1932

Abstract

The environmental setting of the Dead Sea combines several aspects whose interplay creates flow phenomena and transport processes that cannot be observed anywhere else on Earth. As a terminal lake with a rapidly declining surface level, the Dead Sea has a salinity that is close to saturation, so that the buoyancy-driven flows common in lakes are coupled to precipitation and dissolution, and large amounts of salt are being deposited year-round. The Dead Sea is the only hypersaline lake deep enough to form a thermohaline stratification during the summer, which gives rise to descending supersaturated dissolved-salt fingers that precipitate halite particles. In contrast, during the winter the entire supersaturated, well-mixed water column produces halite. The rapid lake level decline of (1 m/year) exposes vast areas of newly formed beach every year, which exhibit deep incisions from streams. Taken together, these phenomena provide insight into the enigmatic salt giants observed in the Earth's geological record and offer lessons regarding the stability, erosion, and protection of arid coastlines under sea level change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-031424-101119
2025-01-22
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/fluid/57/1/annurev-fluid-031424-101119.html?itemId=/content/journals/10.1146/annurev-fluid-031424-101119&mimeType=html&fmt=ahah

Literature Cited

  1. Anati DA. 1997.. The hydrography of a hypersaline lake. . In The Dead Sea: The Lake and Its Setting, ed. TM Niemi, Z Ben-Abraham, JR Gat , pp. 89103. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  2. Anati DA, Stiller M. 1991.. The post-1979 thermohaline structure of the Dead Sea and the role of double-diffusive mixing. . Limnol. Oceanogr. 36:(2):34253
    [Crossref] [Google Scholar]
  3. Anati DA, Stiller M, Shasha S, Gat JR. 1987.. Changes in the thermo-haline structure of the Dead Sea: 1979–1984. . Earth Planet. Sci. Lett. 84::10921
    [Crossref] [Google Scholar]
  4. Arnon A, Brenner S, Selker JS, Gertman I, Lensky NG. 2019.. Seasonal dynamics of internal waves governed by stratification stability and wind: analysis of high-resolution observations from the Dead Sea. . Limnol. Oceanogr. 64:(5):186482
    [Crossref] [Google Scholar]
  5. Arnon A, Lensky NG, Selker JS. 2014.. High-resolution temperature sensing in the Dead Sea using fiber optics. . Water Resour. Res. 50:(2):175672
    [Crossref] [Google Scholar]
  6. Arnon A, Selker JS, Lensky NG. 2016.. Thermohaline stratification and double diffusion diapycnal fluxes in the hypersaline Dead Sea. . Limnol. Oceanogr. 61:(4):121431
    [Crossref] [Google Scholar]
  7. Begin ZB. 1978.. Aspects of degradation of alluvial channels in response to base-level lowering. Geol. Surv. Isr. Rep. GSI/8/1978, Geol. Surv. Isr., Jerusalem:
    [Google Scholar]
  8. Begin ZB, Meyer DF, Schumm SA. 1981.. Development of longitudinal profiles of alluvial channels in response to base-level lowering. . Earth Surf. Proc. Landf. 6:(1):4968
    [Crossref] [Google Scholar]
