1932

Abstract

Our understanding of respiratory flow phenomena has been consolidated over decades with the exploration of in vitro and in silico canonical models that underscore the multiscale fluid mechanics spanning the vast airway complex. In recent years, there has been growing recognition of the significant intersubject variability characterizing the human lung morphometry that modulates underlying canonical flows across subjects. Despite outstanding challenges in modeling and validation approaches, exemplified foremost in capturing chronic respiratory diseases, the field is swiftly moving toward hybrid in silico whole-lung simulations that combine various model classes to resolve airflow and aerosol transport spanning the entire respiratory tract over cumulative breathing cycles. In the years to come, the prospect of accessible, community-curated datasets, in conjunction with the use of machine learning tools, could pave the way for in silico population-based studies to uncover unrecognized trends at the population level and deliver new respiratory diagnostic and pulmonary drug delivery endpoints.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-031424-103721
2025-01-22
2025-02-15
Loading full text...

Full text loading...

/deliver/fulltext/fluid/57/1/annurev-fluid-031424-103721.html?itemId=/content/journals/10.1146/annurev-fluid-031424-103721&mimeType=html&fmt=ahah

Literature Cited

  1. Abelson D, Di Michiel J, Frater C, Pearson M, Russo R, et al. 2024.. Mucus clears from the trachea in a helix: a new twist to understanding airway diseases. . Thorax 79::60714
    [Crossref] [Google Scholar]
  2. Aegerter H, Lambrecht BN. 2023.. The pathology of asthma: What is obstructing our view?. Annu. Rev. Pathol. Mech. Dis. 18::387409
    [Crossref] [Google Scholar]
  3. Ahookhosh K, Pourmehran O, Aminfar H, Mohammadpourfard M, Sarafraz MM, Hamishehkar H. 2020.. Development of human respiratory airway models: a review. . Eur. J. Pharm. Sci. 145::105233
    [Crossref] [Google Scholar]
  4. Amili O, Golzarian J, Coletti F. 2019.. In vitro study of particle transport in successively bifurcating vessels. . Ann. Biomed. Eng. 47:(11):227183
    [Crossref] [Google Scholar]
  5. Bahrani SA, Hamidouche S, Moazzen M, Seck K, Duc C, et al. 2022.. Propagation and rupture of elastoviscoplastic liquid plugs in airway reopening model. . J. Non-Newton. Fluid Mech. 300::104718
    [Crossref] [Google Scholar]
  6. Banko AJ, Coletti F, Schiavazzi D, Elkins CJ, Eaton JK. 2015.. Three-dimensional inspiratory flow in the upper and central human airways. . Exp. Fluids 56:(6):117
    [Crossref] [Google Scholar]
  7. Barnes PJ, Burney PGJ, Silverman EK, Celli BR, Vestbo J, et al. 2015.. Chronic obstructive pulmonary disease. . Nat. Rev. Dis. Primers 1::15076
    [Crossref] [Google Scholar]
  8. Belchi F, Pirashvili M, Conway J, Bennett M, Djukanovic R, Brodzki J. 2018.. Lung topology characteristics in patients with chronic obstructive pulmonary disease. . Sci. Rep. 8:(1):5341
    [Crossref] [Google Scholar]
  9. Bessler R, Bhardwaj S, Malka D, Fishler R, Sznitman J. 2023.. Exploring the role of electrostatic deposition on inhaled aerosols in alveolated microchannels. . Sci. Rep. 13:(1):23069
    [Crossref] [Google Scholar]
