1932

Abstract

Chemical gradients, the spatial variations in chemical concentrations and components, are omnipresent in environments ranging from biological and environmental systems to industrial processes. These thermodynamic forces often play a central role in driving transport processes taking place in such systems. This review focuses on diffusiophoresis, a phoretic transport phenomenon driven by chemical gradients. We begin by revisiting the fundamental physicochemical hydrodynamics governing the transport. Then we discuss diffusiophoresis arising in flow systems found in natural and artificial settings. By exploring various scenarios where chemical gradients are encountered and exploited, we aim to demonstrate the significance of diffusiophoresis and its state-of-the-art development in technological applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030424-110950
2025-01-22
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/fluid/57/1/annurev-fluid-030424-110950.html?itemId=/content/journals/10.1146/annurev-fluid-030424-110950&mimeType=html&fmt=ahah

Literature Cited

  1. Abécassis B, Cottin-Bizonne C, Ybert C, Ajdari A, Bocquet L. 2008.. Boosting migration of large particles by solute contrasts. . Nat. Mater. 7:(10):78589
    [Crossref] [Google Scholar]
  2. Akdeniz B, Wood JA, Lammertink RGH. 2023.. Diffusiophoresis and diffusio-osmosis into a dead-end channel: role of the concentration-dependence of zeta potential. . Langmuir 39:(6):232232
    [Crossref] [Google Scholar]
  3. Akdeniz B, Wood JA, Lammertink RGH. 2024.. Diffusiophoresis in polymer and nanoparticle gradients. . J. Phys. Chem. B 128:(24):587487
    [Crossref] [Google Scholar]
  4. Alessio BM, Gupta A. 2023.. Diffusiophoresis-enhanced Turing patterns. . Sci. Adv. 9:(45):eadj2457
    [Crossref] [Google Scholar]
  5. Alessio BM, Shim S, Gupta A, Stone HA. 2022.. Diffusioosmosis-driven dispersion of colloids: a Taylor dispersion analysis with experimental validation. . J. Fluid Mech. 942::A23
    [Crossref] [Google Scholar]
  6. Alexander M, Corrigan A, Gorski L, Hankins J, Perucca R. 2009.. Infusion Nursing: An Evidence-Based Approach. St. Louis, MO:: Saunders Elsevier Health. , 3rd ed..
    [Google Scholar]
  7. Anderson JL. 1989.. Colloid transport by interfacial forces. . Annu. Rev. Fluid Mech. 21::6199
    [Crossref] [Google Scholar]
  8. Anderson JL, Lowell ME, Prieve DC. 1982.. Motion of a particle generated by chemical gradients Part 1. Non-electrolytes. . J. Fluid Mech. 117::10721
    [Crossref] [Google Scholar]
  9. Anderson JL, Prieve DC. 1991.. Diffusiophoresis caused by gradients of strongly adsorbing solutes. . Langmuir 7:(2):4036
    [Crossref] [Google Scholar]
  10. Antoine EE, Vlachos PP, Rylander MN. 2014.. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. . Tissue Eng. Part B Rev. 20:(6):68396
    [Crossref] [Google Scholar]
  11. Ault JT, Shin S, Stone HA. 2018.. Diffusiophoresis in narrow channel flows. . J. Fluid Mech. 854::42048
    [Crossref] [Google Scholar]
  12. Ault JT, Warren PB, Shin S, Stone HA. 2017.. Diffusiophoresis in one-dimensional solute gradients. . Soft Matter 13:(47):901523
    [Crossref] [Google Scholar]
  13. Banani SF, Lee HO, Hyman AA, Rosen MK. 2017.. Biomolecular condensates: organizers of cellular biochemistry. . Nat. Rev. Mol. Cell Biol. 18:(5):28598
    [Crossref] [Google Scholar]
  14. Battat S, Ault JT, Shin S, Khodaparast S, Stone HA. 2019.. Particle entrainment in dead-end pores by diffusiophoresis. . Soft Matter 15:(19):387985
    [Crossref] [Google Scholar]
  15. Bhaskar B, Bhattacharyya S. 2023.. Diffusiophoresis of a highly charged rigid colloid in a hydrogel incorporating ion steric interactions. . Phys. Fluids 35:(10):102023