  9. Ben Dor Y, Marra F, Armon M, Enzel Y, Brauer A, et al. 2021.. Hydroclimatic variability of opposing Late Pleistocene climates in the Levant revealed by deep Dead Sea sediments. . Clim. Past 17:(6):265377
    [Crossref] [Google Scholar]
  10. Ben Moshe L, Haviv I, Enzel Y, Zilberman E, Matmon A. 2008.. Incision of alluvial channels in response to a continuous base level fall: field characterization, modeling, and validation along the Dead Sea. . Geomorphology 93:(3):52436
    [Crossref] [Google Scholar]
  11. Ben Moshe L, Lensky NG. 2024.. Geomorphological response of alluvial streams to flood events during base-level lowering: insights from drone-based photogrammetric surveys in Dead Sea tributaries. . Remote Sens. 16:(8):1346
    [Crossref] [Google Scholar]
  12. Beyth M, Gavrieli I, Anati D, Katz O. 1993.. Effects of the December 1991-May 1992 floods on the Dead Sea vertical structure. . Isr. J. Earth Sci. 42::4547
    [Google Scholar]
  13. Bouffard D, Boegman L. 2012.. Basin-scale internal waves. . In Encyclopedia of Lakes and Reservoirs, ed. L Bengtsson, RW Herschy, RW Fairbridge , pp. 1027. Dordrecht, Neth:.: Springer
    [Google Scholar]
  14. Bowen AJ. 1969.. The generation of longshore currents on a plane beach. . J. Mar. Res. 27:(2):20615
    [Google Scholar]
  15. Bowen BB, Kipnis EL, Raming LW. 2017.. Temporal dynamics of flooding, evaporation, and desiccation cycles and observations of salt crust area change at the Bonneville Salt Flats, Utah. . Geomorphology 299::111
    [Crossref] [Google Scholar]
  16. Bowman D, Svoray T, Devora S, Shapira I, Laronne J. 2010.. Extreme rates of channel incision and shape evolution in response to a continuous, rapid base-level fall, the Dead Sea, Israel. . Geomorphology 114:(3):22737
    [Crossref] [Google Scholar]
  17. Brand E, Chen M, Montreuil AL. 2020.. Optimizing measurements of sediment transport in the intertidal zone. . Earth-Sci. Rev. 200::103029
    [Crossref] [Google Scholar]
  18. Buffington JM, Montgomery DR. 1997.. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. . Water Resour. Res. 33:(8):19932029
    [Crossref] [Google Scholar]
  19. Burns P, Meiburg E. 2012.. Sediment-laden fresh water above salt water: linear stability analysis. . J. Fluid Mech. 691::279314
    [Crossref] [Google Scholar]
  20. Burns P, Meiburg E. 2015.. Sediment-laden fresh water above salt water: nonlinear simulations. . J. Fluid Mech. 762::15695
    [Crossref] [Google Scholar]
  21. Celikoğlu Y, Yüksel Y, Sedat Kabdaşlı M. 2004.. Longshore sorting on a beach under wave action. . Ocean Eng. 31:(11):135175
    [Crossref] [Google Scholar]
  22. Dayan U, Morin E. 2006.. Flash flood–producing rainstorms over the Dead Sea: a review. . In New Frontiers in Dead Sea Paleoenvironmental Research, ed. Y Enzel, A Agnon, M Stein , pp. 5362. McLean, VA:: Geol. Soc. Am.
    [Google Scholar]
  23. Dente E, Lensky NG, Morin E, Dunne T, Enzel Y. 2019.. Sinuosity evolution along an incising channel: new insights from the Jordan River response to the Dead Sea level fall. . Earth Surf. Proc. Landf. 44:(3):78195
    [Crossref] [Google Scholar]
