1932

Abstract

This review provides a comprehensive analysis of the literature on vortex-induced vibration (VIV) of flexible circular cylinders in cross-flow. It delves into the details of the underlying physics governing the VIV dynamics of cylinders characterized by low mass damping and high aspect ratio, subject to both uniform and shear flows. It compiles decades of experimental investigations, modeling efforts, and numerical simulations and describes the fundamental findings in the field. Key focal points include but are not limited to amplitude–frequency response behavior, the relationship between the distributed loading acting on the cylinder and the trajectories and the near wake structures around the cylinder, the existence of traveling waves, the identification of power-in/power-out regions, and the modal overlapping and mode competition phenomena.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-022724-014235
2025-01-22
2025-04-17
Loading full text...

Full text loading...

/deliver/fulltext/fluid/57/1/annurev-fluid-022724-014235.html?itemId=/content/journals/10.1146/annurev-fluid-022724-014235&mimeType=html&fmt=ahah

Literature Cited

  1. Antoine G, de Langre E, Michelin S. 2016.. Optimal energy harvesting from vortex-induced vibrations of cables. . Proc. R. Soc. A 472:(2195):20160583
    [Crossref] [Google Scholar]
  2. Bangash Z, Huera-Huarte F. 2015.. On the flow around the node to anti-node transition of a flexible cylinder undergoing vortex-induced vibrations. . Phys. Fluids 27:(6):065112
    [Crossref] [Google Scholar]
  3. Bao Y, Palacios R, Graham M, Sherwin S. 2016.. Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders. . J. Comput. Phys. 321::107997
    [Crossref] [Google Scholar]
  4. Bao Y, Zhu HB, Huan P, Wang R, Zhou D, et al. 2019.. Numerical prediction of vortex-induced vibration of flexible riser with thick strip method. . J. Fluids Struct. 89::16673
    [Crossref] [Google Scholar]
  5. Bearman P. 2011.. Circular cylinder wakes and vortex-induced vibrations. . J. Fluids Struct. 27:(5–6):64858
    [Crossref] [Google Scholar]
  6. Bearman PW. 1984.. Vortex shedding from oscillating bluff bodies. . Annu. Rev. Fluid Mech. 16::195222
    [Crossref] [Google Scholar]
  7. Blevins R. 1990.. Flow-Induced Vibration. New York:: Van Nostrand Reinhold
    [Google Scholar]
  8. Bourguet R. 2020.. Vortex-induced vibrations of a flexible cylinder at subcritical Reynolds number. . J. Fluid Mech. 902::R3
    [Crossref] [Google Scholar]
  9. Bourguet R, Karniadakis GE, Triantafyllou MS. 2011a.. Lock-in of the vortex-induced vibrations of a long tensioned beam in shear flow. . J. Fluids Struct. 27:(5–6):83847
    [Crossref] [Google Scholar]
  10. Bourguet R, Karniadakis GE, Triantafyllou MS. 2011b.. Vortex-induced vibrations of a long flexible cylinder in shear flow. . J. Fluid Mech. 677::34282
    [Crossref] [Google Scholar]
  11. Bourguet R, Karniadakis GE, Triantafyllou MS. 2013a.. Multi-frequency vortex-induced vibrations of a long tensioned beam in linear and exponential shear flows. . J. Fluids Struct. 41::3342
    [Crossref] [Google Scholar]
  12. Bourguet R, Karniadakis GE, Triantafyllou MS. 2013b.. Phasing mechanisms between the in-line and cross-flow vortex-induced vibrations of a long tensioned beam in shear flow. . Comput. Struct. 122::15563
    [Crossref] [Google Scholar]
  13. Bourguet R, Lucor D, Triantafyllou MS. 2012.. Mono- and multi-frequency vortex-induced vibrations of a long tensioned beam in shear flow. . J. Fluids Struct. 32::5264
    [Crossref] [Google Scholar]
  14. Bourguet R, Modarres-Sadeghi Y, Karniadakis GE, Triantafyllou MS. 2011c.. Wake-body resonance of long flexible structures is dominated by counterclockwise orbits. . Phys. Rev. Lett. 107:(13):134502
