1932

Abstract

When flowing through narrow channels or constrictions, many-body systems exhibit various flowing patterns, yet they can also get stuck. In many of these systems, the flowing elements remain as individuals (they do not aggregate or merge), sharing strong analogies among each other. This is the case for systems as contrasting as grains in a silo and pedestrians passing through tight spaces. Interestingly, when these entities flow within a fluid medium, numerous similarities persist. However, the fluid dynamics aspects of such clogging events, such as interstitial flow, liquid pressure, and hydrodynamic interactions, has only recently begun to be explored. In this review, we describe parallels with dry granular clogging and extensively analyze phenomena emerging when particles coexist with fluid in the system. We discuss the influence of diverse flow drive, particle propulsion mechanisms, and particle characteristics, and we conclude with examples from nature.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030124-112742
2025-01-22
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/fluid/57/1/annurev-fluid-030124-112742.html?itemId=/content/journals/10.1146/annurev-fluid-030124-112742&mimeType=html&fmt=ahah

Literature Cited

  1. Agbangla GC, Bacchin P, Climent E. 2014.. Collective dynamics of flowing colloids during pore clogging. . Soft Matter 10::630315 Numerical simulations with variable suspension cohesivity showing different clogging mechanisms, from bridging to aggregation.
    [Crossref] [Google Scholar]
  2. Al Alam E, Brun-Cosme-Bruny M, Borne V, Faure S, Maury B, et al. 2022.. Active jamming of microswimmers at a bottleneck constriction. . Phys. Rev. Fluids 7::L092301
    [Crossref] [Google Scholar]
  3. Altshuler E, Ramos O, Núñez Y, Fernández J, Batista-Leyva A, Noda C. 2005.. Symmetry breaking in escaping ants. . Am. Nat. 166::64349
    [Crossref] [Google Scholar]
  4. Arévalo R, Zuriguel I, Maza D, Garcimartín A. 2014.. Role of driving force on the clogging of inert particles in a bottleneck. . Phys. Rev. E 89::042205
    [Crossref] [Google Scholar]
  5. Ascolese M, Farina A, Fasano A. 2019.. The Fåhræus-Lindqvist effect in small blood vessels: How does it help the heart?. J. Biol. Phys. 45::37994
    [Crossref] [Google Scholar]
  6. Ashton GD. 1978.. River ice. . Annu. Rev. Fluid Mech. 10::36992
    [Crossref] [Google Scholar]
  7. Azis PA, Al-Tisan I, Al-Daili M, Green TN, Dalvi AGI, Javeed M. 2000.. Effects of environment on source water for desalination plants on the eastern coast of Saudi Arabia. . Desalination 132::2940
    [Crossref] [Google Scholar]
  8. Bächer C, Schrack L, Gekle S. 2017.. Clustering of microscopic particles in constricted blood flow. . Phys. Rev. Fluids 2::013102
    [Crossref] [Google Scholar]
  9. Barabasi AL. 2005.. The origin of bursts and heavy tails in human dynamics. . Nature 435::20711
    [Crossref] [Google Scholar]
  10. Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G. 2016.. Active particles in complex and crowded environments. . Rev. Mod. Phys. 88::045006
    [Crossref] [Google Scholar]
  11. Beltaos S. 1983.. River ice jams: theory, case studies, and applications. . J. Hydraul. Eng. 109::133859
    [Crossref] [Google Scholar]
  12. Berthet H, Du Roure O, Lindner A. 2016.. Microfluidic fabrication solutions for tailor-designed fiber suspensions. . Appl. Sci. 6::385
    [Crossref] [Google Scholar]
  13. Bielinski C, Aouane O, Harting J, Kaoui B. 2021.. Squeezing multiple soft particles into a constriction: transition to clogging. . Phys. Rev. E 104::065101
    [Crossref] [Google Scholar]
  14. Brady JF, Bossis G. 1988.. Stokesian dynamics. . Annu. Rev. Fluid Mech. 20::11157
    [Crossref] [Google Scholar]
  15. Caitano R, Guerrero B, González R, Zuriguel I, Garcimartín A. 2021.. Characterization of the clogging transition in vibrated granular media. . Phys. Rev. Lett. 127::148002
    [Crossref] [Google Scholar]
  16. Carlevaro CM, Kuperman MN, Bouzat S, Pugnaloni LA, Madrid MA. 2022.. On the use of magnetic particles to enhance the flow of vibrated grains through narrow apertures. . Granul. Matter 24::51
    [Crossref] [Google Scholar]
  17. Cates M, Wittmer J, Bouchaud JP, Claudin P. 1998.. Jamming, force chains, and fragile matter. . Phys. Rev. Lett. 81::184144 The role of applied stress and yield in jamming is proposed for the first time.