  24. Dente E, Lensky NG, Morin E, Enzel Y. 2021.. From straight to deeply incised meandering channels: slope impact on sinuosity of confined streams. . Earth Surf. Proc. Landf. 46:(5):104154
    [Crossref] [Google Scholar]
  25. Dente E, Lensky NG, Morin E, Grodek T, Sheffer NA, Enzel Y. 2017.. Geomorphic response of a low-gradient channel to modern, progressive base-level lowering: Nahal HaArava, the Dead Sea. . J. Geophys. Res. Earth Surf. 122:(12):246887
    [Crossref] [Google Scholar]
  26. Enzel Y, Mushkin A, Groisman M, Calvo R, Eyal H, Lensky N. 2022.. The modern wave-induced coastal staircase morphology along the western shores of the Dead Sea. . Geomorphology 408::108237
    [Crossref] [Google Scholar]
  27. Eyal H, Dente E, Haviv I, Enzel Y, Dunne T, Lensky NG. 2019.. Fluvial incision and coarse gravel redistribution across the modern Dead Sea shelf as a result of base-level fall. . Earth Surf. Proc. Landf. 44:(11):217085
    [Crossref] [Google Scholar]
  28. Eyal H, Enzel Y, Meiburg E, Vowinckel B, Lensky NG. 2021.. How does coastal gravel get sorted under stormy longshore transport?. Geophys. Res. Lett. 48:(21):e2021GL095082
    [Crossref] [Google Scholar]
  29. Ezraty R, Rubinstein S, Lensky N, Meiburg E. 2023.. Interacting density fronts in saturated brines cooled from above. . J. Fluid Mech. 975::A5
    [Crossref] [Google Scholar]
  30. Gavrieli I, Lensky N, Abelson M, Ganor J, Oren A, . 2011.. Dead Sea study. Geol. Surv. Isr. Rep. GSI/10/2011, Geol. Surv. Isr., Jerusalem:
    [Google Scholar]
  31. Genin A, Lazar B, Brenner S. 1995.. Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. . Nature 377::50710
    [Crossref] [Google Scholar]
  32. Gertman I, Hecht A. 2002.. The Dead Sea hydrography from 1992 to 2000. . J. Mar. Syst. 35:(3):16981
    [Crossref] [Google Scholar]
  33. Gertman I, Kress N, Katsenelson B, Zavialov P. 2010.. Equations of state for the Dead Sea and Aral Sea: searching for common approaches. . Isr. Oceanogr. Limnol. Res. Rep. 12/2010, Isr. Oceanogr. Limnol. Res., Haifa, Isr.
  34. Halpert MS, Ropelewski CF, Karl TR, Angell JK, Stowe LL, et al. 1993.. 1992 brings return to moderate global temperatures. . Eos Trans. AGU 74:(38):43339
    [Crossref] [Google Scholar]
  35. Hardie LA, Lowenstein TK. 2004.. Did the Mediterranean Sea dry out during the Miocene? A reassessment of the evaporite evidence from DSDP Legs 13 and 42A cores. . J. Sediment. Res. 74:(4):45361
    [Crossref] [Google Scholar]
  36. Hassan MA, Klein M. 2002.. Fluvial adjustment of the Lower Jordan River to a drop in the Dead Sea level. . Geomorphology 45:(1):2133
    [Crossref] [Google Scholar]
  37. Hoare R. 1966.. Problems of heat transfer in Lake Vanda, a density stratified Antarctic lake. . Nature 210::78789
    [Crossref] [Google Scholar]
  38. Hsu K. 1972.. Origin of saline giants: a critical review after the discovery of the Mediterranean Evaporite. . Earth-Sci. Rev. 8:(4):37196
    [Crossref] [Google Scholar]
  39. Huppert HE. 1971.. On the stability of a series of double-diffusive layers. . Deep Sea Res. Oceanogr. Abstr. 18:(10):100521
    [Crossref] [Google Scholar]
  40. Huppert HE, Turner JS. 1981.. Double-diffusive convection. . J. Fluid Mech. 106::299329