    [Crossref] [Google Scholar]
  15. Bourguet R, Triantafyllou MS. 2015.. Vortex-induced vibrations of a flexible cylinder at large inclination angle. . Philos. Trans. R. Soc. A 373:(2033):20140108
    [Crossref] [Google Scholar]
  16. Bur. Ocean Energy Manag. 2019.. Deepwater Gulf of Mexico report 2019. OCS Rep. BOEM 2021-005, US Dep. Inter., New Orleans, LA:
    [Google Scholar]
  17. Chaplin JR, Bearman PW, Cheng Y, Fontaine E, Graham JMR, et al. 2005a.. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser. . J. Fluids Struct. 21:(1):2540
    [Crossref] [Google Scholar]
  18. Chaplin JR, Bearman PW, Huera-Huarte FJ, Pattenden RJ. 2005b.. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current. . J. Fluids Struct. 21:(1):324
    [Crossref] [Google Scholar]
  19. Dahl JM. 2008.. Vortex-induced vibration of a circular cylinder with combined in-line and cross-flow motion. PhD Thesis , Mass. Inst. Technol., Cambridge, MA:
    [Google Scholar]
  20. Evangelinos C, Karniadakis GE. 1999.. Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations. . J. Fluid Mech. 400::91124
    [Crossref] [Google Scholar]
  21. Evangelinos C, Lucor D, Karniadakis G. 2000.. DNS-derived force distribution on flexible cylinders subject to vortex-induced vibration. . J. Fluids Struct. 14:(3):42940
    [Crossref] [Google Scholar]
  22. Facchinetti M, de Langre E, Biolley F. 2004a.. Coupling of structure and wake oscillators in vortex-induced vibrations. . J. Fluids Struct. 19:(2):12340
    [Crossref] [Google Scholar]
  23. Facchinetti ML, de Langre E, Biolley F. 2004b.. Vortex-induced travelling waves along a cable. . Eur. J. Mech. B Fluids 23:(1):199208
    [Crossref] [Google Scholar]
  24. Fan D, Wang Z, Triantafyllou MS, Karniadakis GE. 2019.. Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow. . J. Fluid Mech. 881::81558
    [Crossref] [Google Scholar]
  25. Fu X, Fu S, Ren H, Xie W, Xu Y, et al. 2022.. Experimental investigation of vortex-induced vibration of a flexible pipe in bidirectionally sheared flow. . J. Fluids Struct. 114::103722
    [Crossref] [Google Scholar]
  26. Gedikli ED, Dahl JM. 2017.. Mode excitation hysteresis of a flexible cylinder undergoing vortex-induced vibrations. . J. Fluids Struct. 69::30822
    [Crossref] [Google Scholar]
  27. Gilbert S, Sigurdson L. 2010.. The `void' structure in the wake of a self-oscillating flexible circular cylinder. . Exp. Fluids 48:(3):46171
    [Crossref] [Google Scholar]
  28. Govardhan R, Williamson CH. 2002.. Resonance forever: existence of a critical mass and an infinite regime of resonance in vortex-induced vibration. . J. Fluid Mech. 473::14766
    [Crossref] [Google Scholar]
  29. Grouthier C, Michelin S, Modarres-Sadeghi Y, de Langre E. 2013.. Self-similar vortex-induced vibrations of a hanging string. . J. Fluid Mech. 724::R2
    [Crossref] [Google Scholar]
  30. Han SM, Benaroya H, Wei T. 1999.. Dynamics of tranversely vibrating beams using four engineering theories. . J. Sound Vib. 225:(5):93588
    [Crossref] [Google Scholar]
  31. Huang S, Khorasanchi M, Herfjord K. 2011.. Drag amplification of long flexible riser models undergoing multi-mode VIV in uniform currents. . J. Fluids Struct. 27:(3):34253
    [Crossref] [Google Scholar]
  32. Huera-Huarte FJ. 2006.. Multi-mode vortex-induced vibrations of a flexible circular cylinder. PhD Thesis , Imp. Coll. Lond., UK:
    [Google Scholar]
  33. Huera-Huarte FJ, Bangash ZA, González LM, Gonzalez LM, Huera-Huarte FJ, et al. 2014.. Towing tank experiments on the vortex-induced vibrations of low mass ratio long flexible cylinders. . J. Fluids Struct. 48::8192
