1932

Abstract

Many flows that are expected to be symmetric are actually observed to be asymmetric. The appearance of asymmetry in the face of no particular cause is a widespread although underappreciated occurrence. This rather puzzling and sometimes frustrating phenomenon can occur in wide-angle diffusers, over the forebody of axisymmetric bodies at high angles of attack, in the wake downstream of streamlined as well as bluff bodies, and in the flow over three-dimensional bumps and ramps. We review some notable examples and highlight the extreme sensitivity of many such flows to small disturbances in the body geometry or the incoming flow. Some flows appear to be permanently asymmetric, while others are bistable on timescales that are orders of magnitude longer than any convective timescale. Convective or global instabilities can occur, bistability is common, and mode interactions become important when multiple similar but distinct timescales and length scales are present. Our understanding of these phenomena is still very limited, and further research is urgently required; asymmetries in otherwise symmetric flows can have serious real-world consequences on vehicle control and performance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030124-045719
2025-01-22
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/fluid/57/1/annurev-fluid-030124-045719.html?itemId=/content/journals/10.1146/annurev-fluid-030124-045719&mimeType=html&fmt=ahah

Literature Cited

  1. Allen HJ, Perkins EW. 1951.. A study of effects of viscosity on flow over slender inclined bodies of revolution. Rep. 1048 , Natl. Advis. Comm. Aeronaut., Washington, DC:
    [Google Scholar]
  2. Andersson HI, Jiang F, Okulov VL. 2019.. Instabilities in the wake of an inclined prolate spheroid. . In Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, ed. A Gelfgat , pp. 31152. Cham, Switz:.: Springer
    [Google Scholar]
  3. Ashok A, Van Buren T, Smits AJ. 2015.. Asymmetries in the wake of a submarine model in pitch. . J. Fluid Mech. 774::41642
    [Crossref] [Google Scholar]
  4. Beardsley CT, Gargiulo A, Vishwanathan V, Fritsch D, Duetsch-Patel J, et al. 2020.. Computational fluid dynamic analysis for the assessment of experimental design risks and flow sensitivities for a three-dimensional bump flow. Paper presented at AIAA Aviation 2020 Forum, AIAA Pap. 2020-3062
    [Google Scholar]
  5. Bell JH, Heineck JT, Zilliac G, Mehta RD, Long KR. 2012.. Surface and flow field measurements on the FAITH hill model. Paper presented at the 50th AIAA Aerospace Sciences Meeting, Nashville, TN:, AIAA Pap. 2012-0704
    [Google Scholar]
  6. Bernhardt J, Williams DR. 1993.. The effect of Reynolds number on control of forebody asymmetry by suction and bleed. Paper presented at the 3rd Shear Flow Conference, Orlando, FL:, AIAA Pap. 1993-3265
    [Google Scholar]
  7. Bernhardt JE, Williams DR. 1998.. Proportional control of asymmetric forebody vortices. . AIAA J. 36:(11):208793
    [Crossref] [Google Scholar]
  8. Bernhardt JE, Williams DR. 2000.. Closed-loop control of forebody flow asymmetry. . J. Aircr. 37:(3):49198
