1932

Abstract

By imploding fuel of hydrogen isotopes, inertial confinement fusion (ICF) aims to create conditions that mimic those in the Sun's core. This is fluid dynamics in an extreme regime, with the ultimate goal of making nuclear fusion a viable clean energy source. The fuel must be reliably and symmetrically compressed to temperatures exceeding 100 million degrees Celsius. After the best part of a century of research, the foremost fusion milestone was reached in 2021, when ICF became the first technology to achieve an igniting fusion fuel (thermonuclear instability), and then in 2022 scientific energy breakeven was attained. A key trade-off of the ICF platform is that greater fuel compression leads to higher burn efficiency, but at the expense of amplified Rayleigh–Taylor and Richtmyer–Meshkov instabilities and kinetic-energy-wasting asymmetries. In extreme cases, these three-dimensional instabilities can completely break up the implosion. Even in the highest-yielding 2022 scientific breakeven experiment, high-atomic-number (high-Z) contaminants were unintentionally injected into the fuel. Here we review the pivotal role that fluid dynamics plays in the construction of a stable implosion and the decades of improved understanding and isolated experiments that have contributed to fusion ignition.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-022824-110008
2025-01-22
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/fluid/57/1/annurev-fluid-022824-110008.html?itemId=/content/journals/10.1146/annurev-fluid-022824-110008&mimeType=html&fmt=ahah

Literature Cited

  1. Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, et al. 2022.. Lawson criterion for ignition exceeded in an inertial fusion experiment. . Phys. Rev. Lett. 129:(7):075001
    [Crossref] [Google Scholar]
  2. Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, et al. 2024.. Achievement of target gain larger than unity in an inertial fusion experiment. . Phys. Rev. Lett. 132:(6):065102
    [Crossref] [Google Scholar]
  3. Aglitskiy Y, Velikovich A, Karasik M, Metzler N, Zalesak ST, et al. 2010.. Basic hydrodynamics of Richtmyer–Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions. . Philos. Trans. R. Soc. A 368:(1916):173968
    [Crossref] [Google Scholar]
  4. Alon U, Shvarts D, Mukamel D. 1993.. Scale-invariant regime in Rayleigh-Taylor bubble-front dynamics. . Phys. Rev. E 48:(2):100814
    [Crossref] [Google Scholar]
  5. Atzeni S, Meyer-ter-Vehn J. 2004.. The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  6. Atzeni S, Schiavi A, Temporal M. 2004.. Converging geometry Rayleigh–Taylor instability and central ignition of inertial confinement fusion targets. . Plasma Phys. Control. Fusion 46::B111
    [Crossref] [Google Scholar]
  7. Awe TJ, McBride RD, Jennings CA, Lamppa DC, Martin MR, et al. 2013.. Observations of modified three-dimensional instability structure for imploding Z-pinch liners that are premagnetized with an axial field. . Phys. Rev. Lett. 111:(23):235005
    [Crossref] [Google Scholar]
  8. Bachmann B, MacLaren SA, Bhandarkar S, Briggs T, Casey D, et al. 2022.. Measurement of dark ice-ablator mix in inertial confinement fusion. . Phys. Rev. Lett. 129:(27):275001
    [Crossref] [Google Scholar]
  9. Bachmann B, MacLaren SA, Masse L, Bhandarkar S, Briggs T, et al. 2023.. Measuring and simulating ice–ablator mix in inertial confinement fusion. . Phys. Plasmas 30:(5):052704
    [Crossref] [Google Scholar]
  10. Bell GI. 1951.. Taylor instability on cylinders and spheres in the small amplitude approximation. Rep. LA-1321, Los Alamos Natl. Lab., Los Alamos, NM:
    [Google Scholar]
  11. Bender JD, Schilling O, Raman KS, Managan RA, Olson BJ, et al. 2021.. Simulation and flow physics of a shocked and reshocked high-energy-density mixing layer. . J. Fluid Mech. 915::A84
    [Crossref] [Google Scholar]
  12. Betti R, Christopherson A, Spears B, Nora R, Bose A, et al. 2015.. Alpha heating and burning plasmas in inertial confinement fusion. . Phys. Rev. Lett. 114:(25):255003
    [Crossref] [Google Scholar]
  13. Betti R, Goncharov V, McCrory R, Verdon C. 1998.. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. . Phys. Plasmas 5:(5):144654
    [Crossref] [Google Scholar]
  14. Betti R, Hurricane O. 2016.. Inertial-confinement fusion with lasers. . Nat. Phys. 12:(5):43548
    [Crossref] [Google Scholar]
  15. Betti R, Sanz J. 2006.. Bubble acceleration in the ablative Rayleigh-Taylor instability. . Phys. Rev. Lett. 97:(20):205002
    [Crossref] [Google Scholar]
  16. Betti R, Umansky M, Lobatchev V, Goncharov V, McCrory R. 2001.. Hot-spot dynamics and deceleration-phase Rayleigh–Taylor instability of imploding inertial confinement fusion capsules. . Phys. Plasmas 8:(12):525767