    [Crossref] [Google Scholar]
  18. Clauset A, Shalizi CR, Newman ME. 2009.. Power-law distributions in empirical data. . SIAM Rev. 51::661703 A robust method for determining power-law exponents and insightful discussion on the many possible pitfalls.
    [Crossref] [Google Scholar]
  19. Clément E, Reydellet G, Rioual F, Parise B, Fanguet V, et al. 2000.. Jamming patterns and blockade statistics in model granular flows. . In Traffic and Granular Flow '99: Social, Traffic, and Granular Dynamics, ed. D Helbing, HJ Herrmann, M Schreckenberg, DE Wolf , pp. 45768. Berlin:: Springer First identification of the Poissonian character of the burst statistics in a granular silo.
    [Google Scholar]
  20. Collino RR, Ray TR, Fleming RC, Cornell JD, Compton BG, Begley MR. 2016.. Deposition of ordered two-phase materials using microfluidic print nozzles with acoustic focusing. . Extreme Mech. Lett. 8::96106
    [Crossref] [Google Scholar]
  21. Corral Á. 2004.. Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes. . Phys. Rev. Lett. 92::108501
    [Crossref] [Google Scholar]
  22. Croom BP, Abbott A, Kemp JW, Rueschhoff L, Smieska L, et al. 2021.. Mechanics of nozzle clogging during direct ink writing of fiber-reinforced composites. . Addit. Manuf. 37::101701
    [Google Scholar]
  23. Delouche N, Schofield A, Tabuteau H. 2020.. Dynamics of progressive pore clogging by colloidal aggregates. . Soft Matter 16::9899907
    [Crossref] [Google Scholar]
  24. Delouche N, van Doorn J, Kodger T, Schofield A, Sprakel J, Tabuteau H. 2021.. The contribution of colloidal aggregates to the clogging dynamics at the pore scale. . J. Membr. Sci. 635::119509
    [Crossref] [Google Scholar]
  25. Dersoir B, de Saint Vincent MR, Abkarian M, Tabuteau H. 2015.. Clogging of a single pore by colloidal particles. . Microfluid. Nanofluidics 19::95361
    [Crossref] [Google Scholar]
  26. Dincau B, Dressaire E, Sauret A. 2023.. Clogging: the self-sabotage of suspensions. . Phys. Today 76::2430 A short review covering basic aspects of clogging for both cohesive and noncohesive suspensions.