    [Crossref] [Google Scholar]
  41. Jackson MPA, Hudec MR. 2017.. Salt Tectonics: Principles and Practice. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  42. Kirkham C, Bertoni C, Cartwright J, Lensky NG, Sirota I, et al. 2020.. The demise of a `salt giant' driven by uplift and thermal dissolution. . Earth Planet. Sci. Lett. 531::115933
    [Crossref] [Google Scholar]
  43. Kostaschuk R, Nasr-Azadani MM, Meiburg E, Wei T, Chen Z, et al. 2018.. On the causes of pulsing in continuous turbidity currents. . J. Geophys. Res. Earth Surf. 123:(11):282743
    [Crossref] [Google Scholar]
  44. Lensky N, Bodzin R, Arnon A, Gavrieli I. 2011a.. The expected quality of the Dead Sea brine expected to be pumped in the planned pumping station P9: Report C - the salt delta. Geol. Surv. Isr. Rep. GSI/19/2011, Geol. Surv. Isr., Jerusalem:
    [Google Scholar]
  45. Lensky N, Gertman I, Gavrieli I. 2011b.. The expected quality of the Dead Sea brine expected to be pumped in the planned pumping station P9: Report A - hydrography and the path of the industrial end brines in the Dead Sea. Geol. Surv. Isr. Rep. GSI/17/2011, Geol. Surv. Isr. , Jerusalem:
    [Google Scholar]
  46. Lensky N, Gertman I, Rosentraub Z, Lensky I, Nehorai R, Gavrieli I. 2011c.. The expected quality of the Dead Sea brine expected to be pumped in the planned pumping station P9: Report B - currents and transport of suspended matter. Geol. Surv. Isr. Rep. GSI/18/2011, Geol. Surv. Isr., Jerusalem:
    [Google Scholar]
  47. Lensky NG, Dvorkin Y, Lyakhovsky V, Gertman I, Gavrieli I. 2005.. Water, salt, and energy balances of the Dead Sea. . Water Resour. Res. 41:(12):W12418
    [Crossref] [Google Scholar]
  48. Lensky NG, Gertman I, Arnon A, Ozer T, Biton E, et al. 2013.. Currents and hydrography of the Dead Sea: a study for the salt recovery project. Geol. Surv. Isr. Rep. GSI/20/2013, Geol. Surv. Isr., Jerusalem:
    [Google Scholar]
  49. Lensky NG, Lensky IM, Peretz A, Gertman I, Tanny J, Assouline S. 2018.. Diurnal course of evaporation from the Dead Sea in summer: a distinct double peak induced by solar radiation and night sea breeze. . Water Resour. Res. 54:(1):15060
    [Crossref] [Google Scholar]
  50. Linden P. 1973.. On the structure of salt fingers. . Deep Sea Res. Oceanogr. Abstr. 20:(4):32540
    [Crossref] [Google Scholar]
  51. Linden PF. 1971.. Salt fingers in the presence of grid-generated turbulence. . J. Fluid Mech. 49:(3):61124
    [Crossref] [Google Scholar]
  52. Longuet-Higgins MS. 1970.. Longshore currents generated by obliquely incident sea waves: 1. . J. Geophys. Res. 75:(33):677889
    [Crossref] [Google Scholar]
  53. Lowenstein TK, Hardie LA. 1985.. Criteria for the recognition of salt-pan evaporites. . Sedimentology 32:(5):62744
    [Crossref] [Google Scholar]
  54. Masselink G. 1992.. Longshore variation of grain size distribution along the coast of the Rhone Delta, Southern France: a test of the “McLaren Model.”. J. Coast. Res. 8::28691
    [Google Scholar]
  55. Masselink G, Hughes M, Knight J. 2011.. Introduction to Coastal Processes and Geomorphology. London:: Routledge. , 2nd ed..