    [Crossref] [Google Scholar]
  17. Boehly TR, Craxton RS, Hinterman TH, Kelly JH, Kessler TJ, et al. 1995.. The upgrade to the OMEGA laser system. . Rev. Sci. Instrum. 66:(1):50810
    [Crossref] [Google Scholar]
  18. Briard A, Gréa BJ, Nguyen F. 2024.. Turbulent mixing in the vertical magnetic Rayleigh–Taylor instability. . J. Fluid Mech. 979::A8
    [Crossref] [Google Scholar]
  19. Brouillette M. 2002.. The Richtmyer-Meshkov instability. . Annu. Rev. Fluid Mech. 34::44568
    [Crossref] [Google Scholar]
  20. Budil KS, Remington BA, Peyser TA, Mikaelian KO, Miller PL, et al. 1996.. Experimental comparison of classical versus ablative Rayleigh-Taylor instability. . Phys. Rev. Lett. 76:(24):453639
    [Crossref] [Google Scholar]
  21. Cabot WH, Cook AW. 2006.. Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae. . Nat. Phys. 2:(8):56268
    [Crossref] [Google Scholar]
  22. Casey D, MacGowan B, Hurricane O, Landen O, Nora R, et al. 2023.. Diagnosing the origin and impact of low-mode asymmetries in ignition experiments at the National Ignition Facility. . Phys. Rev. E 108:(5):L053203
    [Crossref] [Google Scholar]
  23. Casey DT, Smalyuk VA, Tipton RE, Pino JE, Grim GP, et al. 2014.. Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility. . Phys. Plasmas 21:(9):092705
    [Crossref] [Google Scholar]
  24. Casey DT, Volegov PL, Merrill FE, Munro DH, Grim GP, et al. 2016.. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility. . Rev. Sci. Instrum. 87:(11):11E715
    [Crossref] [Google Scholar]
  25. Chandrasekhar S. 1961.. Hydrodynamic and Hydromagnetic Stability. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  26. Chang PY, Betti R, Spears BK, Anderson KS, Edwards J, et al. 2010.. Generalized measurable ignition criterion for inertial confinement fusion. . Phys. Rev. Lett. 104:(13):135002
    [Crossref] [Google Scholar]
  27. Chapman I, Walkden N. 2021.. An overview of shared technical challenges for magnetic and inertial fusion power plant development. . Philos. Trans. R. Soc. A 379:(2189):20200019
    [Crossref] [Google Scholar]
  28. Cheng B, Bradley PA, Finnegan SM, Thomas CA. 2021.. Fundamental factors affecting thermonuclear ignition. . Nucl. Fusion 61:(9):096010
    [Crossref] [Google Scholar]
  29. Christensen CR, Wilson DC, Barnes CW, Grim GP, Morgan GL, et al. 2004.. The influence of asymmetry on mix in direct-drive inertial confinement fusion experiments. . Phys. Plasmas 11:(5):277177
    [Crossref] [Google Scholar]
  30. Christopherson A, Betti R, Miller S, Gopalaswamy V, Mannion O, Cao D. 2020.. Theory of ignition and burn propagation in inertial fusion implosions. . Phys. Plasmas 27:(5):052708
    [Crossref] [Google Scholar]
  31. Clark DS, Casey DT, Weber CR, Jones OS, Baker KL, et al. 2022.. Exploring implosion designs for increased compression on the National Ignition Facility using high density carbon ablators. . Phys. Plasmas 29:(5):052710
    [Crossref] [Google Scholar]
  32. Clark DS, Haan SW, Cook AW, Edwards MJ, Hammel BA, et al. 2011.. Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs. . Phys. Plasmas 18:(8):082701
    [Crossref] [Google Scholar]
  33. Clark DS, Marinak MM, Weber CR, Eder DC, Haan SW, et al. 2015.. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign. . Phys. Plasmas 22:(2):022703
    [Crossref] [Google Scholar]
  34. Craxton RS, Anderson KS, Boehly TR, Goncharov VN, Harding DR, et al. 2015.. Direct-drive inertial confinement fusion: a review. . Phys. Plasmas 22:(11):110501
    [Crossref] [Google Scholar]
  35. Danson C, Hillier D, Hopps N, Neely D. 2015.. Petawatt class lasers worldwide. . High Power Laser Sci. Eng. 3::e3
    [Crossref] [Google Scholar]
  36. Danson CN, Gizzi LA. 2023.. Inertial confinement fusion ignition achieved at the National Ignition Facility – an editorial. . High Power Laser Sci. Eng. 11::e40
    [Crossref] [Google Scholar]
  37. Das A, Kaw P. 2014.. Suppression of Rayleigh-Taylor instability in strongly coupled plasmas. . Phys. Plasmas 21:(6):062102
    [Crossref] [Google Scholar]
  38. Dittrich TR, Hurricane OA, Callahan DA, Dewald EL, Döppner T, et al. 2014.. Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility. . Phys. Rev. Lett. 112:(5):055002
    [Crossref] [Google Scholar]
  39. Do A, Angulo AM, Nagel SR, Hall GN, Bradley DK, et al. 2022.. High spatial resolution and contrast radiography of hydrodynamic instabilities at the National Ignition Facility. . Phys. Plasmas 29:(8):080703
    [Crossref] [Google Scholar]
  40. Doss FW, Kline JL, Flippo KA, Perry TS, DeVolder BG, et al. 2015.. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility. . Phys. Plasmas 22:(5):056303
    [Crossref] [Google Scholar]
