1932

Abstract

The problem of the geodynamo is simple to formulate (Why does the Earth possess a magnetic field?), yet it proves surprisingly hard to address. As with most geophysical flows, the fluid flow of molten iron in the Earth's core is strongly influenced by the Coriolis effect. Because the liquid is electrically conducting, it is also strongly influenced by the Lorentz force. The balance is unusual in that, whereas each of these effects considered separately tends to impede the flow, the magnetic field in the Earth's core relaxes the effect of the rapid rotation and allows the development of a large-scale flow in the core that in turn regenerates the field. This review covers some recent developments regarding the interplay between rotation and magnetic fields and how it affects the flow in the Earth's core.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-031224-121649
2025-01-22
2025-02-15
Loading full text...

Full text loading...

/deliver/fulltext/fluid/57/1/annurev-fluid-031224-121649.html?itemId=/content/journals/10.1146/annurev-fluid-031224-121649&mimeType=html&fmt=ahah

Literature Cited

  1. Ampère A. 1820.. Mémoire sur l'action mutuelle entre deux courants électriques, un courant électrique et un aimant ou le globe terrestre, et entre deux aimants. . Ann. Chim. Phys. 15::5975
    [Google Scholar]
  2. Arnold VI. 1992.. Catastrophe Theory. Berlin:: Springer. , 3rd ed..
    [Google Scholar]
  3. Aubert J. 2023.. State and evolution of the geodynamo from numerical models reaching the physical conditions of Earth's core. . Geophys. J. Int. 235::46887
    [Crossref] [Google Scholar]
  4. Aubert J, Gastine T, Fournier A. 2017.. Spherical convective dynamos in the rapidly rotating asymptotic regime. . J. Fluid Mech. 813::55893
    [Crossref] [Google Scholar]
  5. Aurnou J, King E. 2017.. The cross-over to magnetostrophic convection in planetary dynamo systems. . Proc. R. Soc. A 473:(2199):20160731
    [Crossref] [Google Scholar]
  6. Backus GE. 1958.. A class of self-sustaining dissipative spherical dynamos. . Ann. Phys. 4::372447
    [Crossref] [Google Scholar]
  7. Batchelor GK. 1950.. On the spontaneous magnetic field in a conducting liquid in turbulent motion. . Proc. R. Soc. A 201::40516
    [Google Scholar]
  8. Bayly B, Childress S. 1988.. Construction of fast dynamos using unsteady flows and maps in three dimensions. . Geophys. Astrophys. Fluid Dyn. 44::21140
    [Crossref] [Google Scholar]
  9. Bayly B, Childress S. 1989.. Unsteady dynamo effects at large magnetic reynolds number. . Geophys. Astrophys. Fluid Dyn. 49::2343
    [Crossref] [Google Scholar]
  10. Billant P. 2021.. Is the Taylor-Proudman theorem exact in unbounded domains? Case study of the three-dimensional stability of a vortex pair in a rapidly rotating fluid. . J. Fluid Mech. 920::R1
    [Crossref] [Google Scholar]
  11. Braginsky SI. 1964.. Self excitation of a magnetic field during the motion of a highly conducting fluid. . Sov. Phys. JETP 20::72635
    [Google Scholar]
  12. Braginsky SI. 1993.. Mac-oscillations of the hidden ocean of the core. . J. Geomagn. Geoelectricity 45:(11–12):151738
    [Crossref] [Google Scholar]
  13. Braginsky SI, Roberts PH. 1995.. Equations governing convection in Earth's core and the geodynamo. . Geophys. Astrophys. Fluid Dyn. 79::197