    [Google Scholar]
  56. McLaren P, Bowles D. 1985.. The effects of sediment transport on grain-size distributions. . J. Sediment. Res. 55:(4):45770
    [Google Scholar]
  57. Meijer P, Krijgsman W. 2005.. A quantitative analysis of the desiccation and re-filling of the Mediterranean during the Messinian Salinity Crisis. . Earth Planet. Sci. Lett. 240:(2):51020
    [Crossref] [Google Scholar]
  58. Mor Z, Assouline S, Tanny J, Lensky IM, Lensky NG. 2018.. Effect of water surface salinity on evaporation: the case of a diluted buoyant plume over the Dead Sea. . Water Resour. Res. 54:(3):146075
    [Crossref] [Google Scholar]
  59. Mor Z, Lutzky H, Shalev E, Lensky NG. 2021.. Hydrostatic densitometer for monitoring density in freshwater to hypersaline water bodies. . Water 13:(13):1842
    [Crossref] [Google Scholar]
  60. Mor Z, Noy G, Eyal H, Sirota I, Ezraty R, et al. 2024.. Hourly to weekly variations in halite precipitation from the hypersaline Dead Sea: the role of evaporation, water cooling, and freshwater plume stability. . Sedimentology. https://doi.org/10.1111/sed.13220
    [Google Scholar]
  61. Neev D, Emery KO. 1967.. The Dead Sea: Depositional Processes and Environments of Evaporates. Isr. Geol. Surv. Bull. 41 . Jerusalem:: Monson
    [Google Scholar]
  62. Nehorai R, Lensky IM, Hochman L, Gertman I, Brenner S, et al. 2013.. Satellite observations of turbidity in the Dead Sea. . J. Geophys. Res. Oceans 118:(6):314660
    [Crossref] [Google Scholar]
  63. Newman FC. 1976.. Temperature steps in Lake Kivu: a bottom heated saline lake. . J. Phys. Oceanogr. 6:(2):15763
    [Crossref] [Google Scholar]
  64. Oren A. 2015.. Limnological instrumentation in the middle of the 19th century: the first temperature and density profiles measured in the Dead Sea. . Chin. J. Oceanol. Limnol. 33::1496504
    [Crossref] [Google Scholar]
  65. Ouillon R, Lensky NG, Lyakhovsky V, Arnon A, Meiburg E. 2019a.. Halite precipitation from double-diffusive salt fingers in the Dead Sea: numerical simulations. . Water Resour. Res. 55:(5):425265
    [Crossref] [Google Scholar]
  66. Ouillon R, Meiburg E, Ouellette NT, Koseff JR. 2019b.. Interaction of a downslope gravity current with an internal wave. . J. Fluid Mech. 873::889913
    [Crossref] [Google Scholar]
  67. Radko T. 2003.. A mechanism for layer formation in a double-diffusive fluid. . J. Fluid Mech. 497::36580
    [Crossref] [Google Scholar]
  68. Radko T. 2013.. Double-Diffusive Convection. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  69. Roveri M, Flecker R, Krijgsman W, Lofi J, Lugli S, et al. 2014.. The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. . Mar. Geol. 352::2558
    [Crossref] [Google Scholar]
  70. Sánchez X, Roget E. 2007.. Microstructure measurements and heat flux calculations of a triple-diffusive process in a lake within the diffusive layer convection regime. . J. Geophys. Res. Oceans 112:(C2):C02012
    [Crossref] [Google Scholar]
  71. Schmalz RF. 1969.. Deep-water evaporite deposition: a genetic model. . AAPG Bull. 53:(4):798823
    [Google Scholar]
  72. Schmitt RW. 1981.. Form of the temperature-salinity relationship in the central water: evidence for double-diffusive mixing. . J. Phys. Oceanogr. 11:(7):101526
    [Crossref] [Google Scholar]
  73. Schuch FN, Meiburg E, Silvestrini JH. 2021.. Plunging criterion for particle-laden flows over sloping bottoms: three-dimensional turbulence-resolving simulations. . Comput. Geosci. 156::104880