  41. Drake RP. 2018.. High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics. Berlin:: Springer. , 2nd ed..
    [Google Scholar]
  42. Epstein R. 2004.. On the Bell–Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability. . Phys. Plasmas 11:(11):511424
    [Crossref] [Google Scholar]
  43. Flippo KA, Doss FW, Kline JL, Merritt EC, Capelli D, et al. 2016.. Late-time mixing sensitivity to initial broadband surface roughness in high-energy-density shear layers. . Phys. Rev. Lett. 117:(22):225001
    [Crossref] [Google Scholar]
  44. García-Rubio F, Betti R, Sanz J, Aluie H. 2021.. Magnetic-field generation and its effect on ablative Rayleigh–Taylor instability in diffusive ablation fronts. . Phys. Plasmas 28:(1):012103
    [Crossref] [Google Scholar]
  45. Gerashchenko S, Livescu D. 2016.. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient. . Phys. Plasmas 23:(7):072121
    [Crossref] [Google Scholar]
  46. Gittings M, Weaver R, Clover M, Betlach T, Byrne N, et al. 2008.. The RAGE radiation-hydrodynamic code. . Comput. Sci. Discov. 1:(1):015005
    [Crossref] [Google Scholar]
  47. Gomez MR, Slutz SA, Jennings CA, Ampleford DJ, Weis MR, et al. 2020.. Performance scaling in magnetized liner inertial fusion experiments. . Phys. Rev. Lett. 125:(15):155002
    [Crossref] [Google Scholar]
  48. Goncharov VN, Regan SP, Campbell EM, Sangster TC, Radha PB, et al. 2016.. National direct-drive program on OMEGA and the National Ignition Facility. . Plasma Phys. Control. Fusion 59:(1):014008
    [Crossref] [Google Scholar]
  49. Grinstein FF, Margolin LG, Rider WJ, eds. 2007.. Implicit Large Eddy Simulation. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  50. Haan SW, Pollaine SM, Lindl JD, Suter LJ, Berger RL, et al. 1995.. Design and modeling of ignition targets for the National Ignition Facility. . Phys. Plasmas 2:(6):248087
    [Crossref] [Google Scholar]
  51. Haines BM, Clark DS, Weber CR, Edwards MJ, Batha SH, et al. 2020a.. Cross-code comparison of the impact of the fill tube on high yield implosions on the National Ignition Facility. . Phys. Plasmas 27:(8):082703
    [Crossref] [Google Scholar]
  52. Haines BM, Grim GP, Fincke JR, Shah RC, Forrest CJ, et al. 2016.. Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments. . Phys. Plasmas 23:(7):072709
    [Crossref] [Google Scholar]
  53. Haines BM, Sauppe JP, Albright BJ, Daughton WS, Finnegan SM, et al. 2022.. A mechanism for reduced compression in indirectly driven layered capsule implosions. . Phys. Plasmas 29:(4):042704
    [Crossref] [Google Scholar]
  54. Haines BM, Shah RC, Smidt JM, Albright BJ, Cardenas T, et al. 2020b.. Observation of persistent species temperature separation in inertial confinement fusion mixtures. . Nat. Commun. 11:(1):544
    [Crossref] [Google Scholar]
  55. Hall GN, Krauland CM, Schollmeier MS, Kemp GE, Buscho JG, et al. 2019.. The Crystal Backlighter Imager: a spherically bent crystal imager for radiography on the National Ignition Facility. . Rev. Sci. Instrum. 90:(1):013702
    [Crossref] [Google Scholar]
  56. Hammel BA, Haan SW, Clark DS, Edwards MJ, Langer SH, et al. 2010.. High-mode Rayleigh-Taylor growth in NIF ignition capsules. . High Energy Density Phys. 6:(2):17178
    [Crossref] [Google Scholar]
  57. Hammel BA, Tommasini R, Clark DS, Field J, Stadermann M, Weber C. 2016.. Simulations and experiments of the growth of the ``tent'' perturbation in NIF ignition implosions. . J. Phys. Conf. Ser. 717:(1):012021
    [Crossref] [Google Scholar]
  58. Harding EC, Hansen JF, Hurricane OA, Drake RP, Robey HF, et al. 2009.. Observation of a Kelvin-Helmholtz instability in a high-energy-density plasma on the Omega laser. . Phys. Rev. Lett. 103:(4):045005
    [Crossref] [Google Scholar]
  59. Harding EC, Robertson GK, Dunham GS, Gomez MR, Fein JR, et al. 2023.. X-ray self-emission imaging with spherically bent Bragg crystals on the Z-machine. . Rev. Sci. Instrum. 94:(8):083509
    [Crossref] [Google Scholar]
  60. Harris E. 1962.. Rayleigh-Taylor instabilities of a collapsing cylindrical shell in a magnetic field. . Phys. Fluids 5:(9):105762
    [Crossref] [Google Scholar]
  61. Harvey-Thompson AJ, Geissel ME, Lewis WE, Yager-Elorriaga DA, Weis MR, et al. 2024.. Development of a high performance MagLIF target platform using high aspect ratio coated liners and low-mix laser preheat. . Phys. Plasmas 31:(7):072711
    [Crossref] [Google Scholar]
  62. Harvey-Thompson AJ, Weis MR, Harding EC, Geissel M, Ampleford DJ, et al. 2018.. Diagnosing and mitigating laser preheat induced mix in MagLIF. . Phys. Plasmas 25:(11):112705
    [Crossref] [Google Scholar]
  63. Helmholtz H. 1868.. On the discontinuous movements of fluids. . Philos. Mag. 36:(244):33746
    [Crossref] [Google Scholar]
  64. Herrmann MC, Tabak M, Lindl JD. 2001.. Ignition scaling laws and their application to capsule design. . Phys. Plasmas 8:(5):2296304
    [Crossref] [Google Scholar]
  65. Huntington CM, Raman KS, Nagel SR, MacLaren SA, Baumann T, et al. 2019.. Split radiographic tracer technique to measure the full width of a high energy density mixing layer. . High Energy Density Phys. 35::100733