    [Crossref] [Google Scholar]
  16. Bishop KJM, Biswal SL, Bharti B. 2023.. Active colloids as models, materials, and machines. . Annu. Rev. Chem. Biomol. Eng. 14::130
    [Crossref] [Google Scholar]
  17. Boulogne F, Shin S, Dervaux J, Limat L, Stone HA. 2017.. Diffusiophoretic manipulation of particles in a drop deposited on a hydrogel. . Soft Matter 13:(30):512229
    [Crossref] [Google Scholar]
  18. Brady JF. 2011.. Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. . J. Fluid Mech. 667::21659
    [Crossref] [Google Scholar]
  19. Chakra A, Singh N, Vladisavljevic GT, Nadal F, Cottin-Bizonne C, et al. 2023.. Continuous manipulation and characterization of colloidal beads and liposomes via diffusiophoresis in single-and double-junction microchannels. . ACS Nano 17:(15):1464457
    [Crossref] [Google Scholar]
  20. Chang YC, Keh HJ. 2008.. Diffusiophoresis and electrophoresis of a charged sphere perpendicular to two plane walls. . J. Colloid Interface Sci. 322:(2):63453
    [Crossref] [Google Scholar]
  21. Chen PY, Keh HJ. 2005.. Diffusiophoresis and electrophoresis of a charged sphere parallel to one or two plane walls. . J. Colloid Interface Sci. 286:(2):77491
    [Crossref] [Google Scholar]
  22. Chiang TY, Velegol D. 2014.. Multi-ion diffusiophoresis. . J. Colloid Interface Sci. 424::12023
    [Crossref] [Google Scholar]
  23. Chiu HC, Keh HJ. 2017.. Diffusiophoresis of a charged particle in a microtube. . Electrophoresis 38:(19):246878
    [Crossref] [Google Scholar]
  24. Chu HCW, Garoff S, Tilton RD, Khair AS. 2021.. Macrotransport theory for diffusiophoretic colloids and chemotactic microorganisms. . J. Fluid Mech. 917::A52
    [Crossref] [Google Scholar]
  25. Chu HCW, Garoff S, Tilton RD, Khair AS. 2022.. Tuning chemotactic and diffusiophoretic spreading via hydrodynamic flows. . Soft Matter 18:(9):1896910
    [Crossref] [Google Scholar]
  26. de Ávila BEF, Angsantikul P, Li J, Angel Lopez-Ramirez M, Ramírez-Herrera DE, et al. 2017.. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. . Nat. Commun. 8:(1):272. Erratum. 2017.. Nat. Commun. 8:(1):1299
    [Google Scholar]
  27. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. 1997.. Capillary flow as the cause of ring stains from dried liquid drops. . Nature 389:(6653):82729
    [Crossref] [Google Scholar]
  28. Derjaguin BV, Dukhin SS, Korotkova AA. 1961.. Diffusiophoresis in electrolyte solutions and its role in the mechanism of the formation of films from caoutchouc latexes by the ionic deposition method. . Colloid J. USSR 23:(1):5358
    [Google Scholar]
  29. Derjaguin BV, Sidorenkov GP, Zubashchenkov EA, Kiseleva EV. 1947.. Kinetic phenomena in boundary films of liquids. . Colloid J. USSR 9::33547
    [Google Scholar]
  30. Deseigne J, Cottin-Bizonne C, Stroock AD, Bocquet L, Ybert C. 2014.. How a ``pinch of salt'' can tune chaotic mixing of colloidal suspensions. . Soft Matter 10:(27):479599
    [Crossref] [Google Scholar]
  31. Doan VS, Alshareedah I, Singh A, Banerjee PR, Shin S. 2024.. Diffusiophoresis promotes phase separation and transport of biomolecular condensates. . Nat. Commun. 15:(1):7686
    [Crossref] [Google Scholar]
  32. Doan VS, Chun S, Feng J, Shin S. 2021.. Confinement-dependent diffusiophoretic transport of nanoparticles in collagen hydrogels. . Nano Lett. 21:(18):762530
    [Crossref] [Google Scholar]
  33. Doan VS, Kim DO, Snoeyink C, Sun Y, Shin S. 2023.. Shape- and orientation-dependent diffusiophoresis of colloidal ellipsoids. . Phys. Rev. E 107:(5):L052602
    [Crossref] [Google Scholar]
  34. Doan VS, Saingam P, Yan T, Shin S. 2020.. A trace amount of surfactants enables diffusiophoretic swimming of bacteria. . ACS Nano 14:(10):1421927