    [Crossref] [Google Scholar]
  9. Berrich E, Aloui F, Pierrat D, Gros L, Couzinet A, Legrand J. 2021.. Turbulent flows structures crossing conical diffusers: angle effect analysis using PIV technique and POD for post-processing. . J. Appl. Fluid Mech. 9:(Special Issue 1):1929
    [Google Scholar]
  10. Birch S, Khritov K, Maslov V, Mironov A, Secundov A. 2005.. An experimental study of flow asymmetry in co-axial jets. Paper presented at the 11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA:, AIAA Pap. 2005-2845
    [Google Scholar]
  11. Bradshaw P. 1977.. Effect of external disturbances on the spreading rate of a plane turbulent jet. . J. Fluid Mech. 80:(4):79597
    [Crossref] [Google Scholar]
  12. Bradshaw P, Wong FYF. 1972.. Reattachment and relaxation of a turbulent shear layer. . J. Fluid Mech. 52::11335
    [Crossref] [Google Scholar]
  13. Bridges DH. 2008.. Estimate of the disturbance energy in an asymmetric vortex wake. Paper presented at the 38th Fluid Dynamics Conference and Exhibit, Seattle, WA:, AIAA Pap. 2008-4180
    [Google Scholar]
  14. Byun G, Simpson RL. 2006.. Structure of three-dimensional separated flow on an axisymmetric bump. . AIAA J. 44:(5):9991008
    [Crossref] [Google Scholar]
  15. Byun G, Simpson RL, Long CH. 2004.. Study of vortical separation from three-dimensional symmetric bumps. . AIAA J. 42:(4):75465
    [Crossref] [Google Scholar]
  16. Callaham JL, Rigas G, Loiseau JC, Brunton SL. 2022.. An empirical mean-field model of symmetry-breaking in a turbulent wake. . Sci. Adv. 8:(19):eabm4786
    [Crossref] [Google Scholar]
  17. Chen JG, Cuvier C, Foucaut JM, Ostovan Y, Vassilicos JC. 2021.. A turbulence dissipation inhomogeneity scaling in the wake of two side-by-side square prisms. . J. Fluid Mech. 924::A4
    [Crossref] [Google Scholar]
  18. Cherdron W, Durst F, Whitelaw JH. 1978.. Asymmetric flows and instabilities in symmetric ducts with sudden expansions. . J. Fluid Mech. 84:(1):1331
    [Crossref] [Google Scholar]
  19. Cherry EM, Elkins CJ, Eaton JK. 2008.. Geometric sensitivity of three-dimensional separated flows. . Int. J. Heat Fluid Flow 29:(3):80311
    [Crossref] [Google Scholar]
  20. Ching DS, Elkins CJ, Alley MT, Eaton JK. 2018a.. Unsteady vortex structures in the wake of nonaxisymmetric bumps using spiral MRV. . Exp. Fluids 59::144
    [Crossref] [Google Scholar]
  21. Ching DS, Elkins CJ, Eaton JK. 2018b.. Investigation of geometric sensitivity of a non-axisymmetric bump: 3D mean velocity measurements. . Exp. Fluids 59::143
    [Crossref] [Google Scholar]
  22. Chomaz JM. 2005.. Global instabilities in spatially developing flows: non-normality and nonlinearity. . Annu. Rev. Fluid Mech. 37::35792
    [Crossref] [Google Scholar]
  23. Chong MS, Perry AE, Cantwell BJ. 1990.. A general classification of three-dimensional flow fields. . Phys. Fluids A 2:(5):76577
    [Crossref] [Google Scholar]
  24. Coe PL Jr., Graham AB. 1976.. Results of recent NASA research on low-speed aerodynamic characteristics of supersonic cruise aircraft. . In Proceedings of the SCAR Conference Part 1, pp. 12336. Springfield, VA:: Natl. Tech. Inf. Serv.