    [Crossref] [Google Scholar]
  66. Huntington CM, Shimony A, Trantham M, Kuranz CC, Shvarts D, et al. 2018.. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock. . Phys. Plasmas 25:(5):052118
    [Crossref] [Google Scholar]
  67. Hurricane OA, Callahan DA, Casey DT, Celliers PM, Cerjan C, et al. 2014.. Fuel gain exceeding unity in an inertially confined fusion implosion. . Nature 506:(7488):34348
    [Crossref] [Google Scholar]
  68. Hurricane OA, Callahan DA, Casey DT, Christopherson AR, Kritcher AL, et al. 2024.. Energy principles of scientific breakeven in an inertial fusion experiment. . Phys. Rev. Lett. 132:(6):065103
    [Crossref] [Google Scholar]
  69. Hurricane OA, Casey DT, Landen O, Callahan DA, Bionta R, et al. 2022.. Extensions of a classical mechanics ``piston-model'' for understanding the impact of asymmetry on ICF implosions. . Phys. Plasmas 29:(1):012703
    [Crossref] [Google Scholar]
  70. Hurricane OA, Casey DT, Landen O, Kritcher AL, Nora R, et al. 2020.. An analytic asymmetric-piston model for the impact of mode-1 shell asymmetry on ICF implosions. . Phys. Plasmas 27:(6):062704
    [Crossref] [Google Scholar]
  71. Hurricane OA, Patel PK, Betti R, Froula DH, Regan SP, et al. 2023.. Physics principles of inertial confinement fusion and U.S. program overview. . Rev. Mod. Phys. 95:(2):025005
    [Crossref] [Google Scholar]
  72. Jiang S, Wang F, Ding Y, Liu S, Yang J, et al. 2018.. Experimental progress of inertial confinement fusion based at the ShenGuang-III laser facility in China. . Nucl. Fusion 59:(3):032006
    [Crossref] [Google Scholar]
  73. Johnson TH. 1984.. Inertial confinement fusion: review and perspective. . Proc. IEEE 72:(5):54894
    [Crossref] [Google Scholar]
  74. Kelvin L (Thomson W). 1871.. XLVI. Hydrokinetic solutions and observations. . Lond. Edinb. Dublin Philos. Mag. J. Sci. 42:(281):36277
    [Crossref] [Google Scholar]
  75. Kilkenny JD, Glendinning SG, Haan SW, Hammel BA, Lindl JD, et al. 1994.. A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion. . Phys. Plasmas 1:(5):137989
    [Crossref] [Google Scholar]
  76. Kilkenny JD, Hsing WW, Batha SH, Rochau GA, Sangster TC, et al. 2023.. National Diagnostic Working Group (NDWG) for inertial confinement fusion (ICF)/high-energy density (HED) science: The whole exceeds the sum of its parts. . Rev. Sci. Instrum. 94:(8):081101
    [Crossref] [Google Scholar]
  77. Kishony R, Shvarts D. 2001.. Ignition condition and gain prediction for perturbed inertial confinement fusion targets. . Phys. Plasmas 8:(11):492536
    [Crossref] [Google Scholar]
  78. Knapp PF, Gomez MR, Hansen SB, Glinsky ME, Jennings CA, et al. 2019.. Origins and effects of mix on magnetized liner inertial fusion target performance. . Phys. Plasmas 26:(1):012704
    [Crossref] [Google Scholar]
  79. Kritcher AL, Clark D, Haan S, Yi SA, Zylstra AB, et al. 2018.. Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators. . Phys. Plasmas 25:(5):056309
    [Crossref] [Google Scholar]
  80. Kritcher AL, Town R, Bradley D, Clark D, Spears B, et al. 2014.. Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility. . Phys. Plasmas 21:(4):042708
    [Crossref] [Google Scholar]
  81. Kritcher AL, Zylstra AB, Callahan DA, Hurricane OA, Weber CR, et al. 2022.. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition. . Phys. Rev. E 106:(2):025201
    [Crossref] [Google Scholar]
  82. Kritcher AL, Zylstra AB, Weber CR, Hurricane OA, Callahan DA, et al. 2024.. Design of the first fusion experiment to achieve target energy gain G >1. . Phys. Rev. E 109:(2):025204
    [Crossref] [Google Scholar]
  83. Kuranz CC, Park HS, Huntington CM, Miles AR, Remington BA, et al. 2018.. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants. . Nat. Commun. 9:(1):1564
    [Crossref] [Google Scholar]
  84. Larroche O, Rinderknecht H, Rosenberg M. 2018.. Nuclear yield reduction in inertial confinement fusion exploding-pusher targets explained by fuel-pusher mixing through hybrid kinetic-fluid modeling. . Phys. Rev. E 98:(3):031201
    [Crossref] [Google Scholar]
  85. Lawson JD. 1957.. Some criteria for a power producing thermonuclear reactor. . Proc. Phys. Soc. B 70:(1):6
    [Crossref] [Google Scholar]
  86. Lebedev S, Frank A, Ryutov D. 2019.. Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities. . Rev. Mod. Phys. 91:(2):025002
    [Crossref] [Google Scholar]
  87. Li J, Yan R, Zhao B, Wu J, Wang L, Zou S. 2024.. Effect of hot-electron preheating on the multimode bubble-front growth of the ablative Rayleigh–Taylor instability. . Phys. Plasmas 31:(1):012703
    [Crossref] [Google Scholar]
  88. Li J, Yan R, Zhao B, Zheng J, Zhang H, Lu X. 2022.. Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport. . Matter Radiat. Extremes 7:(5):055902
    [Crossref] [Google Scholar]
  89. Li J, Yan R, Zhao B, Zheng J, Zhang H, Lu X. 2023.. Role of hot electrons in mitigating ablative Rayleigh–Taylor instability. . Phys. Plasmas 30:(2):022706
    [Crossref] [Google Scholar]
  90. Liberatore S, Gauthier P, Willien JL, Masson-Laborde PE, Philippe F, et al. 2023.. First indirect drive inertial confinement fusion campaign on laser megajoule. . Phys. Plasmas 30:(12):122707