    [Crossref] [Google Scholar]
  27. Dincau B, Tang C, Dressaire E, Sauret A. 2022.. Clog mitigation in a microfluidic array via pulsatile flows. . Soft Matter 18::176778
    [Crossref] [Google Scholar]
  28. Dressaire E, Sauret A. 2017.. Clogging of microfluidic systems. . Soft Matter 13::3748
    [Crossref] [Google Scholar]
  29. Duchêne C, Filipe V, Huille S, Lindner A. 2020.. Clogging of microfluidic constrictions by monoclonal antibody aggregates: role of aggregate shape and deformability. . Soft Matter 16::92128
    [Crossref] [Google Scholar]
  30. Duru P, Hallez Y. 2015.. A three-step scenario involved in particle capture on a pore edge. . Langmuir 31::831017
    [Crossref] [Google Scholar]
  31. Eur. Union. 2021.. How Copernicus Sentinels monitor the snow and ice extent over Europe. . Copernicus. https://www.copernicus.eu/en/news/news/observer-how-copernicus-sentinels-monitor-snow-and-ice-extent-over-europe
    [Google Scholar]
  32. Figueroa-Morales N, Mino GL, Rivera A, Caballero R, Clément E, et al. 2015.. Living on the edge: transfer and traffic of E. coli in a confined flow. . Soft Matter 11::628493
    [Crossref] [Google Scholar]
  33. Garcimartín A, Parisi DR, Pastor JM, Martín-Gómez C, Zuriguel I. 2016.. Flow of pedestrians through narrow doors with different competitiveness. . J. Stat. Mech. Theory Exp. 2016::043402 One of the first studies showing the faster-is-slower effect for pedestrians under different stress conditions.
    [Crossref] [Google Scholar]
  34. Garcimartín A, Pastor J, Ferrer L, Ramos J, Martín-Gómez C, Zuriguel I. 2015.. Flow and clogging of a sheep herd passing through a bottleneck. . Phys. Rev. E 91::022808
    [Crossref] [Google Scholar]
  35. Guariguata A, Pascall MA, Gilmer MW, Sum AK, Sloan ED, et al. 2012.. Jamming of particles in a two-dimensional fluid-driven flow. . Phys. Rev. E 86::061311
    [Crossref] [Google Scholar]
  36. Guazzelli É, Pouliquen O. 2018.. Rheology of dense granular suspensions. . J. Fluid Mech. 852::P1
    [Crossref] [Google Scholar]
  37. Harth K, Wang J, Börzsönyi T, Stannarius R. 2020.. Intermittent flow and transient congestions of soft spheres passing narrow orifices. . Soft Matter 16::801323
    [Crossref] [Google Scholar]
  38. Haw M. 2004.. Jamming, two-fluid behavior, and ``self-filtration'' in concentrated particulate suspensions. . Phys. Rev. Lett. 92::185506
    [Crossref] [Google Scholar]
  39. Helbing D, Buzna L, Johansson A, Werner T. 2005.. Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. . Transp. Sci. 39::124
    [Crossref] [Google Scholar]
  40. Hidalgo R, Goñi-Arana A, Hernández-Puerta A, Pagonabarraga I. 2018.. Flow of colloidal suspensions through small orifices. . Phys. Rev. E 97::012611
    [Crossref] [Google Scholar]
  41. Hong X, Kohne M, Morrell M, Wang H, Weeks ER. 2017.. Clogging of soft particles in two-dimensional hoppers. . Phys. Rev. E 96::062605
    [Crossref] [Google Scholar]
  42. Hsu CP, Baysal HE, Wirenborn G, Mårtensson G, Wittberg LP, Isa L. 2021.. Roughness-dependent clogging of particle suspensions flowing into a constriction. . Soft Matter 17::725259
    [Crossref] [Google Scholar]
  43. Hubbe MA, Metts JR, Hermosilla D, Blanco MA, Yerushalmi L, et al. 2016.. Wastewater treatment and reclamation: a review of pulp and paper industry practices and opportunities. . BioResources 11::79538091
    [Crossref] [Google Scholar]
  44. Janda A, Maza D, Garcimartín A, Kolb E, Lanuza J, Clément E. 2009.. Unjamming a granular hopper by vibration. . Europhys. Lett. 87::24002
    [Crossref] [Google Scholar]
  45. Janda A, Zuriguel I, Garcimartín A, Pugnaloni LA, Maza D. 2008.. Jamming and critical outlet size in the discharge of a two-dimensional silo. . Europhys. Lett. 84::44002