    [Google Scholar]
  25. Crawford JD, Knobloch E. 1991.. Symmetry and symmetry-breaking bifurcations in fluid dynamics. . Annu. Rev. Fluid Mech. 23::34187
    [Crossref] [Google Scholar]
  26. Dalla Longa L, Evstafyeva O, Morgans A. 2019.. Simulations of the bi-modal wake past three-dimensional blunt bluff bodies. . J. Fluid Mech. 866::791809
    [Crossref] [Google Scholar]
  27. Deck S. 2012.. Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation. . Theor. Comput. Fluid Dyn. 26::52350
    [Crossref] [Google Scholar]
  28. Degani D. 1991.. Effect of geometrical disturbance on vortex asymmetry. . AIAA J. 29:(4):56066
    [Crossref] [Google Scholar]
  29. Degani D. 2022.. Development of nonstationary side forces along a slender body of revolution at incidence. . Phys. Rev. Fluids 7:(12):124101
    [Crossref] [Google Scholar]
  30. Degani D, Tobak M. 1992.. Effect of upstream disturbance on flow asymmetry. Paper presented at the 30th Aerospace Meeting and Exhibit, Reno, NV:, AIAA Pap. 1992-0408
    [Google Scholar]
  31. Dell'Orso H, Amitay M. 2018.. Parametric investigation of stall cell formation on a NACA 0015 airfoil. . AIAA J. 56:(8):321628
    [Crossref] [Google Scholar]
  32. Duetsch-Patel JE, MacGregor D, Jenssen YL, Henry PY, Muthanna C, et al. 2022.. The BeVERLI Hill three-dimensional separating flow case: cross-facility comparisons of validation experiment results. Paper presented at the AIAA SCITECH 2022 Forum, San Diego, CA:, AIAA Pap. 2022-0698
    [Google Scholar]
  33. Ericsson LE. 1990.. Control of forebody flow asymmetry - a critical review. Paper presented at the 17th Atmospheric Flight Mechanics Conference, Portland, OR:, AIAA Pap. 1990-2833
    [Google Scholar]
  34. Ericsson LE, Beyers ME. 2002.. Forebody flow control at conditions of naturally occurring separation asymmetry. . J. Aircr. 39:(2):25261
    [Crossref] [Google Scholar]
  35. Escudier MP, Rosa S, Poole RJ. 2009.. Asymmetry in transitional pipe flow of drag-reducing polymer solutions. . J. Non-Newton. Fluid Mech. 161:(1–3):1929
    [Crossref] [Google Scholar]
  36. Fabre D, Auguste F, Magnaudet J. 2008.. Bifurcations and symmetry breaking in the wake of axisymmetric bodies. . Phys. Fluids 20:(5):051702
    [Crossref] [Google Scholar]
  37. Fairlie B. 1980.. Flow separation on bodies of revolution at incidence. . In 7th Australasian Conference on Hydraulics and Fluid Mechanics, pp. 33841. Barton, Aust.:: Inst. Eng.
    [Google Scholar]
  38. Fearn R, Mullin T, Cliffe K. 1990.. Nonlinear flow phenomena in a symmetric sudden expansion. . J. Fluid Mech. 211::595608
    [Crossref] [Google Scholar]
  39. Fiechter M. 1986 (1966).. Vortex systems on slender rotating bodies and their effect on the aerodynamic coefficients. Rep. TM-88490 , Natl. Aeronaut. Space Adm., Washington, DC:
    [Google Scholar]
  40. Gargiulo A. 2023.. Direct assessment and investigation of nonlinear and nonlocal turbulent constitutive relations in three-dimensional boundary layer flow. PhD Thesis , Virg. Tech, Blacksburg, VA:
    [Google Scholar]
  41. Gargiulo A, Duetsch-Patel JE, Borgoltz A, Devenport WJ, Roy CJ, Lowe KT. 2023.. Strategies for computational fluid dynamics validation experiments. . J. Verif. Valid. Uncert. 8:(3):031004
    [Crossref] [Google Scholar]