    [Crossref] [Google Scholar]
  91. Lindl J. 1995.. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. . Phys. Plasmas 2:(11):39334024
    [Crossref] [Google Scholar]
  92. Lindl J. 1998.. Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive. Melville, NY:: Am. Inst. Phys. Press
    [Google Scholar]
  93. Lindl J, Landen O, Edwards J, Moses E, NIC Team. 2014.. Review of the National Ignition Campaign 2009–2012. . Phys. Plasmas 21:(2):020501
    [Crossref] [Google Scholar]
  94. Lindl JD, McCrory RL, Campbell EM. 1992.. Progress toward ignition and burn propagation in inertial confinement fusion. . Phys. Today 45:(9):32
    [Crossref] [Google Scholar]
  95. Livescu D. 2020.. Turbulence with large thermal and compositional density variations. . Annu. Rev. Fluid Mech. 52::30941
    [Crossref] [Google Scholar]
  96. Lobatchev V, Betti R. 2000.. Ablative stabilization of the deceleration phase Rayleigh-Taylor instability. . Phys. Rev. Lett. 85:(21):452225
    [Crossref] [Google Scholar]
  97. Ma T, Patel PK, Izumi N, Springer PT, Key MH, et al. 2013.. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions. . Phys. Rev. Lett. 111:(8):085004
    [Crossref] [Google Scholar]
  98. Mackay KK, Pino JE. 2020.. Modeling gas–shell mixing in ICF with separated reactants. . Phys. Plasmas 27:(9):092704
    [Crossref] [Google Scholar]
  99. MacPhee AG, Casey DT, Clark DS, Felker S, Field JE, et al. 2017.. X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube. . Phys. Rev. E 95:(3):031204
    [Crossref] [Google Scholar]
  100. MacPhee AG, Smalyuk VA, Landen OL, Weber CR, Robey HF, et al. 2018.. Mitigation of X-ray shadow seeding of hydrodynamic instabilities on inertial confinement fusion capsules using a reduced diameter fuel fill-tube. . Phys. Plasmas 25:(5):054505
    [Crossref] [Google Scholar]
  101. Marinak MM, Kerbel GD, Gentile NA, Jones O, Munro D, et al. 2001.. Three-dimensional HYDRA simulations of National Ignition Facility targets. . Phys. Plasmas 8:(5):227580
    [Crossref] [Google Scholar]
  102. Martinez DA, Smalyuk VA, Kane JO, Casner A, Liberatore S, et al. 2015.. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF. . Phys. Rev. Lett. 114:(21):215004
    [Crossref] [Google Scholar]
  103. Matzen MK, Sweeney A, Adams RG, Asay JR, Bailey JE, et al. 2005.. Pulsed-power-driven high energy density physics and inertial confinement fusion research. . Phys. Plasmas 12:(5):055503
    [Crossref] [Google Scholar]
  104. McBride RD, Slutz SA, Jennings CA, Sinars DB, Cuneo ME, et al. 2012.. Penetrating radiography of imploding and stagnating Beryllium liners on the Z accelerator. . Phys. Rev. Lett. 109:(13):135004
    [Crossref] [Google Scholar]
  105. Meezan NB, Berzak Hopkins LF, Le Pape S, Divol L, MacKinnon AJ, et al. 2015.. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums. . Phys. Plasmas 22:(6):062703
    [Crossref] [Google Scholar]
  106. Meinecke J, Doyle HS, Miniati F, Bell AR, Bingham R, et al. 2014.. Turbulent amplification of magnetic fields in laboratory laser-produced shock waves. . Nat. Phys. 10:(7):52024
    [Crossref] [Google Scholar]
  107. Meshkov E. 1969.. Instability of the interface of two gases accelerated by a shock wave. . Fluid Dyn. 4::1014
    [Crossref] [Google Scholar]
  108. Moin P, Mahesh K. 1998.. Direct numerical simulation: a tool in turbulence research. . Annu. Rev. Fluid Mech. 30::53978
    [Crossref] [Google Scholar]
  109. Molvig K, Simakov AN, Vold EL. 2014.. Classical transport equations for burning gas-metal plasmas. . Phys. Plasmas 21:(9):092709
    [Crossref] [Google Scholar]
  110. Moser RD, Haering SW, Yalla GR. 2021.. Statistical properties of subgrid-scale turbulence models. . Annu. Rev. Fluid Mech. 53::25586
    [Crossref] [Google Scholar]
  111. Murillo MS. 2008.. Viscosity estimates of liquid metals and warm dense matter using the Yukawa reference system. . High Energy Density Phys. 4:(1–2):4957
    [Crossref] [Google Scholar]
  112. Nagel SR, Raman KS, Huntington CM, MacLaren SA, Wang P, et al. 2017.. A platform for studying the Rayleigh–Taylor and Richtmyer–Meshkov instabilities in a planar geometry at high energy density at the National Ignition Facility. . Phys. Plasmas 24:(7):072704
    [Crossref] [Google Scholar]
  113. Nagel SR, Raman KS, Huntington CM, MacLaren SA, Wang P, et al. 2022.. Experiments on the single-mode Richtmyer–Meshkov instability with reshock at high energy densities. . Phys. Plasmas 29:(3):032308
    [Crossref] [Google Scholar]
  114. Nuckolls J, Wood L, Thiessen A, Zimmerman G. 1972.. Laser compression of matter to super-high densities: thermonuclear (CTR) applications. . Nature 239:(5368):13942
    [Crossref] [Google Scholar]
  115. Pak A, Divol L, Weber CR, Hopkins LFB, Clark DS, et al. 2020.. Impact of localized radiative loss on inertial confinement fusion implosions. . Phys. Rev. Lett. 124:(14):145001
    [Crossref] [Google Scholar]
  116. Pak A, Zylstra AB, Baker KL, Casey DT, Dewald E, et al. 2024.. Observations and properties of the first laboratory fusion experiment to exceed target gain of unity. . Phys. Rev. E 109:(2):025203