    [Crossref] [Google Scholar]
  46. Karmeli D, Peri G. 1974.. Basic principles of pulse irrigation. . J. Irrigation Drainage Div. 100::30919
    [Crossref] [Google Scholar]
  47. Kennedy J, Mahadevan L. 2019.. Hydraulically driven jamming of rods. . Presented at APS March Meeting 2019, Boston, MA, March 4–8, Abstr. V56.00009
  48. Khajeh A, Jamshidi Chenari R, Payan M. 2020.. A simple review of cemented non-conventional materials: soil composites. . Geotechn. Geol. Eng. 38::101940
    [Crossref] [Google Scholar]
  49. Kim D, Shin JU, Kim H, Kim H, Lee D, et al. 2016.. Development and experimental testing of an autonomous jellyfish detection and removal robot system. . Int. J. Control Autom. Syst. 14::31222
    [Crossref] [Google Scholar]
  50. Kim Y, Ahn KH, Lee SJ. 2017.. Clogging mechanism of poly(styrene) particles in the flow through a single micro-pore. . J. Membr. Sci. 534::2532
    [Crossref] [Google Scholar]
  51. Knippenberg T, Lüders A, Lozano C, Nielaba P, Bechinger C. 2022.. Role of cohesion in the flow of active particles through bottlenecks. . Sci. Rep. 12::11525
    [Crossref] [Google Scholar]
  52. Koivisto J, Durian DJ. 2017.. Effect of interstitial fluid on the fraction of flow microstates that precede clogging in granular hoppers. . Phys. Rev. E 95::032904 A revealing study in gravity-driven submerged silos on the role of inertia and friction.
    [Crossref] [Google Scholar]
  53. Koivisto J, Korhonen M, Alava M, Ortiz CP, Durian DJ, Puisto A. 2017.. Friction controls even submerged granular flows. . Soft Matter 13::765764
    [Crossref] [Google Scholar]
  54. Kolzenburg S, Chevrel MO, Dingwell DB. 2022.. Magma/suspension rheology. . Rev. Mineral. Geochem. 87::639720
    [Crossref] [Google Scholar]
  55. Krausz B, Bauckhage C. 2012.. Loveparade 2010: automatic video analysis of a crowd disaster. . Comput. Vis. Image Underst. 116::30719
    [Crossref] [Google Scholar]
  56. Kulkarni SD, Metzger B, Morris JF. 2010.. Particle-pressure-induced self-filtration in concentrated suspensions. . Phys. Rev. E 82:: 010402
    [Crossref] [Google Scholar]
  57. Lafond PG, Gilmer MW, Koh CA, Sloan ED, Wu DT, Sum AK. 2013.. Orifice jamming of fluid-driven granular flow. . Phys. Rev. E 87::042204
    [Crossref] [Google Scholar]
  58. Larrieu R, Moreau P, Graff C, Peyla P, Dupont A. 2023.. Fish evacuate smoothly respecting a social bubble. . Sci. Rep. 13::10414
    [Crossref] [Google Scholar]
  59. Larson A. 2015.. Wildlife and power plants: new solutions for animal problems. . Power, Nov. 1. https://www.powermag.com/wildlife-and-power-plants-new-solutions-for-animal-problems
  60. Lastakowski H, Géminard JC, Vidal V. 2015.. Granular friction: triggering large events with small vibrations. . Sci. Rep. 5::13455
    [Crossref] [Google Scholar]
  61. Lindenschmidt K-E. 2020.. River Ice Processes and Ice Flood Forecasting. Cham, Switz:.: Springer
    [Google Scholar]
  62. Madrid MA, Carlevaro CM, Pugnaloni LA, Kuperman M, Bouzat S. 2021.. Enhancement of the flow of vibrated grains through narrow apertures by addition of small particles. . Phys. Rev. E 103::L030901
    [Crossref] [Google Scholar]
  63. Malhotra A, Redberg RF, Meier P. 2017.. Saturated fat does not clog the arteries: Coronary heart disease is a chronic inflammatory condition, the risk of which can be effectively reduced from healthy lifestyle interventions. . Br. J. Sports Med. 15::111112
    [Crossref] [Google Scholar]
  64. Mankoc C, Garcimartín A, Zuriguel I, Maza D, Pugnaloni LA. 2009.. Role of vibrations in the jamming and unjamming of grains discharging from a silo. . Phys. Rev. E 80::011309 Extensive coverage of particle flow intermittency caused by vibration in a granular silo.