    [Crossref] [Google Scholar]
  35. Dukhin SS. 1993.. Non-equilibrium electric surface phenomena. . Adv. Colloid Interface Sci. 44::1134
    [Crossref] [Google Scholar]
  36. Ebel JP, Anderson JL, Prieve DC. 1988.. Diffusiophoresis of latex particles in electrolyte gradients. . Langmuir 4:(2):396406
    [Crossref] [Google Scholar]
  37. Florea D, Musa S, Huyghe JMR, Wyss HM. 2014.. Long-range repulsion of colloids driven by ion exchange and diffusiophoresis. . PNAS 111:(18):655459
    [Crossref] [Google Scholar]
  38. Fortini A, Martín-Fabiani I, De La Haye JL, Dugas PY, Lansalot M, et al. 2016.. Dynamic stratification in drying films of colloidal mixtures. . Phys. Rev. Lett. 116:(11):118301. Erratum. 2016.. Phys. Rev. Lett. 116::229902
    [Google Scholar]
  39. Friedrich SM, Burke JM, Liu KJ, Ivory CF, Wang TH. 2017.. Molecular rheotaxis directs DNA migration and concentration against a pressure-driven flow. . Nat. Commun. 8:(1):1213
    [Crossref] [Google Scholar]
  40. Gandhi T, Huang JM, Aubret A, Li Y, Ramananarivo S, et al. 2020.. Decision-making at a T-junction by gradient-sensing microscopic agents. . Phys. Rev. Fluids 5:(10):104202
    [Crossref] [Google Scholar]
  41. Ganguly A, Roychowdhury S, Gupta A. 2024.. Unified mobility expressions for externally driven and self-phoretic propulsion of particles. . J. Fluid Mech. 994:A2
    [Google Scholar]
  42. Ghosh S, Lee S, Johnson MV, Hardin J, Doan VS, et al. 2023.. Diffusiophoresis-enhanced particle deposition for additive manufacturing. . MRS Commun. 13:(6):105362
    [Crossref] [Google Scholar]
  43. Giddings JC. 1993.. Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. . Science 260:(5113):145665
    [Crossref] [Google Scholar]
  44. Grosberg AY, Nguyen TT, Shklovskii BI. 2002.. The physics of charge inversion in chemical and biological systems. . Rev. Mod. Phys. 74:(2):329
    [Crossref] [Google Scholar]
  45. Groves R, Welche P, Routh AF. 2023.. The coagulant dipping process of nitrile latex: investigations of former motion effects and coagulant loss into the dipping compound. . Soft Matter 19:(3):46882
    [Crossref] [Google Scholar]
  46. Guha R, Mohajerani F, Mukhopadhyay A, Collins MD, Sen A, Velegol D. 2017.. Modulation of spatiotemporal particle patterning in evaporating droplets: applications to diagnostics and materials science. . ACS Appl. Mater. Interfaces 9:(49):4335262
    [Crossref] [Google Scholar]
  47. Guha R, Shang X, Zydney AL, Velegol D, Kumar M. 2015.. Diffusiophoresis contributes significantly to colloidal fouling in low salinity reverse osmosis systems. . J. Membrane Sci. 479::6776
    [Crossref] [Google Scholar]
  48. Gupta A, Rajan AG, Carter EA, Stone HA. 2020a.. Ionic layering and overcharging in electrical double layers in a Poisson-Boltzmann model. . Phys. Rev. Lett. 125:(18):188004
    [Crossref] [Google Scholar]
  49. Gupta A, Rallabandi B, Stone HA. 2019.. Diffusiophoretic and diffusioosmotic velocities for mixtures of valence-asymmetric electrolytes. . Phys. Rev. Fluids 4:(4):043702
    [Crossref] [Google Scholar]
  50. Gupta A, Shim S, Stone HA. 2020b.. Diffusiophoresis: from dilute to concentrated electrolytes. . Soft Matter 16:(30):697584
    [Crossref] [Google Scholar]
  51. Happel J, Brenner H. 1983.. Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, Vol. 1. Hingham, MA:: Kluwer
    [Google Scholar]
  52. Hsu JP, Ko IF, Tseng S. 2012.. Importance of boundary effect on the diffusiophoretic behavior of a charged particle in an electrolyte medium. . J. Phys. Chem. C 116:(7):445564
    [Crossref] [Google Scholar]
  53. Ishikawa T. 2024.. Fluid dynamics of squirmers and ciliated microorganisms. . Annu. Rev. Fluid Mech. 56::11945
    [Crossref] [Google Scholar]