  10. Bhardwaj S, Koullapis P, Kassinos SC, Sznitman J. 2022.. Fate of inhaled aerosols under the influence of glottal motion in a realistic in silico human tracheobronchial tree model. . Eur. J. Pharm. Sci. 173::106172
    [Crossref] [Google Scholar]
  11. Bordas R, Lefevre C, Veeckmans B, Pitt-Francis J, Fetita C, et al. 2015.. Development and analysis of patient-based complete conducting airways models. . PLOS ONE 10:(12):e0144105
    [Crossref] [Google Scholar]
  12. Borojeni AAT, Garcia GJM, Moghaddam MG, Frank-Ito DO, Kimbell JS, et al. 2020.. Normative ranges of nasal airflow variables in healthy adults. . Int. J. Comput. Assist. Radiol. Surg. 15:(1):8798
    [Crossref] [Google Scholar]
  13. Chen D, Liu J, Wu J, Suk JS. 2021.. Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung. . Expert Opin. Drug Deliv. 18:(5):595606
    [Crossref] [Google Scholar]
  14. Chisholm JF, Shenoy SK, Shade JK, Kim V, Putcha N, et al. 2019.. Nanoparticle diffusion in spontaneously expectorated sputum as a biophysical tool to probe disease severity in COPD. . Eur. Respir. J. 54:(2):1900088
    [Crossref] [Google Scholar]
  15. Choi J, Tawhai MH, Hoffman EA, Lin C-L. 2009.. On intra- and intersubject variabilities of airflow in the human lungs. . Phys. Fluids 21:(10):101901
    [Crossref] [Google Scholar]
  16. Chow MYT, Tai W, Chang RYK, Chan HK, Kwok PCL. 2021.. In vitro-in vivo correlation of cascade impactor data for orally inhaled pharmaceutical aerosols. . Adv. Drug Deliv. Rev. 177::113952
    [Crossref] [Google Scholar]
  17. Christenson SA, Smith BM, Bafadhel M, Putcha N. 2022.. Chronic obstructive pulmonary disease. . Lancet 399:(10342):222742
    [Crossref] [Google Scholar]
  18. Christou S, Chatziathanasiou T, Angeli S, Koullapis P, Stylianou F, et al. 2021.. Anatomical variability in the upper tracheobronchial tree: sex-based differences and implications for personalized inhalation therapies. . J. Appl. Physiol. 130:(3):678707
    [Crossref] [Google Scholar]
  19. Chukowry PS, Spittle DA, Turner AM. 2021.. Small airways disease, biomarkers and COPD: Where are we?. Int. J. Chron. Obstruct. Pulmon. Dis. 16::35165
    [Crossref] [Google Scholar]
  20. Corcoran TE. 2015.. Imaging in aerosol medicine. . Respir. Care 60:(6):85055
    [Crossref] [Google Scholar]
  21. Darquenne C, Fleming JS, Katz I, Martin AR, Schroeter J, et al. 2016.. Bridging the gap between science and clinical efficacy: physiology, imaging, and modeling of aerosols in the lung. . J. Aerosol Med. Pulm. Drug Deliv. 29:(2):10726
    [Crossref] [Google Scholar]
  22. Das P, Nof E, Amirav I, Kassinos SC, Sznitman J. 2018.. Targeting inhaled aerosol delivery to upper airways in children: insight from computational fluid dynamics (CFD). . PLOS ONE 13:(11):e0207711
    [Crossref] [Google Scholar]
  23. Delpianoa L, Rodenburg LW, Burkea M, Nelson G, Amatngalim GD, et al. 2023.. Dynamic regulation of airway surface liquid pH by TMEM16A and SLC26A4 in cystic fibrosis nasal epithelia with rare mutations. . PNAS 120:(47):e2307551120
    [Crossref] [Google Scholar]
  24. Deng Q, Ou C, Chen J, Xiang Y. 2018.. Particle deposition in tracheobronchial airways of an infant, child and adult. . Sci. Total Environ. 612::33946
    [Crossref] [Google Scholar]
  25. Diaz AA, Orejas JL, Grumley S, Nath HP, Wang W, et al. 2023.. Airway-occluding mucus plugs and mortality in patients with chronic obstructive pulmonary disease. . JAMA 329:(21):183239