    [Crossref] [Google Scholar]
  65. Marin A, Barnkob R. 2020.. Acoustic anti-clogging effect in microfluidic constrictions: Can clogging be reduced by simply redistributing particles?. Presented at 73rd Annual Meeting of the APS Division of Fluid Dynamics, Abstr. J07.00003
    [Google Scholar]
  66. Marin A, Lhuissier H, Rossi M, Kähler CJ. 2018.. Clogging in constricted suspension flows. . Phys. Rev. E 97::021102
    [Crossref] [Google Scholar]
  67. Metzger B, Pham P, Butler JE. 2013.. Irreversibility and chaos: role of lubrication interactions in sheared suspensions. . Phys. Rev. E 87::052304
    [Crossref] [Google Scholar]
  68. Morris JF. 2020.. Shear thickening of concentrated suspensions: recent developments and relation to other phenomena. . Annu. Rev. Fluid Mech. 52::12144
    [Crossref] [Google Scholar]
  69. Muecke TW. 1979.. Formation fines and factors controlling their movement in porous media. . J. Petroleum Technol. 31::14450
    [Crossref] [Google Scholar]
  70. Muite BK, Hunt ML, Joseph GG. 2004.. The effects of a counter-current interstitial flow on a discharging hourglass. . Phys. Fluids 16::341525
    [Crossref] [Google Scholar]
  71. Muller PB, Rossi M, Marin A, Barnkob R, Augustsson P, et al. 2013.. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. . Phys. Rev. E 88::023006
    [Crossref] [Google Scholar]
  72. Napper IE, Thompson RC. 2016.. Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. . Marine Pollut. Bull. 112::3945
    [Crossref] [Google Scholar]
  73. Ortega-Roano E, Souzy M, Weinhart T, Van Der Meer D, Marin A. 2023.. Clogging of noncohesive suspensions through constrictions using an efficient discrete particle solver with unresolved fluid flow. . Phys. Rev. E 108::064905
    [Crossref] [Google Scholar]
  74. Patterson GA, Fierens PI, Jimka FS, König P, Garcimartín A, et al. 2017.. Clogging transition of vibration-driven vehicles passing through constrictions. . Phys. Rev. Lett. 119::248301
    [Crossref] [Google Scholar]
  75. Péter H, Libál A, Reichhardt C, Reichhardt CJO. 2018.. Crossover from jamming to clogging behaviours in heterogeneous environments. . Sci. Rep. 8::10252
    [Crossref] [Google Scholar]
  76. Piton G, Goodwin SR, Mark E, Strouth A. 2022.. Debris flows, boulders and constrictions: a simple framework for modeling jamming, and its consequences on outflow. . J. Geophys. Res. Earth Surf. 127::e2021JF006447
    [Crossref] [Google Scholar]
  77. Piton G, Horiguchi T, Marchal L, Lambert S. 2020.. Open check dams and large wood: head losses and release conditions. . Nat. Hazards Earth Syst. Sci. 20::3293314
    [Crossref] [Google Scholar]
  78. Priesemann V, Wibral M, Valderrama M, Pröpper R, Le Van Quyen M, et al. 2014.. Spike avalanches in vivo suggest a driven, slightly subcritical brain state. . Front. Syst. Neurosci. 8::108
    [Crossref] [Google Scholar]
  79. Rahav E, Belkin N, Nnebuo O, Sisma-Ventura G, Guy-Haim T, et al. 2022.. Jellyfish swarm impair the pretreatment efficiency and membrane performance of seawater reverse osmosis desalination. . Water Res. 215::118231
    [Crossref] [Google Scholar]
  80. Richardson KJ, Kuck L, Simmonds MJ. 2020.. Beyond oxygen transport: active role of erythrocytes in the regulation of blood flow. . Am. J. Physiol. Heart Circ. Physiol. 319::H86672