    [Crossref] [Google Scholar]
  34. Huera-Huarte FJ, Bearman PW. 2009a.. Wake structures and vortex-induced vibrations of a long flexible cylinder—Part 1: dynamic response. . J. Fluids Struct. 25:(6):96990
    [Crossref] [Google Scholar]
  35. Huera-Huarte FJ, Bearman PW. 2009b.. Wake structures and vortex-induced vibrations of a long flexible cylinder—Part 2: drag coefficients and vortex modes. . J. Fluids Struct. 25:(6):9911006
    [Crossref] [Google Scholar]
  36. Huera Huarte FJ, Bearman PW, Chaplin JR. 2006.. On the force distribution along the axis of a flexible circular cylinder undergoing multi-mode vortex-induced vibrations. . J. Fluids Struct. 22:(6–7):897903
    [Crossref] [Google Scholar]
  37. Huera-Huarte FJ, González LM. 2013.. Numerical prediction of the modal response of flexible cylinders in cross-flow with a current dependent form of damping. . J. Mar. Sci. Technol. 18:(3):37080
    [Crossref] [Google Scholar]
  38. Huera-Huarte FJ, Vernet A. 2010.. Vortex modes in the wake of an oscillating long flexible cylinder combining POD and fuzzy clustering. . Exp. Fluids 48:(6):9991013
    [Crossref] [Google Scholar]
  39. Karniadakis G, Sherwin S. 2005.. Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford, UK:: Oxford Univ. Press. , 2nd ed..
    [Google Scholar]
  40. Kharazmi E, Fan D, Wang Z, Triantafyllou MS. 2021.. Inferring vortex induced vibrations of flexible cylinders using physics-informed neural networks. . J. Fluids Struct. 107::103367
    [Crossref] [Google Scholar]
  41. Kim YH, Vandiver JK, Holler R. 1986.. Vortex-induced vibration and drag coefficients of long cables subjected to sheared flows. . J. Energy Resour. Technol. 108:(1):7783
    [Crossref] [Google Scholar]
  42. Larsen C, Vikestad K, Yttervik R, Passano E. Baarholm G. 2005.. VIVANA Theory Manual. Trondheim, Nor:.: Marintek
    [Google Scholar]
  43. Li A, Mentzelopoulos A, Triantafyllou MS, Fan D. 2022.. Dual-frequency vortex-induced vibrations of long flexible stepped cylinders. . Phys. Fluids 34:(7):075105
    [Crossref] [Google Scholar]
  44. Lie H, Kaasen K. 2006.. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow. . J. Fluids Struct. 22:(4):55775
    [Crossref] [Google Scholar]
  45. Lin K, Wang J. 2019.. Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method. . Ocean Eng. 172::46886
    [Crossref] [Google Scholar]
  46. Lucor D, Mukundan H, Triantafyllou MS. 2006.. Riser modal identification in CFD and full-scale experiments. . J. Fluids Struct. 22:(6–7):90517
    [Crossref] [Google Scholar]
  47. Ma L, Lin K, Fan D, Wang J, Triantafyllou MS. 2022a.. Flexible cylinder flow-induced vibration. . Phys. Fluids 34:(1):011302
    [Crossref] [Google Scholar]
  48. Ma L, Resvanis TL, Vandiver JK. 2022b.. The influence of mode dominance and traveling waves on flexible cylinder flow-induced vibration. . Ocean Eng. 264::111750
    [Crossref] [Google Scholar]
  49. Mathelin L, de Langre E. 2005.. Vortex-induced vibrations and waves under shear flow with a wake oscillator model. . Eur. J. Mech. B Fluids 24:(4):47890
    [Crossref] [Google Scholar]
  50. Meneghini JR, Saltara F, Fregonesi RDA, Yamamoto CT, Casaprima E, Ferrari JA. 2004.. Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields. . Eur. J. Mech. B Fluids 23:(1):5163
    [Crossref] [Google Scholar]
  51. Modarres-Sadeghi Y, Chasparis F, Triantafyllou MS, Tognarelli M, Beynet P. 2011.. Chaotic response is a generic feature of vortex-induced vibrations of flexible risers. . J. Sound Vib. 330:(11):256579
    [Crossref] [Google Scholar]
  52. Mukundan H, Hover FS, Triantafyllou MS. 2010.. A systematic approach to riser VIV response reconstruction. . J. Fluids Struct. 26:(5):72246
