542–61 [Google Scholar]
  101. Rozoff CM, Nolan DS, Kossin JP, Zhang F, Fang J. 2012. The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci. 69:2621–43 [Google Scholar]
  102. Sanger NT, Montgomery MT, Smith RK, Bell MM. 2014. An observational study of tropical-cyclone spin-up in supertyphoon Jangmi from 24 to 27 September. Mon. Weather Rev. 142:3–28 [Google Scholar]
  103. Schecter DA. 2011. Evaluation of a reduced model for investigating hurricane formation from turbulence. Q. J. R. Meteorol. Soc. 137:155–78 [Google Scholar]
  104. Schlichting H. 1968. Boundary Layer Theory New York: McGraw-Hill, 7th ed..
  105. Schmidt C, Smith RK. 2016. Tropical cyclone evolution in a minimal axisymmetric model revisited. Q. J. R. Meteorol. Soc. 142:1505–16 [Google Scholar]
  106. Schubert WH, Hack JJ. 1982. Inertial stability and tropical cyclone development. J. Atmos. Sci. 39:1687–97 [Google Scholar]
  107. Shapiro LJ, Montgomery MT. 1993. A three-dimensional balance theory for rapidly-rotating vortices. J. Atmos. Sci. 50:3322–35 [Google Scholar]
  108. Shin S, Smith RK. 2008. Tropical-cyclone intensification and predictability in a minimal three dimensional model. Q. J. R. Meteorol. Soc. 134:1661–71 [Google Scholar]
  109. Sippel JA, Nielsen-Gammon JW, Allen S. 2006. The multiple vortex nature of tropical cyclogenesis. Mon. Weather Rev. 134:1796–814 [Google Scholar]
  110. Smith RK. 2003. A simple model of the hurricane boundary layer revisited. Q. J. R. Meteorol. Soc. 129:1007–27 [Google Scholar]
  111. Smith RK. 2006. Accurate determination of a balanced axisymmetric vortex. Tellus A 58:98–103 [Google Scholar]
  112. Smith RK. 2007. Accurate determination of a balanced axisymmetric vortex: corrigendum and addendum. Tellus A 59:785–86 [Google Scholar]
  113. Smith RK, Kilroy G, Montgomery MT. 2015. Why do model tropical cyclones intensify more rapidly at low latitudes?. J. Atmos. Sci. 72:1783–804 [Google Scholar]
  114. Smith RK, Montgomery MT. 2010. Hurricane boundary-layer theory. Q. J. R. Meteorol. Soc. 136:1665–70 [Google Scholar]
  115. Smith RK, Montgomery MT. 2016. The efficiency of diabatic heating and tropical cyclone intensification. Q. J. R. Meteorol. Soc. 1422081–86
  116. Smith RK, Montgomery MT, Nguyen SV. 2009. Tropical cyclone spin up revisited. Q. J. R. Meteorol. Soc. 135:1321–35 [Google Scholar]
  117. Smith RK, Montgomery MT, Persing J. 2014. On steady-state tropical cyclones. Q. J. R. Meteorol. Soc. 140:2638–49 [Google Scholar]
  118. Smith RK, Montgomery MT, Vogl S. 2008. A critique of Emanuel's hurricane model and potential intensity theory. Q. J. R. Meteorol. Soc. 134:551–61 [Google Scholar]
  119. Smith RK, Montgomery MT, Zhu H. 2005. Buoyancy in tropical cyclones and other rapidly rotating vortices. Dyn. Atmos. Oceans 40:189–208 [Google Scholar]
  120. Smith RK, Schmidt CW, Montgomery MT. 2011. Dynamical constraints on the intensity and size of tropical cyclones. Q. J. R. Meteorol. Soc. 137:1841–55 [Google Scholar]
  121. Smith RK, Thomsen GL. 2010. Dependence of tropical-cyclone intensification on the boundary layer representation in a numerical model. Q. J. R. Meteorol. Soc. 136:1671–85 [Google Scholar]
  122. Smith RK, Vogl S. 2008. A simple model of the hurricane boundary layer revisited. Q. J. R. Meteorol. Soc. 134:337–51 [Google Scholar]
  123. Tang B, Emanuel KA. 2010. Midlevel ventilations constraint on tropical cyclone intensity. J. Atmos. Sci. 67:1817–30 [Google Scholar]
  124. Tory KJ, Montgomery MT, Davidson NE. 2006. Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection. J. Atmos. Sci. 63:3077–90 [Google Scholar]
  125. Vigh JL, Schubert WH. 2009. Rapid development of the tropical cyclone warm core. J. Atmos. Sci. 66:3335–50 [Google Scholar]
  126. Wissmeier U, Smith RK. 2011. Tropical-cyclone convection: the effects of ambient vertical vorticity. Q. J. R. Meteorol. Soc. 137:845–57 [Google Scholar]
  127. Xu J, Wang Y. 2010. Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci. 67:1831–52 [Google Scholar]
  128. Yamasaki M. 1968. Numerical simulation of tropical cyclone development with the use of primitive equations. J. Meteorol. Soc. Jpn. 46:178–201 [Google Scholar]
  129. Yang B, Wang Y, Wang B. 2007. The effect of internally generated inner-core asymmetrics on tropical cyclone potential intensity. J. Atmos. Sci. 64:1165–88 [Google Scholar]
  130. Zhang DL, Liu Y, Yau MK. 2001. A multi-scale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Weather Rev. 61:92–107 [Google Scholar]
  131. Zhang JA. 2010. Estimation of dissipative heating using low-level in situ aircraft observations in the hurricane boundary layer. J. Atmos. Sci. 67:1853–62 [Google Scholar]
  132. Zhang JA, Marks FD. 2015. Effects of horizontal diffusion on tropical cyclone intensity change and structure in idealized three-dimensional numerical simulations. Mon. Weather Rev. 143:92–107 [Google Scholar]
  133. Zhang JA, Montgomery MT. 2012. Observational estimates of the horizontal eddy diffusivity and mixing length in the low-level region of intense hurricanes. J. Atmos. Sci. 69:1306–16 [Google Scholar]
  134. Zhang JA, Rogers RF, Nolan DS, Marks FD. 2011. On the characteristic height scales of the hurricane boundary layer. Mon. Weather Rev. 139:2523–35 [Google Scholar]
  135. Zhu H, Smith RK, Ulrich W. 2001. A minimal three-dimensional tropical cyclone model. J. Atmos. Sci. 58:1924–44 [Google Scholar]
  136. Zhuo W, Held IM, Garner ST. 2014. Parameter study of tropical cyclones in rotating radiative-convective equilibrium with column physics and resolution of a 25-km GCM. J. Atmos. Sci. 71:1058–69 [Google Scholar]
/content/journals/10.1146/annurev-fluid-010816-060022
Loading
/content/journals/10.1146/annurev-fluid-010816-060022
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error