    [Crossref] [Google Scholar]
  14. Brummell N, Cattaneo F, Tobias S. 2001.. Linear and nonlinear dynamo properties of time-dependent ABC flows. . Fluid Dyn. Res. 28:(4):23765
    [Crossref] [Google Scholar]
  15. Brummell NH, Cattaneo F, Tobias SM. 1998.. Linear and nonlinear dynamo action. . Phys. Lett. A 249:(5):43742
    [Crossref] [Google Scholar]
  16. Buffett B, Avery M, Davis W. 2022.. A physical interpretation of asymmetric growth and decay of the geomagnetic dipole moment. . Geochem. Geophys. Geosyst. 23::e2021GC010239
    [Crossref] [Google Scholar]
  17. Buffett B, Knezek N, Holme R. 2016.. Evidence for MAC waves at the top of Earth's core and implications for variations in length of day. . Geophys. J. Int. 204:(3):1789800
    [Crossref] [Google Scholar]
  18. Buffett BA, Mound J, Jackson A. 2009.. Inversion of torsional oscillations for the structure and dynamics of Earth's core. . Geophys. J. Int. 177::87890
    [Crossref] [Google Scholar]
  19. Buffett BA, Ziegler L, Constable CG. 2013.. A stochastic model for palaeomagnetic field variations. . Geophys. J. Int. 195:(1):8697
    [Crossref] [Google Scholar]
  20. Busse F, Proctor M. 2007.. Antidynamo and bounding theorems. . In Encyclopedia of Geomagnetism and Paleomagnetism, ed. D Gubbins, E Herrero-Bervera , pp. 2123. Dordrecht, Neth:.: Springer
    [Google Scholar]
  21. Busse FH. 1970.. Thermal instabilities in rapidly rotating systems. . J. Fluid Mech. 44::44160
    [Crossref] [Google Scholar]
  22. Cattaneo F, Tobias SM. 2009.. Dynamo properties of the turbulent velocity field of a saturated dynamo. . J. Fluid Mech. 621::20514
    [Crossref] [Google Scholar]
  23. Chandrasekhar S. 1961.. Hydrodynamic and Hydromagnetic Stability. Oxford, UK:: Clarendon Press
    [Google Scholar]
  24. Chen L, Herreman W, Li K, Livermore PW, Luo JW, Jackson A. 2018.. The optimal kinematic dynamo driven by steady flows in a sphere. . J. Fluid Mech. 839::132
    [Crossref] [Google Scholar]
  25. Christensen UR. 2010.. Dynamo scaling laws and applications to the planets. . Space Sci. Rev. 152::56590
    [Crossref] [Google Scholar]
  26. Christensen UR, Aubert J. 2006.. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. . Geophys. J. Int. 166::97114
    [Crossref] [Google Scholar]
  27. Christensen UR, Olson P, Glatzmaier G. 1999.. Numerical modelling of the geodynamo: a systematic parameter study. . Geophys. J. Int. 138::393409
    [Crossref] [Google Scholar]
  28. Cooper R, Bushby P, Guervilly C. 2020.. Subcritical dynamos in rapidly rotating planar convection. . Phys. Rev. Fluid 5::113702
    [Crossref] [Google Scholar]
  29. Cowling TG. 1934.. The magnetic field of sunspots. . Mon. Not. R. Astron. Soc. 94::3948
    [Crossref] [Google Scholar]
  30. Dauchot O, Manneville P. 1997.. Local versus global concepts in hydrodynamic stability theory. . J. Phys. II Fr. 7::37189
    [Google Scholar]
  31. Dormy E. 1997.. Modélisation numérique de la dynamo terrestre. PhD Thesis , Inst. Phys. Globe Paris, France:
    [Google Scholar]
  32. Dormy E. 2016.. Strong-field spherical dynamos. . J. Fluid Mech. 789::50013
    [Crossref] [Google Scholar]
  33. Dormy E, Gérard-Varet D. 2008.. Time scales separation for dynamo action. . Europhys. Lett. 81::64002