  42. Gargiulo A, Duetsch-Patel JE, Ozoroski TA, Beardsley C, Vishwanathan V, et al. 2021.. Flow field features of the BeVERLI Hill model. Paper presented at the AIAA SCITECH 2021 Forum, AIAA Pap. 2021-1741
    [Google Scholar]
  43. Gargiulo A, Ozoroski TA, Hallock T, Haghiri A, Sandberg RD, et al. 2022.. Computations of the BeVERLI Hill three-dimensional separating flow model validation cases. Paper presented at the AIAA SCITECH Forum, San Diego, CA:, AIAA Pap. 2022-1034
    [Google Scholar]
  44. Gentile V, Van Oudheusden B, Schrijer F, Scarano F. 2017.. The effect of angular misalignment on low-frequency axisymmetric wake instability. . J. Fluid Mech. 813::R3
    [Crossref] [Google Scholar]
  45. Grandemange M, Cadot O, Gohlke M. 2012a.. Reflectional symmetry breaking of the separated flow over three-dimensional bluff bodies. . Phys. Rev. E 86:(3):035302
    [Crossref] [Google Scholar]
  46. Grandemange M, Gohlke M, Cadot O. 2013a.. Bi-stability in the turbulent wake past parallelepiped bodies with various aspect ratios and wall effects. . Phys. Fluids 25:(9):095103
    [Crossref] [Google Scholar]
  47. Grandemange M, Gohlke M, Cadot O. 2013b.. Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability. . J. Fluid Mech. 722::5184
    [Crossref] [Google Scholar]
  48. Grandemange M, Gohlke M, Parezanović V, Cadot O. 2012b.. On experimental sensitivity analysis of the turbulent wake from an axisymmetric blunt trailing edge. . Phys. Fluids 24:(3):035106. https://doi.org/10.1063/1.3694765
    [Crossref] [Google Scholar]
  49. Gray PD, Gluzman I, Thomas F, Corke T, Lakebrink M, Mejia K. 2021.. A new validation experiment for smooth-body separation. Paper presented at the AIAA Aviation 2021 Forum, AIAA Pap. 2021-2810
    [Google Scholar]
  50. Gray PD, Lakebrink MT, Thomas FO, Corke TC, Gluzman I, Straccia J. 2023.. Experimental and computational evaluation of smooth-body separated flow over Boeing bump. Paper presented at the AIAA Aviation 2023 Forum, San Diego, CA:, AIAA Pap. 2023-3981
    [Google Scholar]
  51. Gregory PA, Joubert PN, Chong MS. 2007.. Measurements of turbulent crossflow separation created by a curved body of revolution. . J. Fluid Mech. 589::35374
    [Crossref] [Google Scholar]
  52. Grundmann S, Sayles EL, Eaton JK. 2011.. Sensitivity of an asymmetric 3D diffuser to plasma-actuator induced inlet condition perturbations. . Exp. Fluids 50:(1):21731
    [Crossref] [Google Scholar]
  53. Grundmann S, Sayles EL, Elkins CJ, Eaton JK. 2012.. Sensitivity of an asymmetric 3D diffuser to vortex-generator induced inlet condition perturbations. . Exp. Fluids 52:(1):1121
    [Crossref] [Google Scholar]
  54. Huerre P, Monkewitz PA. 1985.. Absolute and convective instabilities in free shear layers. . J. Fluid Mech. 159::15168
    [Crossref] [Google Scholar]
  55. Hunt B. 1982.. Asymmetric vortex forces and wakes on slender bodies. Paper presented at the 9th Atmospheric Flight Mechanics Conference, San Diego, CA:, AIAA Pap. 1982-1336
    [Google Scholar]
  56. Hunt IA, Joubert PN. 1979.. Effects of small streamline curvature on turbulent duct flow. . J. Fluid Mech. 91:(4):63359
    [Crossref] [Google Scholar]
  57. Jenssen YL. 2021.. Examination of complex high Reynolds number wall-bounded adverse pressure gradient flow using advanced measuring techniques. Master's Thesis , Nor. Univ. Sci. Technol., Trondheim, Nor.:
    [Google Scholar]