  54. Israelachvili JN. 2011.. Intermolecular and Surface Forces. Burlington, MA:: Academic. , 3rd ed..
    [Google Scholar]
  55. Jain RK, Martin JD, Stylianopoulos T. 2014.. The role of mechanical forces in tumor growth and therapy. . Annu. Rev. Biomed. Eng. 16::32146
    [Crossref] [Google Scholar]
  56. Jambon-Puillet E, Testa A, Lorenz C, Style RW, Rebane AA, Dufresne ER. 2024.. Phase-separated droplets swim to their dissolution. . Nat. Commun. 15:(1):3919
    [Crossref] [Google Scholar]
  57. Jana S, Um SH, Jung S. 2012.. Paramecium swimming in capillary tube. . Phys. Fluids 24:(4):041901
    [Crossref] [Google Scholar]
  58. Johansson L, Löfroth JE. 1993.. Diffusion and interaction in gels and solutions. 4. Hard sphere Brownian dynamics simulations. . J. Chem. Phys. 98:(9):747179
    [Crossref] [Google Scholar]
  59. Joo SW, Lee SY, Liu J, Qian S. 2010.. Diffusiophoresis of an elongated cylindrical nanoparticle along the axis of a nanopore. . ChemPhysChem 11:(15):328190
    [Crossref] [Google Scholar]
  60. Jotkar M, Cueto-Felgueroso L. 2021.. Particle separation through diverging nanochannels via diffusiophoresis and diffusioosmosis. . Phys. Rev. Appl. 16:(6):064067
    [Crossref] [Google Scholar]
  61. Jotkar M, de Anna P, Dentz M, Cueto-Felgueroso L. 2024.. The impact of diffusiophoresis on hydrodynamic dispersion and filtration in porous media. . J. Fluid Mech. 991::A8
    [Crossref] [Google Scholar]
  62. Kar A, Chiang TY, Rivera IO, Sen A, Velegol D. 2015.. Enhanced transport into and out of dead-end pores. . ACS Nano 9:(1):74653
    [Crossref] [Google Scholar]
  63. Katzmeier F, Simmel FC. 2024.. Reversible self-assembly of nucleic acids in a diffusiophoretic trap. . Angew. Chem. Int. Ed. 63:(16):e202317118
    [Crossref] [Google Scholar]
  64. Keh HJ. 2016.. Diffusiophoresis of charged particles and diffusioosmosis of electrolyte solutions. . Curr. Opin. Colloid Interface Sci. 24::1322
    [Crossref] [Google Scholar]
  65. Keh HJ, Anderson JL. 1985.. Boundary effects on electrophoretic motion of colloidal spheres. . J. Fluid Mech. 153::41739
    [Crossref] [Google Scholar]
  66. Keh HJ, Chen SB. 1988.. Electrophoresis of a colloidal sphere parallel to a dielectric plane. . J. Fluid Mech. 194::37790
    [Crossref] [Google Scholar]
  67. Keh HJ, Hsu LY. 2008.. Diffusioosmosis of electrolyte solutions in fibrous porous media. . Microfluid. Nanofluid. 5:(3):34756
    [Crossref] [Google Scholar]
  68. Keh HJ, Hsu LY. 2009.. Diffusioosmotic flow of electrolyte solutions in fibrous porous media at arbitrary zeta potential and double-layer thickness. . Microfluid. Nanofluid. 7:(6):773
    [Crossref] [Google Scholar]
  69. Keh HJ, Wei YK. 2000.. Diffusiophoretic mobility of spherical particles at low potential and arbitrary double-layer thickness. . Langmuir 16:(12):528994
    [Crossref] [Google Scholar]
  70. Kirby BJ, Hasselbrink EF. 2004.. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. . Electrophoresis 25:(2):187202
    [Crossref] [Google Scholar]
  71. Kozak MW, Davis EJ. 1986.. Electrokinetic phenomena in fibrous porous media. . J. Colloid Interface Sci. 112:(2):40311
    [Crossref] [Google Scholar]
  72. Lee D, Kim J, Lee H, Kim SJ. 2020.. Effect of evaporation through nanoporous medium on diffusiophoresis. . Micro Nano Syst. Lett. 8:(1):7
    [Crossref] [Google Scholar]
  73. Lee D, Kim SJ. 2020.. Spontaneous diffusiophoretic separation in paper-based microfluidic device. . Micro Nano Syst. Lett. 8::6
    [Crossref] [Google Scholar]
  74. Lee E, Lee YS, Yen FY, Hsu JP. 2000.. Electroosmotic flow of a general electrolyte solution through a fibrous medium. . J. Colloid Interface Sci. 223:(2):22328
    [Crossref] [Google Scholar]