    [Crossref] [Google Scholar]
  26. Dominelli PB, Ripoll JG, Cross TJ, Baker SE, Wiggins CC, et al. 2018.. Sex differences in large conducting airway anatomy. . J. Appl. Physiol. 125:(3):96065
    [Crossref] [Google Scholar]
  27. Dong J, Yang Y, Zhu Y. 2022.. Recent advances in the understanding of alveolar flow. . Biomicrofluidics 16:(2):021502
    [Crossref] [Google Scholar]
  28. Dorinsky P, DePetrillo P, DeAngelis K, Trivedi R, Darken P, Gillen M. 2020.. Relative bioavailability of budesonide/glycopyrrolate/formoterol fumarate metered dose inhaler administered with and without a spacer: results of a phase I, randomized, crossover trial in healthy adults. . Clin. Ther. 42:(4):63448
    [Crossref] [Google Scholar]
  29. Feng Y, Zhao J, Hayati H, Sperry T, Yi H. 2021.. Tutorial: understanding the transport, deposition, and translocation of particles in human respiratory systems using Computational Fluid-Particle Dynamics and Physiologically Based Toxicokinetic models. . J. Aerosol Sci. 151::105672
    [Crossref] [Google Scholar]
  30. Feng Y, Zhao J, Kleinstreuer C, Wang Q, Wang J, et al. 2018.. An in silico inter-subject variability study of extra-thoracic morphology effects on inhaled particle transport and deposition. . J. Aerosol Sci. 123::185207
    [Crossref] [Google Scholar]
  31. Fishler R, Hofemeier P, Etzion Y, Dubowski Y, Sznitman J. 2015.. Particle dynamics and deposition in true-scale pulmonary acinar models. . Sci. Rep. 5::14071
    [Crossref] [Google Scholar]
  32. Fishler R, Ostrovski Y, Lu CY, Sznitman J. 2017.. Streamline crossing: an essential mechanism for aerosol dispersion in the pulmonary acinus. . J. Biomech. 50::22227
    [Crossref] [Google Scholar]
  33. Fung Y-C. 1988.. A model of the lung structure and its validation. . J. Appl. Physiol. 64:(5):213241
    [Crossref] [Google Scholar]
  34. Galbán CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, et al. 2012.. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. . Nat. Med. 18:(11):171115
    [Crossref] [Google Scholar]
  35. García-Martínez D, Torres-Tamayo N, Torres-Sanchez I, García-Río F, Bastir M. 2016.. Morphological and functional implications of sexual dimorphism in the human skeletal thorax. . Am. J. Phys. Anthropol. 161:(3):46777
    [Crossref] [Google Scholar]
  36. Grgic B, Finlay WH, Burnell PKP, Heenan AF. 2004.. In vitro intersubject and intrasubject deposition measurements in realistic mouth-throat geometries. . J. Aerosol Sci. 35:(8):102540
    [Crossref] [Google Scholar]
  37. Grotberg JB. 1994.. Pulmonary flow and transport phenomena. . Annu. Rev. Fluid Mech. 26::52971
    [Crossref] [Google Scholar]
  38. Grotberg JB. 2001.. Respiratory fluid mechanics and transport processes. . Annu. Rev. Biomed. Eng. 3::42157
    [Crossref] [Google Scholar]
  39. Grotberg JB. 2011.. Respiratory fluid mechanics. . Phys. Fluids 23::021301
    [Crossref] [Google Scholar]
  40. Haefeli-Bleuer B, Weibel ER. 1988.. Morphometry of the human pulmonary acinus. . Anat. Rec. 220:(4):40114
    [Crossref] [Google Scholar]
  41. Hajari AJ, Yablonskiy DA, Sukstanskii AL, Quirk JD, Conradi MS, Woods JC. 2012.. Morphometric changes in the human pulmonary acinus during inflation. . J. Appl. Physiol. 112:(6):93743
    [Crossref] [Google Scholar]