    [Crossref] [Google Scholar]
  81. Roman S, Merlo A, Duru P, Risso F, Lorthois S. 2016.. Going beyond 20 μm-sized channels for studying red blood cell phase separation in microfluidic bifurcations. . Biomicrofluidics 10::034103
    [Crossref] [Google Scholar]
  82. Roussel N, Nguyen TLH, Coussot P. 2007.. General probabilistic approach to the filtration process. . Phys. Rev. Lett. 98::114502
    [Crossref] [Google Scholar]
  83. Ruiz-Villanueva V, Mazzorana B, Bladé E, Bürkli L, Iribarren-Anacona P, et al. 2019.. Characterization of wood-laden flows in rivers. . Earth Surf. Process. Landf. 44::1694709
    [Crossref] [Google Scholar]
  84. Saloma C, Perez GJ, Tapang G, Lim M, Palmes-Saloma C. 2003.. Self-organized queuing and scale-free behavior in real escape panic. . PNAS 100::1194752
    [Crossref] [Google Scholar]
  85. Sauret A, Barney EC, Perro A, Villermaux E, Stone HA, Dressaire E. 2014.. Clogging by sieving in microchannels: application to the detection of contaminants in colloidal suspensions. . Appl. Phys. Lett. 105::074101
    [Crossref] [Google Scholar]
  86. Sauret A, Somszor K, Villermaux E, Dressaire E. 2018.. Growth of clogs in parallel microchannels. . Phys. Rev. Fluids 3::104301
    [Crossref] [Google Scholar]
  87. Schwarze J, Grunze M, Karahka M, Kreuzer H. 2019.. Attachment and detachment of particles from a surface under shear flow. . J. Phys. Chem. C 123::815359
    [Crossref] [Google Scholar]
  88. Sivasankar P, Kumar GS. 2019.. Influence of bio-clogging induced formation damage on performance of microbial enhanced oil recovery processes. . Fuel 236::1009
    [Crossref] [Google Scholar]
  89. Souzy M, Marin A. 2022.. Role of liquid driving on the clogging of constricted particle suspensions. . J. Fluid Mech. 953::A40 Shows a faster-is-slower effect when liquid flow is driven under controlled pressure.
    [Crossref] [Google Scholar]
  90. Souzy M, Zuriguel I, Marin A. 2020.. Transition from clogging to continuous flow in constricted particle suspensions. . Phys. Rev. E 101::060901
    [Crossref] [Google Scholar]
  91. Stankiewicz AI, Moulijn JA, et al. 2000.. Process intensification: transforming chemical engineering. . Chem. Eng. Prog. 96::2234
    [Google Scholar]
  92. Takahashi T. 1981.. Debris flow. . Annu. Rev. Fluid Mech. 13::5777
    [Crossref] [Google Scholar]
  93. Tampier J, Kool L, Bourrianne P, Lindner A. 2024.. Clogging of interlocking particles in a 2D hopper. . Presented at the 26th International Congress in Theoretical and Applied Mechanics, Daegu, South Korea:, Aug. 25–30
    [Google Scholar]
  94. Telen MJ. 2000.. Red blood cell surface adhesion molecules: their possible roles in normal human physiology and disease. . Semin. Hematol. 37::13042
    [Crossref] [Google Scholar]
  95. Thackray E, Nordstrom K. 2017.. Gravity-driven granular flow in a silo: characterizing local forces and rearrangements. . EPJ Web Conf. 140::03087
    [Crossref] [Google Scholar]
  96. Thomas C, Durian DJ. 2015.. Fraction of clogging configurations sampled by granular hopper flow. . Phys. Rev. Lett. 114::178001
    [Crossref] [Google Scholar]
  97. To K. 2005.. Jamming transition in two-dimensional hoppers and silos. . Phys. Rev. E 71::060301
    [Crossref] [Google Scholar]