    [Crossref] [Google Scholar]
  117. Park HS, Hurricane OA, Callahan DA, Casey DT, Dewald EL, et al. 2014.. High-adiabat high-foot inertial confinement fusion implosion experiments on the National Ignition Facility. . Phys. Rev. Lett. 112:(5):055001
    [Crossref] [Google Scholar]
  118. Peterson KJ, Awe TJ, Yu EP, Sinars DB, Field ES, et al. 2014.. Electrothermal instability mitigation by using thick dielectric coatings on magnetically imploded conductors. . Phys. Rev. Lett. 112:(13):135002
    [Crossref] [Google Scholar]
  119. Peterson KJ, Sinars DB, Yu EP, Herrmann MC, Cuneo ME, et al. 2012.. Electrothermal instability growth in magnetically driven pulsed power liners. . Phys. Plasmas 19:(9):092701
    [Crossref] [Google Scholar]
  120. Pickworth LA, Hammel BA, Smalyuk VA, Robey HF, Tommasini R, et al. 2018.. Development of new platforms for hydrodynamic instability and asymmetry measurements in deceleration phase of indirectly driven implosions on NIF. . Phys. Plasmas 25:(8):082705
    [Crossref] [Google Scholar]
  121. Piriz A. 2001.. Compressibility effects on the Rayleigh–Taylor instability of an ablation front. . Phys. Plasmas 8:(12):526876
    [Crossref] [Google Scholar]
  122. Plesset M. 1954.. On the stability of fluid flows with spherical symmetry. . J. Appl. Phys. 25:(1):9698
    [Crossref] [Google Scholar]
  123. Post RF. 1956.. Controlled fusion research—an application of the physics of high temperature plasmas. . Rev. Mod. Phys. 28:(3):33862
    [Crossref] [Google Scholar]
  124. Raman KS, Smalyuk VA, Casey DT, Haan SW, Hoover DE, et al. 2014.. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility. . Phys. Plasmas 21:(7):072710
    [Crossref] [Google Scholar]
  125. Ranjan D, Oakley J, Bonazza R. 2011.. Shock-bubble interactions. . Annu. Rev. Fluid Mech. 43::11740
    [Crossref] [Google Scholar]
  126. Rayleigh L. 1883.. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. . Proc. Lond. Math. Soc. 14::17077
    [Google Scholar]
  127. Regan SP, Epstein R, Hammel BA, Suter LJ, Scott HA, et al. 2013.. Hot-spot mix in ignition-scale inertial confinement fusion targets. . Phys. Rev. Lett. 111:(4):045001
    [Crossref] [Google Scholar]
  128. Remington BA, Drake RP, Ryutov DD. 2006.. Experimental astrophysics with high power lasers and Z pinches. . Rev. Mod. Phys. 78:(3):755807
    [Crossref] [Google Scholar]
  129. Richtmyer RD. 1960.. Taylor instability in shock acceleration of compressible fluids. . Commun. Pure Appl. Math. 13::297319
    [Crossref] [Google Scholar]
  130. Rigon G, Casner A, Albertazzi B, Michel T, Mabey P, et al. 2019.. Rayleigh-Taylor instability experiments on the LULI2000 laser in scaled conditions for young supernova remnants. . Phys. Rev. E 100:(2):021201
    [Crossref] [Google Scholar]
  131. Rinderknecht HG, Heuer PV, Kunimune J, Adrian PJ, Knauer JP, et al. 2022.. A knock-on deuteron imager for measurements of fuel and hotspot asymmetry in direct-drive inertial confinement fusion implosions. . Rev. Sci. Instrum. 93:(9):093507
    [Crossref] [Google Scholar]
  132. Rinderknecht HG, Sio H, Li CK, Hoffman N, Zylstra AB, et al. 2014.. Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions. . Phys. Plasmas 21:(5):056311
    [Crossref] [Google Scholar]
  133. Rodman J, Cagas P, Hakim A, Srinivasan B. 2022.. Kinetic interpretation of the classical Rayleigh-Taylor instability. . Phys. Rev. E 105:(6):065209
    [Crossref] [Google Scholar]
  134. Rodman J, Juno J, Srinivasan B. 2024.. The effect of spatially varying collision frequency on the development of the Rayleigh–Taylor instability. . Astrophys. J. 965:(2):173
    [Crossref] [Google Scholar]
  135. Ruiz DE, Schmit PF, Yager-Elorriaga DA, Gomez MR, Weis MR, et al. 2023a.. Exploring the parameter space of MagLIF implosions using similarity scaling. II. Current scaling. . Phys. Plasmas 30:(3):032708
    [Crossref] [Google Scholar]
  136. Ruiz DE, Schmit PF, Yager-Elorriaga DA, Jennings CA, Beckwith K. 2023b.. Exploring the parameter space of MagLIF implosions using similarity scaling. I. Theoretical framework. . Phys. Plasmas 30:(3):032707
    [Crossref] [Google Scholar]
  137. Rygg JR, Frenje JA, Li CK, Séguin FH, Petrasso RD, et al. 2007a.. Nuclear measurements of fuel-shell mix in inertial confinement fusion implosions at OMEGA. . Phys. Plasmas 14:(5):056306
    [Crossref] [Google Scholar]
  138. Rygg JR, Frenje JA, Li CK, Séguin FH, Petrasso RD, et al. 2007b.. Time-dependent nuclear measurements of mix in inertial confinement fusion. . Phys. Rev. Lett. 98:(21):215002
    [Crossref] [Google Scholar]
  139. Rygg JR, Jones OS, Field JE, Barrios MA, Benedetti LR, et al. 2014.. 2D X-ray radiography of imploding capsules at the National Ignition Facility. . Phys. Rev. Lett. 112:(19):195001
    [Crossref] [Google Scholar]
  140. Ryutov D, Derzon MS, Matzen MK. 2000.. The physics of fast Z pinches. . Rev. Mod. Phys. 72:(1):167223
    [Crossref] [Google Scholar]
  141. Sadler JD, Louie C, Zhou Y. 2023.. Intricate structure of the plasma Rayleigh–Taylor instability in shock tubes. . Phys. Plasmas 30:(2):022709
    [Crossref] [Google Scholar]