    [Crossref] [Google Scholar]
  74. Schumm SA, Khan HR. 1972.. Experimental study of channel patterns. . GSA Bull. 83:(6):175570
    [Crossref] [Google Scholar]
  75. Shields IA. 1936.. Application of similarity principles and turbulence research to bed-load movement. Rep., US Dep. Agric. Soil Conserv. Serv. Coop. Lab., Calif. Inst. Technol., Pasadena, CA:
    [Google Scholar]
  76. Simon D, Meijer PT. 2017.. Salinity stratification of the Mediterranean Sea during the Messinian crisis: a first model analysis. . Earth Planet. Sci. Lett. 479::36676
    [Crossref] [Google Scholar]
  77. Sirkes Z, Schirmer F, Essen HH, Gurgel KW. 1997.. Surface currents and seiches in the Dead Sea. . In The Dead Sea: The Lake and Its Setting, ed. TM Niemi, Z Ben-Abraham, JR Gat , pp. 10413. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  78. Sirota I, Armon M, Ben Dor Y, Morin E, Lensky NG, Enzel Y. 2023.. A mechanistic approach for interpreting hydroclimate from halite-bearing sediments. . Sedimentology 70:(7):203756
    [Crossref] [Google Scholar]
  79. Sirota I, Arnon A, Lensky NG. 2016.. Seasonal variations of halite saturation in the Dead Sea. . Water Resour. Res. 52:(9):715162
    [Crossref] [Google Scholar]
  80. Sirota I, Enzel Y, Lensky NG. 2017.. Temperature seasonality control on modern halite layers in the Dead Sea: in situ observations. . GSA Bull. 129:(9–10):118194
    [Google Scholar]
  81. Sirota I, Enzel Y, Lensky NG. 2018.. Halite focusing and amplification of salt layer thickness: from the Dead Sea to deep hypersaline basins. . Geology 46:(10):85154
    [Crossref] [Google Scholar]
  82. Sirota I, Enzel Y, Mor Z, Ben Moshe L, Eyal H, et al. 2021.. Sedimentology and stratigraphy of a modern halite sequence formed under Dead Sea level fall. . Sedimentology 68:(3):106990
    [Crossref] [Google Scholar]
  83. Sirota I, Ouillon R, Mor Z, Meiburg E, Enzel Y, et al. 2020.. Hydroclimatic controls on salt fluxes and halite deposition in the Dead Sea and the shaping of “salt giants.”. Geophys. Res. Lett. 47:(22):e2020GL090836
    [Crossref] [Google Scholar]
  84. Steinhorn I. 1983.. In situ salt precipitation at the Dead Sea. . Limnol. Oceanogr. 28:(3):58083
    [Crossref] [Google Scholar]
  85. Steinhorn I. 1985.. The disappearance of the long term meromictic stratification of the Dead Sea. . Limnol. Oceanogr. 30:(3):45172
    [Crossref] [Google Scholar]
  86. Steinhorn I, Assaf G, Gat JR, Nishry A, Nissenbaum A, et al. 1979.. The Dead Sea: Deepening of the mixolimnion signifies the overture to overturn of the water column. . Science 206:(4414):5557
    [Crossref] [Google Scholar]
  87. Stellmach S, Traxler A, Garaud P, Brummell N, Radko T. 2011.. Dynamics of fingering convection. Part 2 The formation of thermohaline staircases. . J. Fluid Mech. 677::55471
    [Crossref] [Google Scholar]
  88. Stern ME. 1960.. The ``salt-fountain'' and thermohaline convection. . Tellus 12:(2):17275
    [Crossref] [Google Scholar]
  89. Stern ME, Radko T, Simeonov J. 2001.. Salt fingers in an unbounded thermocline. . J. Mar. Res. 59::35590
    [Crossref] [Google Scholar]
  90. Stern ME, Turner JS. 1969.. Salt fingers and convecting layers. . Deep Sea Res. Oceanogr. Abstr. 16:(5):497511
    [Crossref] [Google Scholar]
  91. Stevens CL, Lawrence GA. 1998.. Stability and meromixis in a water-filled mine pit. . Limnol. Oceanogr. 43:(5):94654
    [Crossref] [Google Scholar]
  92. Stiller M, Gat JR, Bauman N, Shasha S. 1984.. A short meromictic episode in the Dead Sea: 1979–1982. . SIL Proc. 1922–2010 22:(1):13235