  42. Haselton FR, Scherer PW. 1982.. Flow visualization of steady streaming in oscillatory flow through a bifurcating tube. . J. Fluid Mech. 123::31533
    [Crossref] [Google Scholar]
  43. Hastedt JE, Bäckman P, Cabal A, Clark A, Ehrhardt C, et al. 2022.. iBCS: 1. Principles and framework of an inhalation-based biopharmaceutics classification system. . Mol. Pharm. 19::203239
    [Crossref] [Google Scholar]
  44. Heistracher T, Hofmann W. 1995.. Physiologically realistic models of bronchial airway bifurcations. . J. Aerosol Sci. 26:(3):497509
    [Crossref] [Google Scholar]
  45. Heyder J, Blanchard JD, Feldman HA, Brain JD. 1988.. Convective mixing in human respiratory tract: estimates with aerosol boli. . J. Appl. Physiol. 64:(3):127378
    [Crossref] [Google Scholar]
  46. Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W. 1986.. Deposition of particles in the human respiratory tract in the size range of 0.005–15 μm. . J. Aerosol Sci. 17:(5):81125
    [Crossref] [Google Scholar]
  47. Hill DB, Button B, Rubinstein M, Boucher RC. 2022.. Physiology and pathophysiology of human airway mucus. . Physiol. Rev. 102:(4):1757836
    [Crossref] [Google Scholar]
  48. Hoegger MJ, Awadalla M, Namati E, Itani OA, Fischer AJ, et al. 2014.. Assessing mucociliary transport of single particles in vivo shows variable speed and preference for the ventral trachea in newborn pigs. . PNAS 111:(6):235560
    [Crossref] [Google Scholar]
  49. Hofemeier P, Koshiyama K, Wada S, Sznitman J. 2018.. One (sub-)acinus for all: fate of inhaled aerosols in heterogeneous pulmonary acinar structures. . Eur. J. Pharm. Sci. 113::5363
    [Crossref] [Google Scholar]
  50. Hofemeier P, Sznitman J. 2015.. Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion and their interplay. . J. Appl. Physiol. 118::137585
    [Crossref] [Google Scholar]
  51. Horsfield K, Cumming G. 1967.. Angles of branching and diameters of branches in the human bronchial tree. . Bull. Math. Biophys. 29:(2):24559
    [Crossref] [Google Scholar]
  52. Huang F, Zhu Q, Zhou X, Gou D, Yu J, et al. 2021.. Role of CFD based in silico modelling in establishing an in vitro-in vivo correlation of aerosol deposition in the respiratory tract. . Adv. Drug Deliv. Rev. 170::36985
    [Crossref] [Google Scholar]
  53. Huck BC, Murgia X, Frisch S, Hittinger M, Hidalgo A, et al. 2022.. Models using native tracheobronchial mucus in the context of pulmonary drug delivery research: composition, structure and barrier properties. . Adv. Drug Deliv. Rev. 183::114141
    [Crossref] [Google Scholar]
  54. ICRP (Int. Comm. Radiol. Prot.). 1994.. Human respiratory tract model for radiological protection. ICRP Publ. 66 , Int. Comm. Radiol. Prot., Ottawa, Can.:
    [Google Scholar]
  55. Inthavong K, Das P, Singh N, Sznitman J. 2019.. In silico approaches to respiratory nasal flows: a review. . J. Biomech. 97::109434
    [Crossref] [Google Scholar]
  56. Isabey D, Chang HK. 1982.. A model study of flow dynamics in human central airways. Part II: secondary flow velocities. . Respir. Physiol. 49:(1):97113
    [Crossref] [Google Scholar]
  57. Jahani N, Choi S, Choi J, Iyer K, Hoffman EA, Lin CL. 2015.. Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing. . J. Appl. Physiol. 119:(10):106474
    [Crossref] [Google Scholar]
  58. Jalal S, Nemes A, Van de Moortele T, Schmitter S, Coletti F. 2016.. Three-dimensional inspiratory flow in a double bifurcation airway model. . Exp. Fluids 57:(9):148