  142. Sagaut P. 2006.. Large Eddy Simulation for Incompressible Flows: An Introduction. Berlin:: Springer. , 3rd ed..
    [Google Scholar]
  143. Samulski C, Srinivasan B, Manuel ME, Masti R, Sauppe J, Kline J. 2022.. Deceleration-stage Rayleigh–Taylor growth in a background magnetic field studied in cylindrical and Cartesian geometries. . Matter Radiat. Extremes 7:(2):026902
    [Crossref] [Google Scholar]
  144. Sauppe JP, Palaniyappan S, Tobias BJ, Kline JL, Flippo KA, et al. 2020.. Demonstration of scale-invariant Rayleigh-Taylor instability growth in laser-driven cylindrical implosion experiments. . Phys. Rev. Lett. 124:(18):185003
    [Crossref] [Google Scholar]
  145. Schill WJ, Armstrong MR, Nguyen JH, Sterbentz DM, White DA, et al. 2024.. Suppression of Richtmyer-Meshkov instability via special pairs of shocks and phase transitions. . Phys. Rev. Lett. 132:(2):024001
    [Crossref] [Google Scholar]
  146. Shimony A, Huntington CM, Flippo KA, Elbaz Y, MacLaren SA, et al. 2022.. Determining the self-similar stage of the Rayleigh-Taylor instability via LLNL's NIF discovery science experiments. . arXiv:2210.06631 [physics.flu-dyn]
  147. Sinars DB, Slutz SA, Herrmann MC, McBride RD, Cuneo ME, et al. 2010.. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility. . Phys. Rev. Lett. 105:(18):185001
    [Crossref] [Google Scholar]
  148. Sinars DB, Sweeney MA, Alexander CS, Ampleford DJ, Ao T, et al. 2020.. Review of pulsed power-driven high energy density physics research on Z at Sandia. . Phys. Plasmas 27:(7):070501
    [Crossref] [Google Scholar]
  149. Sio H, Frenje JA, Le A, Atzeni S, Kwan TJT, et al. 2019.. Observations of multiple nuclear reaction histories and fuel-ion species dynamics in shock-driven inertial confinement fusion implosions. . Phys. Rev. Lett. 122:(3):035001
    [Crossref] [Google Scholar]
  150. Smalyuk VA, Hu SX, Hager JD, Delettrez JA, Meyerhofer DD, et al. 2009.. Rayleigh-Taylor growth measurements in the acceleration phase of spherical implosions on OMEGA. . Phys. Rev. Lett. 103:(10):105001
    [Crossref] [Google Scholar]
  151. Smalyuk VA, Robey HF, Casey DT, Clark DS, Dóppner T, et al. 2017a.. Mix and hydrodynamic instabilities on NIF. . J. Instrum. 12:(06):C06001
    [Crossref] [Google Scholar]
  152. Smalyuk VA, Tipton RE, Pino JE, Casey DT, Grim GP, et al. 2014.. Measurements of an ablator-gas atomic mix in indirectly driven implosions at the National Ignition Facility. . Phys. Rev. Lett. 112:(2):025002
    [Crossref] [Google Scholar]
  153. Smalyuk VA, Weber CR, Landen OL, Ali S, Bachmann B, et al. 2020.. Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility. . Plasma Phys. Control. Fusion 62:(1):014007
    [Crossref] [Google Scholar]
  154. Smalyuk VA, Weber CR, Robey HF, Casey DT, Chen K-C, et al. 2017b.. Hydrodynamic instability growth of three-dimensional modulations in radiation-driven implosions with ``low-foot'' and ``high-foot'' drives at the National Ignition Facility. . Phys. Plasmas 24:(4):042706
    [Crossref] [Google Scholar]
  155. Srinivasan B, Dimonte G, Tang XZ. 2012.. Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas. . Phys. Rev. Lett. 108:(16):165002
    [Crossref] [Google Scholar]
  156. Srinivasan B, Tang XZ. 2013.. The mitigating effect of magnetic fields on Rayleigh-Taylor unstable inertial confinement fusion plasmas. . Phys. Plasmas 20:(5):056307
    [Crossref] [Google Scholar]
  157. Sterbentz DM, Jekel CF, White DA, Aubrey S, Lorenzana HE, Belof JL. 2022.. Design optimization for Richtmyer–Meshkov instability suppression at shock-compressed material interfaces. . Phys. Fluids 34:(8):082109
    [Crossref] [Google Scholar]
  158. Takabe H, Mima K, Montierth L, Morse R. 1985.. Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. . Phys. Fluids 28:(12):367682
    [Crossref] [Google Scholar]
  159. Taylor GI. 1950.. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. . Proc. R. Soc. A 201:( 1065.):19296
    [Google Scholar]
  160. Thornber B, Griffond J, Poujade O, Attal N, Varshochi H, et al. 2017.. Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: the θ-group collaboration. . Phys. Fluids 29:(10):105107
    [Crossref] [Google Scholar]
  161. Tommasini R, Field JE, Hammel BA, Landen OL, Haan SW, et al. 2015.. Tent-induced perturbations on areal density of implosions at the National Ignition Facility. . Phys. Plasmas 22:(5):056315
    [Crossref] [Google Scholar]
  162. Tommasini R, Hatchett SP, Hey DS, Iglesias C, Izumi N, et al. 2011.. Development of Compton radiography of inertial confinement fusion implosions. . Phys. Plasmas 18:(5):056309
    [Crossref] [Google Scholar]
  163. Walsh CA. 2022.. Magnetized ablative Rayleigh-Taylor instability in three dimensions. . Phys. Rev. E 105:(2):025206
    [Crossref] [Google Scholar]
  164. Walsh CA, Clark DS. 2023.. Nonlinear ablative Rayleigh-Taylor instability: increased growth due to self-generated magnetic fields. . Phys. Rev. E 107:(1):L013201
    [Crossref] [Google Scholar]
  165. Wang L, Ye W, Sheng Z, Don WS, Li Y, He X. 2010.. Preheating ablation effects on the Rayleigh–Taylor instability in the weakly nonlinear regime. . Phys. Plasmas 17:(12):122706
    [Crossref] [Google Scholar]
  166. Wani R, Mir A, Batool F, Tiwari S. 2022.. Rayleigh–Taylor instability in strongly coupled plasma. . Sci. Rep. 12:(1):11557
    [Crossref] [Google Scholar]
  167. Weber CR, Casey DT, Clark DS, Hammel BA, MacPhee A, et al. 2017.. Improving ICF implosion performance with alternative capsule supports. . Phys. Plasmas 24:(5):056302
    [Crossref] [Google Scholar]
  168. Weber CR, Clark DS, Casey DT, Hall GN, Jones O, et al. 2023.. Reduced mixing in inertial confinement fusion with early-time interface acceleration. . Phys. Rev. E 108:(2):L023202
    [Crossref] [Google Scholar]
  169. Weber CR, Clark DS, Cook AW, Busby LE, Robey HF. 2014.. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation. . Phys. Rev. E 89:(5):053106
    [Crossref] [Google Scholar]
  170. Weber CR, Clark DS, Pak A, Alfonso N, Bachmann B, et al. 2020.. Mixing in ICF implosions on the National Ignition Facility caused by the fill-tube. . Phys. Plasmas 27:(3):032703
    [Crossref] [Google Scholar]
  171. Weber CR, Döppner T, Casey DT, Bunn TL, Carlson LC, et al. 2016.. First measurements of fuel-ablator interface instability growth in inertial confinement fusion implosions on the National Ignition Facility. . Phys. Rev. Lett. 117:(7):075002
    [Crossref] [Google Scholar]
  172. Welser-Sherrill L, Fincke J, Doss F, Loomis E, Flippo K, et al. 2013.. Two laser-driven mix experiments to study reshock and shear. . High Energy Density Phys. 9:(3):49699
    [Crossref] [Google Scholar]