  75. Lee H, Kim J, Yang J, Seo SW, Kim SJ. 2018.. Diffusiophoretic exclusion of colloidal particles for continuous water purification. . Lab Chip 18:(12):171324
    [Crossref] [Google Scholar]
  76. Lee K, Lee J, Ha D, Kim M, Kim T. 2020.. Low-electric-potential-assisted diffusiophoresis for continuous separation of nanoparticles on a chip. . Lab Chip 20:(15):273547
    [Crossref] [Google Scholar]
  77. Lee S, Lee J, Ault JT. 2023.. The role of variable zeta potential on diffusiophoretic and diffusioosmotic transport. . Colloids Surf. A 659::130775
    [Crossref] [Google Scholar]
  78. Lee SY, Yalcin SE, Joo SW, Baysal O, Qian S. 2010.. Diffusiophoretic motion of a charged spherical particle in a nanopore. . J. Phys. Chem. B 114:(19):643746
    [Crossref] [Google Scholar]
  79. Li S, Li A, Hsieh K, Friedrich SM, Wang TH. 2020.. Electrode-free concentration and recovery of DNA at physiologically relevant ionic concentrations. . Anal. Chem. 92:(8):615057
    [Crossref] [Google Scholar]
  80. Lin MMJ, Prieve DC. 1983.. Electromigration of latex induced by a salt gradient. . J. Colloid Interface Sci. 95:(2):32739
    [Crossref] [Google Scholar]
  81. Maass CC, Krüger C, Herminghaus S, Bahr C. 2016.. Swimming droplets. . Annu. Rev. Condens. Matter Phys. 7::17193
    [Crossref] [Google Scholar]
  82. Marbach S, Bocquet L. 2019.. Osmosis, from molecular insights to large-scale applications. . Chem. Soc. Rev. 48:(11):310244
    [Crossref] [Google Scholar]
  83. Marbach S, Yoshida H, Bocquet L. 2020.. Local and global force balance for diffusiophoretic transport. . J. Fluid Mech. 892::A6
    [Crossref] [Google Scholar]
  84. Mauger C, Volk R, Machicoane N, Bourgoin M, Cottin-Bizonne C, et al. 2016.. Diffusiophoresis at the macroscale. . Phys. Rev. Fluids 1:(3):034001
    [Crossref] [Google Scholar]
  85. McCutcheon JR, McGinnis RL, Elimelech M. 2005.. A novel ammonia–carbon dioxide forward (direct) osmosis desalination process. . Desalination 174:(1):111
    [Crossref] [Google Scholar]
  86. McKenzie BE, Chu HCW, Garoff S, Tilton RD, Khair AS. 2022.. Drop deformation during diffusiophoresis. . J. Fluid Mech. 949::A17
    [Crossref] [Google Scholar]
  87. Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I. 2000.. Gas sorption, diffusion, and permeation in poly (dimethylsiloxane). . J. Polym. Sci. B Polym. Phys. 38:(3):41534
    [Crossref] [Google Scholar]
  88. Migacz RE, Ault JT. 2022.. Diffusiophoresis in a Taylor-dispersing solute. . Phys. Rev. Fluids 7:(3):034202
    [Crossref] [Google Scholar]
  89. Migacz RE, Durey G, Ault JT. 2023.. Convection rolls and three-dimensional particle dynamics in merging solute streams. . Phys. Rev. Fluids 8::114201
    [Crossref] [Google Scholar]
  90. Möller FM, Kriegel F, Kieß M, Sojo V, Braun D. 2017.. Steep pH gradients and directed colloid transport in a microfluidic alkaline hydrothermal pore. . Angew. Chem. Int. Ed. 56:(9):234044
    [Crossref] [Google Scholar]
  91. Moran JL, Posner JD. 2017.. Phoretic self-propulsion. . Annu. Rev. Fluid Mech. 49::51140
    [Crossref] [Google Scholar]
  92. Palacci J, Abécassis B, Cottin-Bizonne C, Ybert C, Bocquet L. 2010.. Colloidal motility and pattern formation under rectified diffusiophoresis. . Phys. Rev. Lett. 104:(13):138302
    [Crossref] [Google Scholar]
  93. Park SW, Lee J, Yoon H, Shin S. 2021.. Microfluidic investigation of salinity-induced oil recovery in porous media during chemical flooding. . Energy Fuels 35:(6):488592
    [Crossref] [Google Scholar]
  94. Parry BR, Surovtsev IV, Cabeen MT, O'Hern CS, Dufresne ER, Jacobs-Wagner C. 2014.. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. . Cell 156:(1):18394
    [Crossref] [Google Scholar]