    [Crossref] [Google Scholar]
  34. Dormy E, Oruba L, Petitdemange L. 2018.. Three branches of dynamo action. . Fluid Dyn. Res. 50:(1):011415
    [Crossref] [Google Scholar]
  35. Dormy E, Soward AM, eds. 2007.. Mathematical Aspects of Natural Dynamos. Boca Raton, FL:: CRC Press
    [Google Scholar]
  36. Dormy E, Soward AM, Jones CA, Jault D, Cardin P. 2004.. The onset of thermal convection in rotating spherical shells. . J. Fluid Mech. 501::4370
    [Crossref] [Google Scholar]
  37. Dudley ML, James RW. 1989.. Time-dependent kinematic dynamos with stationary flows. . Proc. R. Soc. A 425::40729
    [Google Scholar]
  38. Eltayeb I, Roberts P. 1970.. On the hydromagnetics of rotating fluids. . Astrophys. J. 162::699701
    [Crossref] [Google Scholar]
  39. Fearn DR. 1979.. Thermal and magnetic instabilities in a rapidly rotating fluid sphere. . Geophys. Astrophys. Fluid Dyn. 14:(1):10326
    [Crossref] [Google Scholar]
  40. Fromang S, Papaloizou J, Lesur G, Heinemann T. 2007.. MHD simulations of the magnetorotational instability in a shearing box with zero net flux. II. The effect of transport coefficients. . Astron. Astrophys. 476::112332
    [Crossref] [Google Scholar]
  41. Fuchs H, Rädler K, Reinhardt M. 2001.. Suicidal and parthenogenetic dynamos. . In Dynamo and Dynamics, a Mathematical Challenge, ed. P Chossat, D Armbruster, I Oprea , pp. 33946. Dordrecht, Neth:.: Springer
    [Google Scholar]
  42. Gallagher I, Gérard-Varet D. 2017.. Wellposedness of linearized Taylor equations in magnetohydrodynamics. . In Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics, ed. F Colombini, D Del Santo, D Lannes , pp. 10340. Cham, Switz:.: Springer
    [Google Scholar]
  43. Galloway DJ, Proctor MRE. 1992.. Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion. . Nature 356::69193
    [Crossref] [Google Scholar]
  44. Gastine T, Wicht J, Aubert J. 2016.. Scaling regimes in spherical shell rotating convection. . J. Fluid Mech. 808::690732
    [Crossref] [Google Scholar]
  45. Gerick F, Jault D, Noir J. 2021.. Fast quasi-geostrophic Magneto-Coriolis modes in the Earth's core. . Geophys. Res. Lett. 48:(4):e2020GL090803
    [Crossref] [Google Scholar]
  46. Gilbert AD. 1988.. Fast dynamo action in the Ponomarenko dynamo. . Geophys. Astrophys. Fluid Dyn. 44::24158
    [Crossref] [Google Scholar]
  47. Gilbert AD. 2003.. Dynamo theory. . In Handbook of Mathematical Fluid Dynamics, Vol. 2, ed. S Friedlander, D Serre , pp. 355441. Amsterdam:: Elsevier
    [Google Scholar]
  48. Gillet N, Jault D, Canet E, Fournier A. 2010.. Fast torsional waves and strong magnetic field within the Earth's core. . Nature 465::7477
    [Crossref] [Google Scholar]
  49. Gissinger C, Dormy E, Fauve S. 2008.. Bypassing Cowling's theorem in axisymmetric fluid dynamos. . Phys. Rev. Lett. 101:(14):144502
    [Crossref] [Google Scholar]
  50. Gissinger C, Dormy E, Fauve S. 2010.. Morphology of field reversals in turbulent dynamos. . Eur. Phys. Lett. 90::49001
    [Crossref] [Google Scholar]
  51. Glatzmaier G, Roberts P. 1995.. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. . Nature 377::2039
    [Crossref] [Google Scholar]
  52. Goudard L, Dormy E. 2008.. Relations between the dynamo region geometry and the magnetic behavior of stars and planets. . Eur. Phys. Lett. 83::59001