  173. Wesson J. 2011.. Tokamaks. Oxford, UK:: Oxford Univ. Press. , 4th ed..
    [Google Scholar]
  174. Wilson DC, Ebey PS, Sangster TC, Shmayda WT, Glebov VY, Lerche R. 2011.. Atomic mix in directly driven inertial confinement implosions. . Phys. Plasmas 18:(11):112707
    [Crossref] [Google Scholar]
  175. Wurzel SE, Hsu SC. 2022.. Progress toward fusion energy breakeven and gain as measured against the Lawson criterion. . Phys. Plasmas 29:(6):062103
    [Crossref] [Google Scholar]
  176. Yager-Elorriaga DA, Gomez MR, Ruiz DE, Slutz SA, Harvey-Thompson AJ, et al. 2022.. An overview of magneto-inertial fusion on the Z machine at Sandia National Laboratories. . Nucl. Fusion 62:(4):042015
    [Crossref] [Google Scholar]
  177. Yan R, Betti R, Sanz J, Aluie H, Liu B, Frank A. 2016.. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability. . Phys. Plasmas 23:(2):022701
    [Crossref] [Google Scholar]
  178. Yin L, Albright BJ, Vold EL, Nystrom WD, Bird RF, Bowers KJ. 2019.. Plasma kinetic effects on interfacial mix and burn rates in multispatial dimensions. . Phys. Plasmas 26:(6):062302
    [Crossref] [Google Scholar]
  179. Youngs DL. 2013.. The density ratio dependence of self-similar Rayleigh–Taylor mixing. . Philos. Trans. R. Soc. A 371::20120173
    [Crossref] [Google Scholar]
  180. Yu EP, Awe TJ, Cochrane KR, Peterson KJ, Yates KC, et al. 2023a.. Seeding the electrothermal instability through a three-dimensional, nonlinear perturbation. . Phys. Rev. Lett. 130:(25):255101
    [Crossref] [Google Scholar]
  181. Yu EP, Awe TJ, Cochrane KR, Peterson KJ, Yates KC, et al. 2023b.. Three-dimensional feedback processes in current-driven metal. . Phys. Rev. E 107:(6):065209
    [Crossref] [Google Scholar]
  182. Zabusky NJ. 1999.. Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments. . Annu. Rev. Fluid Mech. 31::495536
    [Crossref] [Google Scholar]
  183. Zhang H, Betti R, Gopalaswamy V, Yan R, Aluie H. 2018.. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers. . Phys. Rev. E 97:(1):011203
    [Crossref] [Google Scholar]
  184. Zhao KG, Li ZY, Wang LF, Xue C, Wu JF, et al. 2023.. Effect of long-wavelength perturbations in nonlinear evolution of the ablative Rayleigh–Taylor mixing. . Phys. Plasmas 30:(6):062102
    [Crossref] [Google Scholar]
  185. Zhou Y. 2001.. A scaling analysis of turbulent flows driven by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. . Phys. Fluids 13:(2):53843
    [Crossref] [Google Scholar]
  186. Zhou Y. 2007.. Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations. . Phys. Plasmas 14:(8):082701
    [Crossref] [Google Scholar]
  187. Zhou Y. 2017a.. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. . Phys. Rep. 720–722::1136
    [Google Scholar]
  188. Zhou Y. 2017b.. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. . Phys. Rep. 723–725::1160
    [Google Scholar]
  189. Zhou Y. 2021.. Turbulence theories and statistical closure approaches. . Phys. Rep. 935::1117
    [Crossref] [Google Scholar]
  190. Zhou Y. 2024.. Hydrodynamic Instabilities and Turbulence: Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz Mixing. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  191. Zhou Y, Cabot WH, Thornber B. 2016.. Asymptotic behavior of the mixed mass in Rayleigh–Taylor and Richtmyer–Meshkov instability induced flows. . Phys. Plasmas 23:(5):052712
    [Crossref] [Google Scholar]
  192. Zhou Y, Clark TT, Clark DS, Glendinning SG, Skinner MA, et al. 2019.. Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. . Phys. Plasmas 26:(8):080901
    [Crossref] [Google Scholar]
  193. Zhou Y, Matthaeus WH, Dmitruk P. 2004.. Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas. . Rev. Mod. Phys. 76:(4):101535
    [Crossref] [Google Scholar]
  194. Zhou Y, Williams RJR, Ramaprabhu P, Groom M, Thornber B, et al. 2021.. Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. . Physica D 423::132838
    [Crossref] [Google Scholar]
  195. Zhou Y, Zimmerman GB, Burke EW. 2002.. Formulation of a two-scale transport scheme for the turbulent mix induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. . Phys. Rev. E 65:(5):056303
    [Crossref] [Google Scholar]
  196. Zimmerman G, Kruer W. 1975.. Numerical simulation of laser-initiated fusion. Comments Plasma Phys. . Controlled Fusion 2:(2):5160
    [Google Scholar]
  197. Zylstra AB, Casey DT, Kritcher A, Pickworth L, Bachmann B, et al. 2020.. Hot-spot mix in large-scale HDC implosions at NIF. . Phys. Plasmas 27:(9):092709
    [Crossref] [Google Scholar]
  198. Zylstra AB, Hurricane OA, Callahan DA, Kritcher AL, Ralph JE, et al. 2022a.. Burning plasma achieved in inertial fusion. . Nature 601:(7894):54248
    [Crossref] [Google Scholar]
  199. Zylstra AB, Kritcher AL, Hurricane OA, Callahan DA, Baker K, et al. 2021.. Record energetics for an inertial fusion implosion at NIF. . Phys. Rev. Lett. 126:(2):025001
    [Crossref] [Google Scholar]
  200. Zylstra AB, Kritcher AL, Hurricane OA, Callahan DA, Ralph JE, et al. 2022b.. Experimental achievement and signatures of ignition at the national ignition facility. . Phys. Rev. E 106:(2):025202
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-fluid-022824-110008
Loading
/content/journals/10.1146/annurev-fluid-022824-110008
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error