  95. Paustian JS, Azevedo RN, Lundin STB, Gilkey MJ, Squires TM. 2013.. Microfluidic microdialysis: spatiotemporal control over solution microenvironments using integrated hydrogel membrane microwindows. . Phys. Rev. X 3:(4):041010
    [Google Scholar]
  96. Prieve DC, Anderson JL, Ebel JP, Lowell ME. 1984.. Motion of a particle generated by chemical gradients. Part 2. Electrolytes. . J. Fluid Mech. 148::24769
    [Crossref] [Google Scholar]
  97. Prieve DC, Malone SM, Khair AS, Stout RF, Kanj MY. 2019.. Diffusiophoresis of charged colloidal particles in the limit of very high salinity. . PNAS 116:(37):1825762
    [Crossref] [Google Scholar]
  98. Prieve DC, Roman R. 1987.. Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. . J. Chem. Soc. Faraday Trans. 83:(8):1287306
    [Crossref] [Google Scholar]
  99. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, et al. 2008.. Collagen density promotes mammary tumor initiation and progression. . BMC Med. 6:(1):11
    [Crossref] [Google Scholar]
  100. Raj RR, Shields CW, Gupta A. 2023.. Two-dimensional diffusiophoretic colloidal banding: optimizing the spatial and temporal design of solute sinks and sources. . Soft Matter 19:(5):892904
    [Crossref] [Google Scholar]
  101. Ramírez-Hinestrosa S, Yoshida H, Bocquet L, Frenkel D. 2020.. Studying polymer diffusiophoresis with non-equilibrium molecular dynamics. . J. Chem. Phys. 152:(16):164901
    [Crossref] [Google Scholar]
  102. Ramm B, Goychuk A, Khmelinskaia A, Blumhardt P, Eto H, et al. 2021.. A diffusiophoretic mechanism for ATP-driven transport without motor proteins. . Nat. Phys. 17:(7):85058
    [Crossref] [Google Scholar]
  103. Rasmussen MK, Pedersen JN, Marie R. 2020.. Size and surface charge characterization of nanoparticles with a salt gradient. . Nat. Commun. 11:(1):2337
    [Crossref] [Google Scholar]
  104. Raynal F, Bourgoin M, Cottin-Bizonne C, Ybert C, Volk R. 2018.. Advection and diffusion in a chemically induced compressible flow. . J. Fluid Mech. 847::22843
    [Crossref] [Google Scholar]
  105. Raynal F, Volk R. 2019.. Diffusiophoresis, Batchelor scale and effective Péclet numbers. . J. Fluid Mech. 876::81829
    [Crossref] [Google Scholar]
  106. Saad S, Natale G. 2019.. Diffusiophoresis of active colloids in viscoelastic media. . Soft Matter 15:(48):990919
    [Crossref] [Google Scholar]
  107. Sambamoorthy S, Chu HCW. 2023.. Diffusiophoresis of a spherical particle in porous media. . Soft Matter 19:(6):113143
    [Crossref] [Google Scholar]
  108. Schulz M, Smith RW, Sear RP, Brinkhuis R, Keddie JL. 2020.. Diffusiophoresis-driven stratification of polymers in colloidal films. . ACS Macro Lett. 9:(9):128691
    [Crossref] [Google Scholar]
  109. Sear RP. 2019.. Diffusiophoresis in cells: a general nonequilibrium, nonmotor mechanism for the metabolism-dependent transport of particles in cells. . Phys. Rev. Lett. 122:(12):128101
    [Crossref] [Google Scholar]
  110. Sear RP, Warren PB. 2017.. Diffusiophoresis in nonadsorbing polymer solutions: the Asakura-Oosawa model and stratification in drying films. . Phys. Rev. E 96:(6):062602
    [Crossref] [Google Scholar]
  111. Seo M, Park S, Lee D, Lee H, Kim SJ. 2020.. Continuous and spontaneous nanoparticle separation by diffusiophoresis. . Lab Chip 20:(22):411827
    [Crossref] [Google Scholar]
  112. Sheng JJ. 2014.. Critical review of low-salinity waterflooding. . J. Petrol. Sci. Eng. 120::21624
    [Crossref] [Google Scholar]
  113. Shi N, Abdel-Fattah A. 2021.. Droplet migration into dead-end channels at high salinity enhanced by micelle gradients of a zwitterionic surfactant. . Phys. Rev. Fluids 6:(5):053103
    [Crossref] [Google Scholar]
  114. Shi N, Nery-Azevedo R, Abdel-Fattah AI, Squires TM. 2016.. Diffusiophoretic focusing of suspended colloids. . Phys. Rev. Lett. 117:(25):258001
    [Crossref] [Google Scholar]
