1932

Abstract

Lagrangian averaging theories, most notably the generalized Lagrangian mean (GLM) theory of Andrews and McIntyre, have been primarily developed in Euclidean space and Cartesian coordinates. We reinterpret these theories using a geometric, coordinate-free formulation. This gives central roles to the flow map, its decomposition into mean and perturbation maps, and the momentum 1-form dual to the velocity vector. In this interpretation, the Lagrangian mean of any tensorial quantity is obtained by averaging its pull-back to the mean configuration. Crucially, the mean velocity is not a Lagrangian mean in this sense. It can be defined in a variety of ways, leading to alternative Lagrangian mean formulations that include GLM and Soward and Roberts's volume-preserving version. These formulations share key features that the geometric approach uncovers. We derive governing equations both for the mean flow and for wave activities constraining the dynamics of the perturbations. The presentation focuses on the Boussinesq model for inviscid rotating stratified flows and reviews the necessary tools of differential geometry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030524-095913
2025-01-22
2025-06-17
Loading full text...

Full text loading...

/deliver/fulltext/fluid/57/1/annurev-fluid-030524-095913.html?itemId=/content/journals/10.1146/annurev-fluid-030524-095913&mimeType=html&fmt=ahah

Literature Cited

  1. Andrews DG, McIntyre ME. 1978a.. An exact theory of nonlinear waves on a Lagrangian-mean flow. . J. Fluid Mech. 89::60946
    [Crossref] [Google Scholar]
  2. Andrews DG, McIntyre ME. 1978b.. On wave-action and its relatives. . J. Fluid Mech. 89::64764. Corrigendum. 1979. J. Fluid Mech. 95:796
    [Crossref] [Google Scholar]
  3. Arnold VI. 1966.. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits. . Ann. Inst. Fourier 16::31661
    [Crossref] [Google Scholar]
  4. Arnold VI, Khesin BA. 1998.. Topological Methods in Hydrodynamics. . Appl. Math. Sci. , Vol. 125. Cham, Switz.:: Springer
    [Google Scholar]
  5. Bretherton CS, Schär C. 1993.. Flux of potential vorticity substance: a simple derivation and a uniqueness property. . J. Atmos. Sci. 50::183436
    [Crossref] [Google Scholar]
  6. Bretherton FP. 1971.. The general linearized theory of wave propagation. . In Mathematical Problems in the Geophysical Sciences, ed. WH Reid , pp. 61102. Lect. Appl. Math. Vol. 13. Providence, RI:: Am. Math. Soc.
    [Google Scholar]
  7. Bühler O. 2014.. Waves and Mean Flows. Cambridge, UK:: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  8. Bühler O, McIntyre ME. 1998.. On non-dissipative wave–mean interactions in the atmosphere or oceans. . J. Fluid Mech. 354::30143
    [Crossref] [Google Scholar]
  9. Bühler O, McIntyre ME. 2005.. Wave capture and wave–vortex duality. . J. Fluid Mech. 534::6795
    [Crossref] [Google Scholar]
  10. Craik AD, Leibovich S. 1976.. A rational model for Langmuir circulations. . J. Fluid Mech. 73::40126
    [Crossref] [Google Scholar]
  11. Dewar RL. 1970.. Interaction between hydromagnetic waves and a time-dependent inhomogeneous medium. . Phys. Fluids 13::271020
    [Crossref] [Google Scholar]
  12. Ebin DG, Marsden JE. 1970.. Groups of diffeomorphisms and the motion of an incompressible fluid. . Ann. Math. 92::10263
    [Crossref] [Google Scholar]
  13. Eckart C. 1963.. Some transformations of the hydrodynamic equations. . Phys. Fluids 6::103741
    [Crossref] [Google Scholar]