  58. Jiang F, Andersson HI, Gallardo JP, Okulov VL. 2016.. On the peculiar structure of a helical wake vortex behind an inclined prolate spheroid. . J. Fluid Mech. 801::112
    [Crossref] [Google Scholar]
  59. Kamenetskiy DS, Bussoletti JE, Hilmes CL, Venkatakrishnan V, Wigton LB, Johnson FT. 2014.. Numerical evidence of multiple solutions for the Reynolds-averaged Navier–Stokes equations. . AIAA J. 52:(8):168698
    [Crossref] [Google Scholar]
  60. Keener ER, Chapman GT. 1977.. Similarity in vortex asymmetries over slender bodies and wings. . AIAA J. 15:(9):137072
    [Crossref] [Google Scholar]
  61. Kline SJ. 1959.. On the nature of stall. . J. Basic Eng. 81:(3):30519
    [Crossref] [Google Scholar]
  62. Kline SJ. 1963.. Flow visualization. Film, 31 min , Encycl. Britannica Educ. Corp., Chicago:
    [Google Scholar]
  63. Kumar P, Prasad J. 2016.. Mechanism of side force generation and its alleviation over a slender body. . J. Spacecr. Rockets 53:(1):195208
    [Crossref] [Google Scholar]
  64. Kumar R, Guha TK, Kumar R. 2020.. Role of secondary shear-layer vortices in the development of flow asymmetry on a cone–cylinder body at high angles of incidence. . Exp. Fluids 61::215
    [Crossref] [Google Scholar]
  65. Kumar RS. 2021.. A comprehensive study of vortex asymmetry on slender bodies at high angle of attack. PhD Thesis , Fla. State Univ., Tallahassee, FL:
    [Google Scholar]
  66. Lee JY, Paik BG, Lee SJ. 2009.. PIV measurements of hull wake behind a container ship model with varying loading condition. . Ocean Eng. 36:(5):37785
    [Crossref] [Google Scholar]
  67. Lehmkuhl O, Rodríguez I, Borrell R, Chiva J, Oliva A. 2014.. Unsteady forces on a circular cylinder at critical Reynolds numbers. . Phys. Fluids 26:(12):125110
    [Crossref] [Google Scholar]
  68. Lehmkuhl O, Rodríguez I, Borrell R, Oliva A. 2013.. Low-frequency unsteadiness in the vortex formation region of a circular cylinder. . Phys. Fluids 25:(8):085109
    [Crossref] [Google Scholar]
  69. Letko W. 1953.. A low-speed experimental study of the directional characteristics of a sharp-nosed fuselage through a large angle-of-attack range at zero angle of sideslip. Rep. TN 291 , Natl. Advis. Comm. Aeronaut., Washington, DC:
    [Google Scholar]
  70. Lowe KT, Smits AJ, Visonneau M, Sandberg R, Lavoie P, et al. 2023.. Effects of streamline curvature and three-dimensionality. Tech. Rep. AVT 349 , N. Atl. Treaty Org., Brussels:
    [Google Scholar]
  71. Luo SC, Lim TT, Lua KB, Chia HT, Goh EKR, Ho QW. 1998.. Flowfield around ogive/elliptic-tip cylinder at high angle of attack. . AIAA J. 36:(10):177887
    [Crossref] [Google Scholar]
  72. Ma B-F, Liu T-X. 2014.. Low-frequency vortex oscillation around slender bodies at high angles-of-attack. . Phys. Fluids 26:(9):091701
    [Crossref] [Google Scholar]
  73. MacGregor DA, Gargiulo A, Duetsch-Patel JE, Lavoie P, Lowe T. 2023.. Mean and unsteady surface-pressure measurements on the BeVERLI hill. Paper presented at the AIAA SCITECH 2023 Forum, National Harbor, MD:, AIAA Pap. 2023-0468
    [Google Scholar]
  74. Mamun CK, Tuckerman LS. 1995.. Asymmetry and Hopf bifurcation in spherical Couette flow. . Phys. Fluids 7:(1):8091
    [Crossref] [Google Scholar]
  75. Manohar K. 2023.. Sensor-based temporal super-resolution: application to turbulent separated flow over a three-dimensional Gaussian hill. Master's Thesis , Univ. Calgary, Calgary, Can:.