    [Crossref] [Google Scholar]
  59. Jalal S, Van De Moortele T, Amili O, Coletti F. 2020.. Steady and oscillatory flow in the human bronchial tree. . Phys. Rev. Fluids 5:(6):063101
    [Crossref] [Google Scholar]
  60. Jalal S, Van De Moortele T, Nemes A, Amili O, Coletti F. 2018.. Three-dimensional steady and oscillatory flow in a double bifurcation airway model. . Phys. Rev. Fluids 3:(10):103101
    [Crossref] [Google Scholar]
  61. Janke T, Koullapis P, Kassinos SC, Bauer K. 2019.. PIV measurements of the SimInhale benchmark case. . Eur. J. Pharm. Sci. 133::18389
    [Crossref] [Google Scholar]
  62. Janke T, Schwarze R, Bauer K. 2017.. Measuring three-dimensional flow structures in the conductive airways using 3D-PTV. . Exp. Fluids 58:(10):113
    [Crossref] [Google Scholar]
  63. Jedelsky J, Lizal F, Jicha M. 2024.. Time-resolved characteristics of oscillatory particle-laden air flow in a realistic human airway model. . Eur. J. Mech. B Fluids 105::21937
    [Crossref] [Google Scholar]
  64. Jing H, Ge H, Wang L, Choi S, Farnoud A, et al. 2023.. Investigating unsteady airflow characteristics in the human upper airway based on the clinical inspiration data. . Phys. Fluids 35::101911
    [Crossref] [Google Scholar]
  65. Johnstone A, Uddin M, Pollard A, Heenan A, Finlay WH. 2004.. The flow inside an idealised form of the human extra-thoracic airway. . Exp. Fluids 37:(5):67389
    [Crossref] [Google Scholar]
  66. Jory M, Donnarumma D, Blanc C, Bellouma K, Fort A, et al. 2022.. Mucus from human bronchial epithelial cultures: rheology and adhesion across length scales. . Interface Focus 12::20220028
    [Crossref] [Google Scholar]
  67. Kesimer M, Ford AA, Ceppe A, Radicioni G, Cao R, et al. 2017.. Airway mucin concentration as a marker of chronic bronchitis. . N. Engl. J. Med. 377:(10):91122
    [Crossref] [Google Scholar]
  68. Khelloufi MK, Loiseau E, Jaeger M, Molinari N, Chanez P, et al. 2018.. Spatiotemporal organization of cilia drives multiscale mucus swirls in model human bronchial epithelium. . Sci. Rep. 8:(1):2447
    [Crossref] [Google Scholar]
  69. Kleinstreuer C, Zhang Z. 2010.. Airflow and particle transport in the human respiratory system. . Annu. Rev. Fluid Mech. 42::30134
    [Crossref] [Google Scholar]
  70. Knox-Brown B, Patel J, Potts J, Ahmed R, Aquart-Stewart A, et al. 2023.. Small airways obstruction and its risk factors in the burden of obstructive lung disease (BOLD) study: a multinational cross-sectional study. . Lancet Glob. Health 11:(1):e6982
    [Crossref] [Google Scholar]
  71. Koullapis P, Kassinos SC, Muela J, Perez-Segarra C, Rigola J, et al. 2018a.. Regional aerosol deposition in the human airways: the SimInhale benchmark case and a critical assessment of in silico methods. . Eur. J. Pharm. Sci. 113::7794
    [Crossref] [Google Scholar]
  72. Koullapis PG, Hofemeier P, Sznitman J, Kassinos SC. 2018b.. An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung. . Eur. J. Pharm. Sci. 113::13244
    [Crossref] [Google Scholar]
  73. Koullapis PG, Nicolaou L, Kassinos SC. 2018c.. In silico assessment of mouth-throat effects on regional deposition in the upper tracheobronchial airways. . J. Aerosol Sci. 117::16488
    [Crossref] [Google Scholar]