    [Crossref] [Google Scholar]
  53. Naudascher E, Rockwell D. 2005.. Flow-Induced Vibrations: An Engineering Guide. Mineola, NY:: Dover
    [Google Scholar]
  54. Newman D, Karniadakis GE. 1996.. Simulations of flow over a flexible cable: a comparison of forced and flow-induced vibration. . J. Fluids Struct. 10:(5):43953
    [Crossref] [Google Scholar]
  55. Newman D, Karniadakis GE. 1997.. A direct numerical simulation study of flow past a freely vibrating cable. . J. Fluid Mech. 344::95136
    [Crossref] [Google Scholar]
  56. Païdoussis M, Price S, de Langre E. 2014.. Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  57. Pang J, Zhu B, Zong Z. 2019.. A numerical simulation model for the vortex induced vibration of flexible risers using dynamic stiffness matrices. . Ocean Eng. 178::30620
    [Crossref] [Google Scholar]
  58. Sanaati B, Kato N. 2012.. A study on the effects of axial stiffness and pre-tension on VIV dynamics of a flexible cylinder in uniform cross-flow. . Appl. Ocean Res. 37::198210
    [Crossref] [Google Scholar]
  59. Sarpkaya T. 2004.. A critical review of the intrinsic nature of vortex-induced vibrations. . J. Fluids Struct. 19:(4):389447
    [Crossref] [Google Scholar]
  60. Seyed-Aghazadeh B, Edraki M, Modarres-Sadeghi Y. 2019.. Effects of boundary conditions on vortex-induced vibration of a fully submerged flexible cylinder. . Exp. Fluids 60:(3):38
    [Crossref] [Google Scholar]
  61. Seyed-Aghazadeh B, Modarres-Sadeghi Y. 2016.. Reconstructing the vortex-induced-vibration response of flexible cylinders using limited localized measurement points. . J. Fluids Struct. 65::43346
    [Crossref] [Google Scholar]
  62. Shang JK, Stone HA, Smits AJ. 2014.. Vortex and structural dynamics of a flexible cylinder in cross-flow. . Phys. Fluids 26:(5):053605
    [Crossref] [Google Scholar]
  63. Song JN, Lu L, Teng B, Park HI, Tang GQ, Wu H. 2011.. Laboratory tests of vortex-induced vibrations of a long flexible riser pipe subjected to uniform flow. . Ocean Eng. 38:(11–12):130822
    [Crossref] [Google Scholar]
  64. Song L, Fu S, Cao J, Ma L, Wu J. 2016.. An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration. . J. Fluids Struct. 63::32550
    [Crossref] [Google Scholar]
  65. Srinil N. 2010.. Multi-mode interactions in vortex-induced vibrations of flexible curved/straight structures with geometric nonlinearities. . J. Fluids Struct. 26:(7–8):1098122
    [Crossref] [Google Scholar]
  66. Srinil N. 2011.. Analysis and prediction of vortex-induced vibrations of variable-tension vertical risers in linearly sheared currents. . Appl. Ocean Res. 33:(1):4153
    [Crossref] [Google Scholar]
  67. Sun L, Zong Z, Dong J, Dong GH, Liu CF. 2012.. Stripwise discrete vortex method for VIV analysis of flexible risers. . J. Fluids Struct. 35::2149
    [Crossref] [Google Scholar]
  68. Triantafyllou M, Triantafyllou G, Tein DYS, Ambrose BD. 1999.. Pragmatic riser VIV analysis. Paper presented at the Offshore Technology Conference, Houston, TX:, May . https://doi.org/10.4043/10931-MS
    [Google Scholar]
  69. Trim AD, Braaten H, Lie H, Tognarelli MA. 2005.. Experimental investigation of vortex-induced vibration of long marine risers. . J. Fluids Struct. 21:(3):33561
    [Crossref] [Google Scholar]
  70. Van Atta CW, Gharib M, Hammache M. 1988.. Three-dimensional structure of ordered and chaotic vortex streets behind circular cylinders at low Reynolds numbers. . Fluid Dyn. Res. 3:(1–4):12732
    [Crossref] [Google Scholar]
  71. Vandiver J. 1993.. Dimensionless parameters important to the prediction of vortex-induced vibration of long, flexible cylinders in ocean currents. . J. Fluids Struct. 7:(5):42355
    [Crossref] [Google Scholar]