    [Google Scholar]
  76. Mason PJ, Morton BR. 1987.. Trailing vortices in the wakes of surface-mounted obstacles. . J. Fluid Mech. 175::24793
    [Crossref] [Google Scholar]
  77. Meliga P, Chomaz JM, Sipp D. 2009.. Global mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion. . J. Fluid Mech. 633::15989
    [Crossref] [Google Scholar]
  78. Meng X, Zuo Z, Nishi M, Liu S. 2020.. A numerical study on the flow mechanism of performance improvement of a wide-angle diffuser by inserting a short splitter vane. . Processes 8:(2):143
    [Crossref] [Google Scholar]
  79. Meyer KE, Nielsen L, Nielsen NF. 2004.. Flow structures in large-angle conical diffusers measured by PIV. . In Proceedings of 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, 12–15 July 2004. Pap. 34.6 . Lisbon:: Inst. Super. Téc.
    [Google Scholar]
  80. Mizushima J, Shiotani Y. 2000.. Structural instability of the bifurcation diagram for two-dimensional flow in a channel with a sudden expansion. . J. Fluid Mech. 420::13145
    [Crossref] [Google Scholar]
  81. Ooi A, Lu W, Chan L, Cao Y, Leontini J, Skvortsov A. 2022.. Turbulent flow over a cylinder confined in a channel at Re = 3,900. . Int. J. Heat Fluid Flow 96::108982
    [Crossref] [Google Scholar]
  82. Ozoroski TA, Gargiulo A, Duetsch-Patel JE, Sundarraj V, Roy CJ, et al. 2022.. CFD analysis of the BeVERLI Hill turbulence model validation experiments. Paper presented at the AIAA SCITECH 2022 Forum, San Diego, CA:, AIAA Pap. 2022-0050
    [Google Scholar]
  83. Pavia G, Passmore M, Varney M, Hodgson G. 2020.. Salient three-dimensional features of the turbulent wake of a simplified square-back vehicle. . J. Fluid Mech. 888::A33
    [Crossref] [Google Scholar]
  84. Perry AE, Chong MS. 1987.. A description of eddying motions and flow patterns using critical-point concepts. . Annu. Rev. Fluid Mech. 19::12555
    [Crossref] [Google Scholar]
  85. Perry AE, Hornung H. 1984.. Some aspects of three-dimensional separation. II. Vortex skeletons. . Z. Flugwiss. Weltraumforsch. 8::15560
    [Google Scholar]
  86. Perry AE, Lim TT. 1978.. Coherent structures in coflowing jets and wakes. . J. Fluid Mech. 88::45163
    [Crossref] [Google Scholar]
  87. Piqué A, Miller MA, Hultmark M. 2022.. Laboratory investigation of the near and intermediate wake of a wind turbine at very high Reynolds numbers. . Exp. Fluids 63:(6):106
    [Crossref] [Google Scholar]
  88. Plante F, Dandois J, Beneddine S, Laurendeau É, Sipp D. 2021.. Link between subsonic stall and transonic buffet on swept and unswept wings: from global stability analysis to nonlinear dynamics. . J. Fluid Mech. 908::A16
    [Crossref] [Google Scholar]
  89. Plumejeau B, Keirsbulck L, Delprat S, Lippert M, Abassi W. 2020.. Behavior of the square-back Ahmed body global modes at low ground clearance. . Phys. Rev. Fluids 5:(8):084701. https://doi.org/10.1103/PhysRevFluids.5.084701
    [Crossref] [Google Scholar]
  90. Qi Z, Zong S, Wang Y. 2021.. Bi-stable asymmetry on a pointed-nosed slender body at a high angle of attack. . J. Appl. Phys. 130:(2):024703
    [Crossref] [Google Scholar]
  91. Regan MA, Mahesh K. 2019.. Adjoint sensitivity and optimal perturbations of the low-speed jet in cross-flow. . J. Fluid Mech. 877::33072
    [Crossref] [Google Scholar]
  92. Reynolds WC, Parekh DE, Juvet PJD, Lee MJD. 2003.. Bifurcating and blooming jets. . Annu. Rev. Fluid Mech. 35::295315
    [Crossref] [Google Scholar]