    [Crossref] [Google Scholar]
  53. Gubbins D. 1973.. Numerical solutions of the kinematic dynamo problem. . Philos. Trans. R. Soc. A 274::493521
    [Google Scholar]
  54. Holdenried-Chernoff D, King DA, Buffett BA. 2023.. A field theory approach to the statistical kinematic dynamo. . J. Phys. A Math. Theor. 56::455701
    [Crossref] [Google Scholar]
  55. Hori K, Jones CA, Teed RJ. 2015.. Slow magnetic Rossby waves in the Earth's core. . Geophys. Res. Lett. 42:(16):662229
    [Crossref] [Google Scholar]
  56. Hori K, Nilsson A, Tobias SM. 2023.. Waves in planetary dynamos. . Rev. Mod. Plasma Phys. 7::5
    [Crossref] [Google Scholar]
  57. Horn S, Aurnou J. 2022.. Elbert range of magnetostrophic convection. I. Linear theory. . Proc. R. Soc. A 478::20220313
    [Crossref] [Google Scholar]
  58. Hoyng P, Schmitt D, Ossendrijver M. 2002.. A theoretical analysis of the observed variability of the geomagnetic dipole field. . Phys. Earth Planet. Inter. 130::14357
    [Crossref] [Google Scholar]
  59. Ivers DJ, James RW. 1988.. Antidynamo theorems for non-radial flows. . Geophys. Astrophys. Fluid Dyn. 40:(1–2):14763
    [Crossref] [Google Scholar]
  60. Jones CA, Soward AM, Mussa AI. 2000.. The onset of thermal convection in a rapidly rotating sphere. . J. Fluid Mech. 405::15779
    [Crossref] [Google Scholar]
  61. Krause F, Rädler KH. 1980.. Mean-Field Magnetohydrodynamics and Dynamo Theory. Oxford, UK:: Pergamon Press
    [Google Scholar]
  62. Kumar S, Roberts P. 1975.. A three-dimensional kinematic dynamo. . Proc. R. Soc. A 344::23558
    [Google Scholar]
  63. Kutzner C, Christensen U. 2000.. Effects of driving mechanisms in geodynamo models. . Geophys. Res. Lett. 27::2932
    [Crossref] [Google Scholar]
  64. Landeau M, Fournier A, Nataf H, Cébron D, Schaeffer N. 2022.. Sustaining Earth's magnetic dynamo. . Nat. Rev. Earth Environ. 3::25569
    [Crossref] [Google Scholar]
  65. Larmor J. 1919.. How could a rotating body such as the sun become a magnet?. Rep. Brit. Assoc. 87::15960
    [Google Scholar]
  66. Li K, Jackson A, Livermore PW. 2018.. Taylor state dynamos found by optimal control: axisymmetric examples. . J. Fluid Mech. 853::64797
    [Crossref] [Google Scholar]
  67. Majumder D, Sreenivasan B, Maurya G. 2024.. Self-similarity of the dipole–multipole transition in rapidly rotating dynamos. . J. Fluid Mech. 980::A30
    [Crossref] [Google Scholar]
  68. Malkus WVR. 1964.. Boussinesq equations. . In Notes on the 1964 Summer Study Program in Geophysical Fluid Dynamics at the Woods Hole Oceanographic Institution, ed. WVR Malkus , pp. 12. Woods Hole, MA:: Woods Hole Oceanogr. Inst.
    [Google Scholar]
  69. Mannix PM, Ponty Y, Marcotte F. 2022.. Systematic route to subcritical dynamo branches. . Phys. Rev. Lett. 129:(2):024502
    [Crossref] [Google Scholar]
  70. Marcotte F, Dormy E, Soward A. 2016.. On the equatorial Ekman layer. . J. Fluid Mech. 803::395435
    [Crossref] [Google Scholar]
  71. Mason S, Guervilly C, Sarson G. 2022.. Magnetoconvection in a rotating spherical shell in the presence of a uniform axial magnetic field. . Geophys. Astrophys. Fluid Dyn. 116::45898
    [Crossref] [Google Scholar]
  72. Menu MD, Petitdemange L, Galtier S. 2020.. Magnetic effects on fields morphologies and reversals in geodynamo simulations. . Phys. Earth Planet. Inter. 307::106542