  115. Shim S. 2022.. Diffusiophoresis, diffusioosmosis, and microfluidics: surface-flow-driven phenomena in the presence of flow. . Chem. Rev. 122:(7):69867009
    [Crossref] [Google Scholar]
  116. Shim S, Nunes JK, Chen G, Stone HA. 2022.. Diffusiophoresis in the presence of a pH gradient. . Phys. Rev. Fluids 7:(11):110513
    [Crossref] [Google Scholar]
  117. Shimokusu TJ, Maybruck VG, Ault JT, Shin S. 2020.. Colloid separation by CO2-induced diffusiophoresis. . Langmuir 36:(25):703238
    [Crossref] [Google Scholar]
  118. Shin S. 2020.. Diffusiophoretic separation of colloids in microfluidic flows. . Phys. Fluids 32:(10):101302
    [Crossref] [Google Scholar]
  119. Shin S. 2023.. Directed colloidal assembly and banding via DC electrokinetics. . Biomicrofluidics 17:(3):031301
    [Crossref] [Google Scholar]
  120. Shin S, Ault JT, Feng J, Warren PB, Stone HA. 2017a.. Low-cost zeta potentiometry using solute gradients. . Adv. Mater. 29:(30):1701516
    [Crossref] [Google Scholar]
  121. Shin S, Ault JT, Toda-Peters K, Shen AQ. 2020.. Particle trapping in merging flow junctions by fluid-solute-colloid-boundary interactions. . Phys. Rev. Fluids 5:(2):024304
    [Crossref] [Google Scholar]
  122. Shin S, Ault JT, Warren PB, Stone HA. 2017b.. Accumulation of colloidal particles in flow junctions induced by fluid flow and diffusiophoresis. . Phys. Rev. X 7:(4):041038
    [Google Scholar]
  123. Shin S, Doan VS, Feng J. 2019.. Osmotic delivery and release of lipid-encapsulated molecules via sequential solution exchange. . Phys. Rev. Appl. 12:(2):024014
    [Crossref] [Google Scholar]
  124. Shin S, Shardt O, Warren PB, Stone HA. 2017c.. Membraneless water filtration using CO2. . Nat. Commun. 8:(1):15181
    [Crossref] [Google Scholar]
  125. Shin S, Um E, Sabass B, Ault JT, Rahimi M, et al. 2016.. Size-dependent control of colloid transport via solute gradients in dead-end channels. . PNAS 113:(2):25761
    [Crossref] [Google Scholar]
  126. Shin S, Warren PB, Stone HA. 2018.. Cleaning by surfactant gradients: particulate removal from porous materials and the significance of rinsing in laundry detergency. . Phys. Rev. Appl. 9:(3):034012
    [Crossref] [Google Scholar]
  127. Shukla V, Volk R, Bourgoin M, Pumir A. 2017.. Phoresis in turbulent flows. . New J. Phys. 19:(12):123030
    [Crossref] [Google Scholar]
  128. Singh N, Vladisavljević GT, Nadal F, Cottin-Bizonne C, Pirat C, Bolognesi G. 2020.. Reversible trapping of colloids in microgrooved channels via diffusiophoresis under steady-state solute gradients. . Phys. Rev. Lett. 125:(24):248002
    [Crossref] [Google Scholar]
  129. Solomentsev Y, Anderson JL. 1994.. Electrophoresis of slender particles. . J. Fluid Mech. 279::197215
    [Crossref] [Google Scholar]
  130. Somasundar A, Qin B, Shim S, Bassler BL, Stone HA. 2023.. Diffusiophoretic particle penetration into bacterial biofilms. . ACS Appl. Mater. Interfaces 15:(28):3326372
    [Crossref] [Google Scholar]
  131. Staffeld PO, Quinn JA. 1989.. Diffusion-induced banding of colloid particles via diffusiophoresis: 2. Non-electrolytes. . J. Colloid Interface Sci. 130:(1):88100
    [Crossref] [Google Scholar]
  132. Stocker R. 2012.. Marine microbes see a sea of gradients. . Science 338:(6107):62833
    [Crossref] [Google Scholar]
  133. Stout RF, Khair AS. 2014.. A continuum approach to predicting electrophoretic mobility reversals. . J. Fluid Mech. 752::R1
    [Crossref] [Google Scholar]
  134. Stout RF, Khair AS. 2017.. Influence of ion sterics on diffusiophoresis and electrophoresis in concentrated electrolytes. . Phys. Rev. Fluids 2:(1):014201
    [Crossref] [Google Scholar]