    [Crossref] [Google Scholar]
  93. Stiller M, Gat JR, Kaushansky P. 1997.. Halite precipitation and sediment deposition as measured in sediment traps deployed in the Dead Sea: 1981–83. . In The Dead Sea: The Lake and Its Setting, ed. TM Niemi, Z Ben-Abraham, JR Gat , pp. 16170. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  94. Sutherland BR. 2010.. Internal Gravity Waves. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  95. Törnqvist TE, Wortman SR, Mateo ZRP, Milne GA, Swenson JB. 2006.. Did the last sea level lowstand always lead to cross-shelf valley formation and source-to-sink sediment flux?. J. Geophys. Res. Earth Surface 111:(F4):F04002
    [Crossref] [Google Scholar]
  96. Traxler A, Stellmach S, Garaud P, Radko T, Brummell N. 2011.. Dynamics of fingering convection. Part 1 Small-scale fluxes and large-scale instabilities. . J. Fluid Mech. 677::53053
    [Crossref] [Google Scholar]
  97. Turner J. 1967.. Salt fingers across a density interface. . Deep Sea Res. Oceanogr. Abstr. 14:(5):599611
    [Crossref] [Google Scholar]
  98. Turner JS. 1974.. Double-diffusive phenomena. . Annu. Rev. Fluid Mech. 6::3754
    [Crossref] [Google Scholar]
  99. Vachtman D, Laronne JB. 2013.. Hydraulic geometry of cohesive channels undergoing base level drop. . Geomorphology 197::7684
    [Crossref] [Google Scholar]
  100. Van Hyum E, Pilarczyk KW. 1982.. Gravel beaches: equilibrium profile and longshore transport of coarse material under regular and irregular wave attack. Delft Hydr. Lab. Rep. 274, Delft Hydr. Lab., Delft, Neth.
    [Google Scholar]
  101. von Rohden C, Boehrer B, Ilmberger J. 2010.. Evidence for double diffusion in temperate meromictic lakes. . Hydrol. Earth Syst. Sci. 14:(4):66774
    [Crossref] [Google Scholar]
  102. Vowinckel B, Withers J, Luzzatto-Fegiz P, Meiburg E. 2019.. Settling of cohesive sediment: particle-resolved simulations. . J. Fluid Mech. 858::544
    [Crossref] [Google Scholar]
  103. Warren J. 1999.. Evaporites: Their Evolution and Economics. Oxford, UK:: Blackwell Sci.
    [Google Scholar]
  104. Warren JK. 2010.. Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits. . Earth-Sci. Rev. 98:(3):21768
    [Crossref] [Google Scholar]
  105. Weinstein R, Paldor N, Anati DA, Hecht A. 2000.. Internal seiches in the strongly stratified Dead Sea. . Isr. J. Earth Sci. 49::4553
    [Crossref] [Google Scholar]
  106. Weisbrod N, Yechieli Y, Shandalov S, Lensky N. 2016.. On the viscosity of natural hyper-saline solutions and its importance: the Dead Sea brines. . J. Hydrol. 532::4651
    [Crossref] [Google Scholar]
  107. Woolfe KJ, Larcombe P, Naish T, Purdon RG. 1998.. Lowstand rivers need not incise the shelf: an example from the Great Barrier Reef, Australia, with implications for sequence stratigraphic models. . Geology 26:(1):7578
    [Crossref] [Google Scholar]
  108. Wüest A, Aeschbach-Hertig W, Baur H, Hofer M, Kipfer R, et al. 1992.. Density structure and tritium-helium age of deep hypolimnetic water in the northern basin of Lake Lugano. . Aquat. Sci. 54::20518
    [Crossref] [Google Scholar]
  109. Zodiatis G, Pietro GG. 1996.. Thermohaline staircase formations in the Tyrrhenian Sea. . Deep Sea Res. Part I Oceanogr. Res. Pap. 43:(5):65578
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-fluid-031424-101119
Loading
/content/journals/10.1146/annurev-fluid-031424-101119
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error