  14. Frankel T. 2004.. The Geometry of Physics. Cambridge, UK:: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  15. Gilbert AD, Vanneste J. 2018.. Geometric generalised Lagrangian-mean theories. . J. Fluid Mech. 839::95134
    [Crossref] [Google Scholar]
  16. Gilbert AD, Vanneste J. 2021.. A geometric look at MHD and the Braginsky dynamo. . Geophys. Astrophys. Fluid Dyn. 115::43671
    [Crossref] [Google Scholar]
  17. Gjaja I, Holm DD. 1999.. Self-consistent Hamiltonian dynamics of wave mean-flow interaction for a rotating stratified incompressible fluid. . Physica D 98::34378
    [Crossref] [Google Scholar]
  18. Grimshaw R. 1975.. Nonlinear internal gravity waves in a rotating fluid. . J. Fluid Mech. 71:(3):497512
    [Crossref] [Google Scholar]
  19. Grimshaw R. 1984.. Wave action and wave–mean flow interaction, with application to stratified shear flows. . Annu. Rev. Fluid Mech. 16::1144
    [Crossref] [Google Scholar]
  20. Haynes PH, McIntyre ME. 1987.. On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. . J. Atmos. Sci. 44::82841
    [Crossref] [Google Scholar]
  21. Haynes PH, McIntyre ME. 1990.. On the conservation and impermeability theorems for potential vorticity. . J. Atmos. Sci. 47::202131
    [Crossref] [Google Scholar]
  22. Holm DD. 1996.. The ideal Craik–Leibovich equations. . Physica D 98::41549
    [Crossref] [Google Scholar]
  23. Holm DD. 1999.. Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion. . Physica D 133::21569
    [Crossref] [Google Scholar]
  24. Holm DD. 2002a.. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuation in fluid dynamics. . Chaos 12::51830
    [Crossref] [Google Scholar]
  25. Holm DD. 2002b.. Variational principles for Lagrangian-averaged fluid dynamics. . J. Phys. A Math. Gen. 35::67988
    [Crossref] [Google Scholar]
  26. Holm DD. 2019.. Stochastic closures for wave–current interaction dynamics. . J. Nonlinear Sci. 29::29873031
    [Crossref] [Google Scholar]
  27. Holm DD. 2021.. Stochastic variational formulations of fluid wave–current interaction. . J. Nonlinear Sci. 31::4
    [Crossref] [Google Scholar]
  28. Holm DD, Hu R, Street O. 2023.. Lagrangian reduction and wave mean flow interaction. . Physica D 454::133847
    [Crossref] [Google Scholar]
  29. Holm DD, Marsden JE, Ratiu T. 1998.. The Euler–Poincaré equations and semi-direct products with applications to continuum theories. . Adv. Math. 137::181
    [Crossref] [Google Scholar]
  30. Holm DD, Marsden JE, Ratiu T, Weinstein A. 1985.. Nonlinear stability of fluid and plasma equilibria. . Phys. Rep. 123::1116
    [Crossref] [Google Scholar]
  31. Holmes-Cerfon M, Bühler O, Ferrari R. 2011.. Particle dispersion by random waves in the rotating Boussinesq system. . J. Fluid Mech. 670::15075
    [Crossref] [Google Scholar]
  32. Kafiabad HA. 2022.. Grid-based calculation of the Lagrangian mean. . J. Fluid Mech. 940::A21
    [Crossref] [Google Scholar]
  33. Kafiabad HA, Vanneste J. 2023.. Computing Lagrangian means. . J. Fluid Mech. 960::A36
    [Crossref] [Google Scholar]
  34. Kafiabad HA, Vanneste J, Young WR. 2021.. Wave-averaged balance: a simple example. . J. Fluid Mech. 911::R1
    [Crossref] [Google Scholar]
  35. Leibovich S. 1976.. On wave-current interaction theories of Langmuir circulations. . J. Fluid Mech. 99::71524
    [Crossref] [Google Scholar]
  36. Lichtenberg AJ, Lieberman MA. 1992.. Regular and Chaotic Dynamics. New York:: Springer. , 2nd ed..
    [Google Scholar]
  37. Marsden J, Shkoller S. 2001.. Global well-posedness for the Lagrangian averaged Navier–Stokes (LANS-α) equations on bounded domains. . Philos. Trans. R. Soc. A 359::144968
    [Crossref] [Google Scholar]