  93. Rigas G, Esclapez L, Magri L. 2017a.. Symmetry breaking in a 3D bluff-body wake. . arXiv:1703.07405 [physics.flu-dyn]
  94. Rigas G, Morgans AS, Brackston R, Morrison JF. 2015.. Diffusive dynamics and stochastic models of turbulent axisymmetric wakes. . J. Fluid Mech. 778::R2
    [Crossref] [Google Scholar]
  95. Rigas G, Morgans AS, Morrison JF. 2017b.. Weakly nonlinear modelling of a forced turbulent axisymmetric wake. . J. Fluid Mech. 814::57091
    [Crossref] [Google Scholar]
  96. Robbins ML. 2021.. Detailed characterization of flowfields and uncertainty in a speed-bump turbulent separated flow validation experiment. PhD Thesis , Univ. Washington, Seattle:
    [Google Scholar]
  97. Rodríguez I, Lehmkuhl O, Chiva J, Borrell R, Oliva A. 2015.. On the flow past a circular cylinder from critical to super-critical Reynolds numbers: wake topology and vortex shedding. . Int. J. Heat Fluid Flow 55::91103
    [Crossref] [Google Scholar]
  98. Roshko A, Thomke G. 1966.. Observations of turbulent reattachment behind an axisymmetric downstream-facing step in supersonic flow. . AIAA J. 4::97580
    [Crossref] [Google Scholar]
  99. Schreck E, Schäfer M. 2000.. Numerical study of bifurcation in three-dimensional sudden channel expansions. . Comput. Fluids 29:(5):58393
    [Crossref] [Google Scholar]
  100. Schubauer GB, Spangenberg WG. 1949.. Effect of screens in wide-angle diffusers. Rep. TR-949 , Natl. Advis. Comm. Aeronaut., Washington, DC:
    [Google Scholar]
  101. Seifert A, Pack LG. 2002.. Active flow separation control on wall-mounted hump at high Reynolds numbers. . AIAA J. 40:(7):136372
    [Crossref] [Google Scholar]
  102. Shalaev VI, Fedorov A, Malmuth N, Shalaev IV. 2004.. Mechanism of forebody nose vortex symmetry breaking relevant to plasma flow control. Paper presented at the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV:, AIAA Pap. 2004-0842
    [Google Scholar]
  103. Shalaev VI, Fedorov A, Malmuth N, Zharov V, Shalaev IV. 2003.. Plasma control of forebody nose vortex symmetry breaking. Paper presented at the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV:, AIAA Pap. 2003-0034
    [Google Scholar]
  104. Shalaev VI, Shalaev IV. 2013.. Stability of symmetric vortex flow over slender bodies and possibility of control by local gas heating. . Progr. Flight Phys. 5::15568
    [Crossref] [Google Scholar]
  105. Shamroth SJ, MacDonald H. 1970.. A new solution of the turbulent near wake recompression problem. Paper presented at the 8th Aerospace Sciences Meeting, West Ger.:, AIAA Pap. 1970-0228
    [Google Scholar]
  106. Shang JK, Smits AJ, Stone HA. 2013.. The appearance of P+S modes in the wake of a freely vibrating, highly flexible cylinder. . J. Fluids Struct. 43::48186
    [Crossref] [Google Scholar]
  107. Simmons D, Thomas F, Corke T, Hussain F. 2022.. Experimental characterization of smooth body flow separation topography and topology on a two-dimensional geometry of finite span. . J. Fluid Mech. 944::A42
    [Crossref] [Google Scholar]
  108. Simpson RL. 1996.. Aspects of turbulent boundary-layer separation. . Prog. Aerosp. Sci. 32:(5):457521
    [Crossref] [Google Scholar]
  109. Simpson RL. 2005.. Some observations on the structure and modeling of 3-D turbulent boundary layers and separated flow. . In Fourth International Symposium on Turbulence and Shear Flow Phenomena, pp. 110. Danbury, CT:: Begell House
    [Google Scholar]