    [Crossref] [Google Scholar]
  73. Mizerski KA. 2023.. Non-Equilibrium Hydromagnetic Dynamos. Bristol, UK:: IOP
    [Google Scholar]
  74. Moffatt HK, Dormy E. 2019.. Self-Exciting Fluid Dynamos. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  75. Moffatt HK, Loper DE. 1994.. The magnetostrophic rise of a buoyant parcel in the Earth's core. . Geophys. J. Int. 117::394402
    [Crossref] [Google Scholar]
  76. Morin V, Dormy E. 2009.. The dynamo bifurcation in rotating spherical shells. . Int. J. Mod. Phys. B 23::546782
    [Crossref] [Google Scholar]
  77. Nataf HC, Schaeffer N. 2015.. 8.06. Turbulence in the core. . In Treatise on Geophysics, Vol. 8: Core Dynamics, ed. G Schubert , pp. 16181. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  78. Oruba L, Dormy E. 2014.. Transition between viscous dipolar and inertial multipolar dynamos. . Geophys. Res. Lett. 41::711520
    [Crossref] [Google Scholar]
  79. Otani NF. 1993.. A fast kinematic dynamo in two-dimensional time-dependent flows. . J. Fluid Mech. 253::32740
    [Crossref] [Google Scholar]
  80. Pekeris CL, Accad Y, Shkoller B. 1975.. Kinematic dynamos and the Earth's magnetic field. . Philos. Trans. R. Soc. A 275::42561
    [Google Scholar]
  81. Petitdemange L. 2018.. Systematic parameter study of dynamo bifurcations in geodynamo simulations. . Phys. Earth Planet. Inter. 277::11332
    [Crossref] [Google Scholar]
  82. Pétrélis F, Fauve S, Dormy E, Valet JP. 2009.. Simple mechanism for reversals of Earth's magnetic field. . Phys. Rev. Lett. 102::144503
    [Crossref] [Google Scholar]
  83. Philidet J, Gissinger C, Lignières F, Petitdemange L. 2020.. Magnetohydrodynamics of stably stratified regions in planets and stars. . Geophys. Astrophys. Fluid Dyn. 114:(3):33655
    [Crossref] [Google Scholar]
  84. Ponomarenko YB. 1973.. Theory of the hydromagnetic generator. . J. Appl. Mech. Tech. Phys. 14::77578
    [Crossref] [Google Scholar]
  85. Proctor M. 2015.. Energy requirement for a working dynamo. . Geophys. Astrophys. Fluid Dyn. 109:(6):61114
    [Crossref] [Google Scholar]
  86. Roberts G. 1970.. Spatially periodic dynamos. . Philos. Trans. R. Soc. A 266::53558
    [Google Scholar]
  87. Roberts G. 1972.. Dynamo action of fluid motions with two-dimensional periodicity. . Philos. Trans. R. Soc. A 271::41154
    [Google Scholar]
  88. Roberts P. 1979.. Pure dynamo theory and geomagnetic dynamo theory. . In Proceedings of the First International Workshop on Dynamo Theory and the Generation of the Earth's Magnetic Field, ed. I Cupal , pp. 712. Alšovice, Czech.:: Czech. Geophys. Inst. Rep.
    [Google Scholar]
  89. Roberts P, Wu CC. 2014.. On the modified Taylor constraint. . Geophys. Astrophys. Fluid Dyn. 108::696715
    [Crossref] [Google Scholar]
  90. Sarson GR. 2003.. Kinematic dynamos driven by thermal-wind flows. . Proc. R. Soc. A 459::124159
    [Crossref] [Google Scholar]
  91. Schaeffer N, Jault D, Nataf H-C, Fournier A. 2017.. Turbulent geodynamo simulations: a leap towards Earth's core. . Geophys. J. Int. 211:(1):129
    [Crossref] [Google Scholar]
  92. Schekochihin AA. 2022.. MHD turbulence: a biased review. . J. Plasma Phys. 88:(5):155880501
    [Crossref] [Google Scholar]