  72. Vandiver J. 2003.. SHEAR7 User Guide. Cambridge, MA:: Mass. Inst. Technol. Dep. Ocean Eng.
    [Google Scholar]
  73. Vandiver JK. 2012.. Damping parameters for flow-induced vibration. . J. Fluids Struct. 35::10519
    [Crossref] [Google Scholar]
  74. Vandiver JK, Allen D, Li L. 1996.. The occurrence of lock-in under highly sheared conditions. . J. Fluids Struct. 10:(5):55561
    [Crossref] [Google Scholar]
  75. Vandiver JK, Jaiswal V, Jhingran V. 2009.. Insights on vortex-induced, traveling waves on long risers. . J. Fluids Struct. 25:(4):64153
    [Crossref] [Google Scholar]
  76. Vandiver JK, Jong JY. 1987.. The relationship between in-line and cross-flow vortex-induced vibration of cylinders. . J. Fluids Struct. 1:(4):38199
    [Crossref] [Google Scholar]
  77. Vandiver JK, Ma L, Rao Z. 2018.. Revealing the effects of damping on the flow-induced vibration of flexible cylinders. . J. Sound Vib. 433::2954
    [Crossref] [Google Scholar]
  78. Violette R, de Langre E, Szydlowski J. 2007.. Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments. . Comput. Struct. 85:(11–14):113441
    [Crossref] [Google Scholar]
  79. Violette R, de Langre E, Szydlowski J. 2010.. A linear stability approach to vortex-induced vibrations and waves. . J. Fluids Struct. 26:(3):44266
    [Crossref] [Google Scholar]
  80. Wang E, Xiao Q. 2016.. Numerical simulation of vortex-induced vibration of a vertical riser in uniform and linearly sheared currents. . Ocean Eng. 121::492515
    [Crossref] [Google Scholar]
  81. Wang Z, Fan D, Triantafyllou MS. 2021.. Illuminating the complex role of the added mass during vortex induced vibration. . Phys. Fluids 33:(8):085120
    [Crossref] [Google Scholar]
  82. Willden RH, Graham JR. 2004.. Multi-modal Vortex-Induced Vibrations of a vertical riser pipe subject to a uniform current profile. . Eur. J. Mech. B Fluids 23:(1):20918
    [Crossref] [Google Scholar]
  83. Willert CE, Gharib M. 1991.. Digital particle image velocimetry. . Exp. Fluids 10:(4):18193
    [Crossref] [Google Scholar]
  84. Williamson C, Govardhan R. 2004.. Vortex-induced vibrations. . Annu. Rev. Fluid Mech. 36::41355
    [Crossref] [Google Scholar]
  85. Wu J, Lie H, Larsen CM, Liapis S, Baarholm R. 2016.. Vortex-induced vibration of a flexible cylinder: interaction of the in-line and cross-flow responses. . J. Fluids Struct. 63::23858
    [Crossref] [Google Scholar]
  86. Xie G, Thompson DJ, Jones CJC. 2004.. Mode count and modal density of structural systems: relationships with boundary conditions. . J. Sound Vib. 274:(3–5):62151
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-fluid-022724-014235
Loading
/content/journals/10.1146/annurev-fluid-022724-014235
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error