  110. Simpson RL, Long CH. 2001.. Study of vortical separation from an axisymmetric hill. . In Second Symposium on Turbulence and Shear Flow Phenomena, Vol. 3, pp. 6570. Danbury, CT:: Begell House
    [Google Scholar]
  111. Sims-Williams DB, Marwood D, Sprot AJ. 2011.. Links between notchback geometry, aerodynamic drag, flow asymmetry and unsteady wake structure. . SAE Int. J. Passeng. Cars Mech. Syst. 4:(1):15665
    [Crossref] [Google Scholar]
  112. Smith S, Mungal M. 1998.. Mixing, structure and scaling of the jet in crossflow. . J. Fluid Mech. 357::83122
    [Crossref] [Google Scholar]
  113. Smits AJ, McKeon BJ, Marusic I. 2011.. High Reynolds number wall turbulence. . Annu. Rev. Fluid Mech. 43::35375
    [Crossref] [Google Scholar]
  114. Smits AJ, Young STB, Bradshaw P. 1979.. The effect of short regions of high surface curvature on turbulent boundary layers. . J. Fluid Mech. 94::20942
    [Crossref] [Google Scholar]
  115. Spalart PR. 2014.. Prediction of lift cells for stalling wings by lifting-line theory. . AIAA J. 52:(8):181721
    [Crossref] [Google Scholar]
  116. Spalart PR, Venkatakrishnan V. 2016.. On the role and challenges of CFD in the aerospace industry. . Aeronaut. J. 120:(1223):20932
    [Crossref] [Google Scholar]
  117. Tobak M, Peake DJ. 1982.. Topology of three-dimensional separated flows. . Annu. Rev. Fluid Mech. 14::6185
    [Crossref] [Google Scholar]
  118. Wang KC, Zhou HC, Hu CH, Harrington S. 1990.. Three-dimensional separated flow structure over prolate spheroids. . Proc. R. Soc. A 429:(1876):7390
    [Google Scholar]
  119. Watmuff JH, Witt HT, Joubert PN. 1985.. Developing turbulent boundary layers with system rotation. . J. Fluid Mech. 157::40548
    [Crossref] [Google Scholar]
  120. Wetzel TG, Simpson RL, Chesnakas CJ. 1998.. Measurement of three-dimensional crossflow separation. . AIAA J. 36:(4):55764
    [Crossref] [Google Scholar]
  121. Williams OJ, Annamalai H, Ozoroski TA, Roy CJ, Lowe T. 2022.. Comparison of hill-type geometries for the validation and advancement of turbulence models. Paper presented at the AIAA SCITECH 2022 Forum, San Diego, CA:, AIAA Pap. 2022-1032
    [Google Scholar]
  122. Williams OJ, Samuell M, Robbins ML, Annamalai H, Ferrante A. 2021.. Characterization of separated flowfield over Gaussian speed-bump CFD validation geometry. Paper presented at the AIAA SCITECH 2021 Forum, AIAA Pap. 2021-1671
    [Google Scholar]
  123. Williams OJ, Samuell M, Sarwas S, Robbins M, Ferrante A. 2020.. Experimental study of a CFD validation test case for turbulent separated flows. Paper presented at the AIAA SCITECH 2020 Forum, Orlando, FL:, AIAA Pap. 2020-0092
    [Google Scholar]
  124. Williamson CHK, Govardhan R. 2004.. Vortex-induced vibrations. . Annu. Rev. Fluid Mech. 36::41355
    [Crossref] [Google Scholar]
  125. Williamson CHK, Roshko A. 1988.. Vortex formation in the wake of an oscillating cylinder. . J. Fluids Struct. 2::35581
    [Crossref] [Google Scholar]
  126. Winkelman AE, Barlow JB. 1980.. Flowfield model for a rectangular planform wing beyond stall. . AIAA J. 18:(8):10068
    [Crossref] [Google Scholar]
  127. Zhang W, Yang XIA, Zhu X, Wan M, Chen S. 2023.. Asymmetric secondary flows above geometrically symmetric surface roughness. . J. Fluid Mech. 970::A15
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-fluid-030124-045719
Loading
/content/journals/10.1146/annurev-fluid-030124-045719
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error