  93. Schilpp PA, ed. 1949.. Albert Einstein, Philosopher-Scientist. Evanston, IL:: Libr. Living Philos.
    [Google Scholar]
  94. Schrinner M, Schmitt D, Cameron R, Hoyng P. 2010.. Saturation and time dependence of geodynamo models. . Geophys. J. Int. 182:(2):67581
    [Crossref] [Google Scholar]
  95. Schwaiger T, Gastine T, Aubert J. 2019.. Force balance in numerical geodynamo simulations: a systematic study. . Geophys. J. Int. 219:(Suppl. 1):S10114
    [Crossref] [Google Scholar]
  96. Schwaiger T, Gastine T, Aubert J. 2021.. Relating force balances and flow length scales in geodynamo simulations. . Geophys. J. Int. 224:(3):1890904
    [Crossref] [Google Scholar]
  97. Seshasayanan K, Gallet B. 2020.. Onset of three-dimensionality in rapidly rotating turbulent flows. . J. Fluid Mech. 901::R5
    [Crossref] [Google Scholar]
  98. Sheyko A, Finlay C, Favre J, Jackson A. 2018.. Scale separated low viscosity dynamos and dissipation within the Earth's core. . Sci. Rep. 8::12566
    [Crossref] [Google Scholar]
  99. Simitev RD, Busse FH. 2009.. Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells. . Eur. Phys. Lett. 85::19001
    [Crossref] [Google Scholar]
  100. Skene CS, Tobias SM. 2023.. Floquet stability and Lagrangian statistics of a nonlinear time-dependent ABC dynamo. . Phys. Rev. Fluids 8:(8):083701
    [Crossref] [Google Scholar]
  101. Soward AM. 1977.. On the finite amplitude thermal instability of a rapidly rotating fluid sphere. . Geophys. Astrophys. Fluid Dyn. 9:(1):1974
    [Crossref] [Google Scholar]
  102. Steenbeck M, Krause F, Rädler KH. 1966.. Berechnung der mittleren Lorentz-Feldstärke für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflusster Bewegung. . Z. Naturforschung A 21::36976
    [Crossref] [Google Scholar]
  103. Stellmach S, Hansen U. 2004.. Cartesian convection driven dynamos at low Ekman number. . Phys. Rev. E 70::056312
    [Crossref] [Google Scholar]
  104. Takahashi F, Matsushima M, Honkura Y. 2005.. Simulations of a quasi–Taylor state geomagnetic field including polarity reversals on the Earth Simulator. . Science 309::45961
    [Crossref] [Google Scholar]
  105. Tarduno JA, Cottrell RD, Watkeys MK, Bauch D. 2007.. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals. . Nature 446:(7136):65760
    [Crossref] [Google Scholar]
  106. Taylor JB. 1963.. The magnetohydrodynamics of a rotating fluid and the Earth's dynamo problem. . Proc. R. Soc. A 274::27483
    [Google Scholar]
  107. Teed RJ, Dormy E. 2023.. Solenoidal force balances in numerical dynamos. . J. Fluid Mech. 964::A26
    [Crossref] [Google Scholar]
  108. Teed RJ, Jones CA, Tobias SM. 2014.. The dynamics and excitation of torsional waves in geodynamo simulations. . Geophys. J. Int. 196::72435
    [Crossref] [Google Scholar]
  109. Teed RJ, Jones CA, Tobias SM. 2015.. The transition to Earth-like torsional oscillations in magnetoconvection simulations. . Earth Planet. Sci. Lett. 419::2231
    [Crossref] [Google Scholar]
  110. Temam R. 1984.. Navier-Stokes Equations: Theory and Numerical Analysis. Providence, RI:: AMS Chelsea
    [Google Scholar]
  111. Tobias S. 2021.. The turbulent dynamo. . J. Fluid Mech. 912::P1
    [Crossref] [Google Scholar]
  112. Vallis GK. 2017.. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge, UK:: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  113. van Kan A, Alexakis A. 2020.. Critical transition in fast-rotating turbulence within highly elongated domains. . J. Fluid Mech. 899::A33
    [Crossref] [Google Scholar]
  114. Walker MR, Barenghi CF, Jones CA. 1998.. A note on dynamo action at asymptotically small Ekman number. . Geophys. Astrophys. Fluid Dyn. 88::26175
    [Crossref] [Google Scholar]
  115. Wicht J, Christensen UR. 2010.. Torsional oscillations in dynamo simulations. . Geophys. J. Int. 181::136780
    [Google Scholar]
  116. Willis AP. 2012.. Optimization of the magnetic dynamo. . Phys. Rev. Lett. 109:(25):251101
    [Crossref] [Google Scholar]
  117. Wu CC, Roberts P. 2015.. On magnetostrophic mean-field solutions of the geodynamo equations. . Geophys. Astrophys. Fluid Dyn. 109::84110
    [Google Scholar]
  118. Zel'dovich YB. 1957.. The magnetic field in the two-dimensional motion of a conducting turbulent fluid. . Sov. Phys. JETP 4::46062
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-031224-121649
Loading
/content/journals/10.1146/annurev-fluid-031224-121649
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error