  135. Tan H, Banerjee A, Shi N, Tang X, Abdel-Fattah A, Squires TM. 2021.. A two-step strategy for delivering particles to targets hidden within microfabricated porous media. . Sci. Adv. 7:(33):eabh0638
    [Crossref] [Google Scholar]
  136. Tang S, Zhang F, Gong H, Wei F, Zhuang J, et al. 2020.. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. . Sci. Robot. 5:(43):eaba6137
    [Crossref] [Google Scholar]
  137. Taylor GI. 1953.. Dispersion of soluble matter in solvent flowing slowly through a tube. . Proc. R. Soc. A 219:(1137):186203
    [Google Scholar]
  138. Teng J, Rallabandi B, Ault JT. 2023.. Diffusioosmotic dispersion of solute in a long narrow channel. . J. Fluid Mech. 977::A5
    [Crossref] [Google Scholar]
  139. Testa A, Dindo M, Rebane AA, Nasouri B, Style RW, et al. 2021.. Sustained enzymatic activity and flow in crowded protein droplets. . Nat. Commun. 12:(1):6293
    [Crossref] [Google Scholar]
  140. Tetteh JT, Brady PV, Ghahfarokhi RB. 2020.. Review of low salinity waterflooding in carbonate rocks: mechanisms, investigation techniques, and future directions. . Adv. Colloid Interface Sci. 284::102253
    [Crossref] [Google Scholar]
  141. Tseng S, Su CY, Hsu JP. 2016.. Diffusiophoresis of a charged, rigid sphere in a Carreau fluid. . J. Colloid Interface Sci. 465::5457
    [Crossref] [Google Scholar]
  142. Velegol D, Garg A, Guha R, Kar A, Kumar M. 2016.. Origins of concentration gradients for diffusiophoresis. . Soft Matter 12:(21):4686703
    [Crossref] [Google Scholar]
  143. Villermaux E. 2019.. Mixing versus stirring. . Annu. Rev. Fluid Mech. 51::24573
    [Crossref] [Google Scholar]
  144. Volk R, Bourgoin M, Bréhier CE, Raynal F. 2022.. Phoresis in cellular flows: from enhanced dispersion to blockage. . J. Fluid Mech. 948::A42
    [Crossref] [Google Scholar]
  145. Wang K, Leville S, Behdani B, Batista CAS. 2022.. Long-range transport and directed assembly of charged colloids under aperiodic electrodiffusiophoresis. . Soft Matter 18:(32):594959
    [Crossref] [Google Scholar]
  146. Warmoeskerken MMCG, van der Vlist P, Moholkar VS, Nierstrasz VA. 2002.. Laundry process intensification by ultrasound. . Colloids Surf. A 210:(2–3):27785
    [Crossref] [Google Scholar]
  147. Warren PB. 2020.. Non-Faradaic electric currents in the Nernst-Planck equations and nonlocal diffusiophoresis of suspended colloids in crossed salt gradients. . Phys. Rev. Lett. 124:(24):248004
    [Crossref] [Google Scholar]
  148. Williams I, Naderizadeh S, Sear RP, Keddie JL. 2022.. Quantitative imaging and modeling of colloidal gelation in the coagulant dipping process. . J. Chem. Phys. 156:(21):214905
    [Crossref] [Google Scholar]
  149. Williams I, Warren PB, Sear RP, Keddie JL. 2024.. Colloidal diffusiophoresis in crossed electrolyte gradients: experimental demonstration of an “action-at-a-distance” effect predicted by the Nernst-Planck equations. . Phys. Rev. Fluids 9:(1):014201
    [Crossref] [Google Scholar]
  150. Wilson JL, Shim S, Yu YE, Gupta A, Stone HA. 2020.. Diffusiophoresis in multivalent electrolytes. . Langmuir 36:(25):701420
    [Crossref] [Google Scholar]
  151. Xu J, Wang Z, Chu HCW. 2023.. Unidirectional drying of a suspension of diffusiophoretic colloids under gravity. . RSC Adv. 13:(14):924759
    [Crossref] [Google Scholar]
  152. Yang F, Rallabandi B, Stone HA. 2019.. Autophoresis of two adsorbing/desorbing particles in an electrolyte solution. . J. Fluid Mech. 865::44059
    [Crossref] [Google Scholar]
  153. Zydney AL. 1995.. Boundary effects on the electrophoretic motion of a charged particle in a spherical cavity. . J. Colloid Interface Sci. 169:(2):47685
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-fluid-030424-110950
Loading
/content/journals/10.1146/annurev-fluid-030424-110950
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error