  98. To K, Lai P-Y, Pak HK. 2001.. Jamming of granular flow in a two-dimensional hopper. . Phys. Rev. Lett. 86::7174
    [Crossref] [Google Scholar]
  99. To K, Tai HT. 2017.. Flow and clog in a silo with oscillating exit. . Phys. Rev. E 96::032906
    [Crossref] [Google Scholar]
  100. Valdes JR, Santamarina JC. 2008.. Clogging: bridge formation and vibration-based destabilization. . Can. Geotechnol. J. 45::17784
    [Crossref] [Google Scholar]
  101. Vani N, Escudier S, Sauret A. 2022.. Influence of the solid fraction on the clogging by bridging of suspensions in constricted channels. . Soft Matter 18::698797
    [Crossref] [Google Scholar]
  102. Vilela A, Cosme F, Pinto T. 2018.. Emulsions, foams, and suspensions: the microscience of the beverage industry. . Beverages 4::25
    [Crossref] [Google Scholar]
  103. Wang J, Fan B, Pongó T, Harth K, Trittel T, et al. 2021.. Silo discharge of mixtures of soft and rigid grains. . Soft Matter 17::428295
    [Crossref] [Google Scholar]
  104. Wang S, Lv W, Song W. 2015.. Behavior of ants escaping from a single-exit room. . PLOS ONE 10::e0131784
    [Crossref] [Google Scholar]
  105. Weinhart T, Orefice L, Post M, van Schrojenstein Lantman MP, Denissen IFC, et al. 2020.. Fast, flexible particle simulations—an introduction to MercuryDPM. . Comput. Phys. Commun. 249::107129
    [Crossref] [Google Scholar]
  106. Wu X, Måløy KJ, Hansen A, Ammi M, Bideau D. 1993.. Why hour glasses tick. . Phys. Rev. Lett. 71::136366
    [Crossref] [Google Scholar]
  107. Wyss HM, Blair DL, Morris JF, Stone HA, Weitz DA. 2006.. Mechanism for clogging of microchannels. . Phys. Rev. E 74::061402
    [Crossref] [Google Scholar]
  108. Yadeta KA, Thomma BPHJ. 2013.. The xylem as battleground for plant hosts and vascular wilt pathogens. . Front. Plant Sci. 4::97
    [Google Scholar]
  109. Zuriguel I. 2014.. Invited review: clogging of granular materials in bottlenecks. . Pap. Phys. 6::060014
    [Crossref] [Google Scholar]
  110. Zuriguel I, Garcimartín A. 2020.. Statistical mechanics of clogging. . In Encyclopedia of Complexity and Systems Science, ed. RA Meyers . Berlin:: Springer. https://doi.org/10.1007/978-3-642-27737-5_746-1
    [Google Scholar]
  111. Zuriguel I, Garcimartín A, Maza D, Pugnaloni LA, Pastor J. 2005.. Jamming during the discharge of granular matter from a silo. . Phys. Rev. E 71:: 051303
    [Crossref] [Google Scholar]
  112. Zuriguel I, Janda A, Garcimartín A, Lozano C, Arévalo R, Maza D. 2011.. Silo clogging reduction by the presence of an obstacle. . Phys. Rev. Lett. 107::278001
    [Crossref] [Google Scholar]
  113. Zuriguel I, Parisi DR, Hidalgo RC, Lozano C, Janda A, et al. 2014.. Clogging transition of many-particle systems flowing through bottlenecks. . Sci. Rep. 4::7324 Establishes the general statistical framework to study intermittent flows of completely different natures.
    [Crossref] [Google Scholar]
  114. Zuriguel I, Pugnaloni LA, Garcimartín A, Maza D. 2003.. Jamming during the discharge of grains from a silo described as a percolating transition. . Phys. Rev. E 68::030301
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-fluid-030124-112742
Loading
/content/journals/10.1146/annurev-fluid-030124-112742
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error