  38. Marsden J, Shkoller S. 2003.. The anisotropic Lagrangian averaged Euler and Navier–Stokes equations. . Arch. Ration. Mech. Anal. 166::2746
    [Crossref] [Google Scholar]
  39. McIntyre ME. 1988.. A note on the divergence effect and the Lagrangian-mean surface elevation in periodic water waves. . J. Fluid Mech. 189::23542
    [Crossref] [Google Scholar]
  40. Moore D. 1970.. The mass transport velocity induced by free oscillations at a single frequency. . Geophys. Fluid Dyn. 1::23747
    [Crossref] [Google Scholar]
  41. Oliver M, Vasylkevych S. 2019.. Geodesic motion on groups of diffeomorphisms with H1 metric as geometric generalised Lagrangian mean theory. . Geophys. Astrophys. Fluid Dyn. 113::46690
    [Crossref] [Google Scholar]
  42. Roberts PH, Soward AM. 2006a.. Covariant description of non-relativistic magnetohydrodynamics. . Geophys. Astrophys. Fluid Dyn. 100::45783
    [Crossref] [Google Scholar]
  43. Roberts PH, Soward AM. 2006b.. Eulerian–Lagrangian means in rotating, magnetohydrodynamic flows. I. General results. . Geophys. Astrophys. Fluid Dyn. 100::45783
    [Crossref] [Google Scholar]
  44. Roberts PH, Soward AM. 2009.. The Navier–Stokes-α equations revisited. . Geophys. Astrophys. Fluid Dyn. 103::30316
    [Crossref] [Google Scholar]
  45. Salmon R. 1998.. Lectures on Geophysical Fluid Dynamics. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  46. Salmon R. 2013.. An alternative view of generalized Lagrangian mean theory. . J. Fluid Mech. 719::16582
    [Crossref] [Google Scholar]
  47. Salmon R. 2016.. Variational treatment of inertia–gravity waves interacting with a quasi-geostrophic mean flow. . J. Fluid Mech. 809::50229
    [Crossref] [Google Scholar]
  48. Schutz B. 1980.. Geometrical Methods of Mathematical Physics. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  49. Soward AM. 1972.. A kinematic theory of large magnetic Reynolds number dynamos. . Philos. Trans. R. Soc. A 272::43162
    [Google Scholar]
  50. Soward AM, Roberts PH. 2008.. On the derivation of the Navier–Stokes–α equations from Hamilton's principle. . J. Fluid Mech. 604::297323
    [Crossref] [Google Scholar]
  51. Soward AM, Roberts PH. 2010.. The hybrid Euler–Lagrange procedure using an extension of Moffatt's method. . J. Fluid Mech. 661::4572
    [Crossref] [Google Scholar]
  52. Soward AM, Roberts PH. 2014.. Eulerian–Lagrangian means in rotating magnetohydrodynamic flows. II. Braginsky's nearly axisymmetric dynamo. . Geophys. Astrophys. Fluid Dyn. 108::269322
    [Crossref] [Google Scholar]
  53. Suzuki N, Fox-Kemper B. 2016.. Understanding Stokes forces in the wave-averaged equations. . J. Geophys. Res. Oceans 121::357996
    [Crossref] [Google Scholar]
  54. Tao T. 2016.. Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation. . Ann. PDE 2::9
    [Crossref] [Google Scholar]
  55. Vallis GK. 2006.. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge, UK:: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  56. Vanneste J, Young WR. 2022.. Stokes drift and its discontents. . Philos. Trans. R. Soc. A 380::20210032
    [Crossref] [Google Scholar]
  57. Wagner GL, Young WR. 2015.. Available potential vorticity and wave-averaged quasi-geostrophic flow. . J. Fluid Mech. 785::40124
    [Crossref] [Google Scholar]
  58. Xie JH, Vanneste J. 2015.. A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow. . J. Fluid Mech. 774::14369
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-fluid-030524-095913
Loading
/content/journals/10.1146/annurev-fluid-030524-095913
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error