  74. Koullapis PG, Stylianou FS, Sznitman J, Olsson B, Kassinos SC. 2020.. Towards whole-lung simulations of aerosol deposition: a model of the deep lung. . J. Aerosol Sci. 144::105541
    [Crossref] [Google Scholar]
  75. Kuprat AP, Jalali M, Jan T, Corley RA, Asgharian B, et al. 2021.. Efficient bi-directional coupling of 3D computational fluid-particle dynamics and 1D multiple path particle dosimetry lung models for multiscale modeling of aerosol dosimetry. . J. Aerosol Sci. 151::105647
    [Crossref] [Google Scholar]
  76. Kwok PCL, Wallin M, Dolovich MB, Chan HK. 2019.. Studies of radioaerosol deposition in the respiratory tract. . Semin. Nucl. Med. 49:(1):6270
    [Crossref] [Google Scholar]
  77. Lähelmä S, Sairanen U, Haikarainen J, Korhonen J, Vahteristo M, et al. 2015.. Equivalent lung dose and systemic exposure of budesonide/formoterol combination via Easyhaler and Turbuhaler. . J. Aerosol Med. Pulm. Drug Deliv. 28:(6):46273
    [Crossref] [Google Scholar]
  78. Lai SK, Wang YY, Wirtz D, Hanes J. 2009.. Micro- and macrorheology of mucus. . Adv. Drug Deliv. Rev. 61:(2):86100
    [Crossref] [Google Scholar]
  79. Lin CL, Choi S, Haghighi B, Choi J, Hoffman EA. 2020.. Cluster-guided multiscale lung modeling via machine learning. . In Handbook of Materials Modeling, ed. W Andreoni, S Yip , pp. 2699718. Cham, Switz:.: Springer
    [Google Scholar]
  80. Lin CK, Hsiao YY, Nath P, Huang JH. 2019.. Aerosol delivery into small anatomical airway model through spontaneous engineered breathing. . Biomicrofluidics 13::044109
    [Crossref] [Google Scholar]
  81. Lizal F, Elcner J, Jedelsky J, Maly M, Jicha M, et al. 2020.. The effect of oral and nasal breathing on the deposition of inhaled particles in upper and tracheobronchial airways. . J. Aerosol Sci. 150::105649
    [Crossref] [Google Scholar]
  82. Lizal F, Jedelsky J, Morgan K, Bauer K, Llop J, et al. 2018.. Experimental methods for flow and aerosol measurements in human airways and their replicas. . Eur. J. Pharm. Sci. 113::95131
    [Crossref] [Google Scholar]
  83. Longest PW, Bass K, Dutta R, Rani V, Thomas ML, et al. 2019.. Use of computational fluid dynamics deposition modeling in respiratory drug delivery. . Expert Opin. Drug Deliv. 16:(1):726
    [Crossref] [Google Scholar]
  84. Longest PW, Tian G, Khajeh-Hosseini-Dalasm N, Hindle M. 2016.. Validating whole-airway CFD predictions of DPI aerosol deposition at multiple flow rates. . J. Aerosol Med. Pulm. Drug Deliv. 29:(6):46181
    [Crossref] [Google Scholar]
  85. Lv H, Dong J, Qiu Y, Yang Y, Zhu Y. 2020.. Microflow in a rhythmically expanding alveolar chip with dynamic similarity. . Lab Chip 20:(13):2394402
    [Crossref] [Google Scholar]
  86. Malvè M, Sánchez-Matás C, López-Villalobos JL. 2020.. Modelling particle transport and deposition in the human healthy and stented tracheobronchial airways. . Ann. Biomed. Eng. 48:(6):180520
    [Crossref] [Google Scholar]
  87. Mann LM, Angus SA, Doherty CJ, Dominelli PB. 2021.. Evaluation of sex-based differences in airway size and the physiological implications. . Eur. J. Appl. Physiol. 121:(11):295766
    [Crossref] [Google Scholar]
  88. Martin AR, Moore CP, Finlay WH. 2018.. Models of deposition, pharmacokinetics, and intersubject variability in respiratory drug delivery. . Expert Opin. Drug Deliv. 15:(12):117588
    [Crossref] [Google Scholar]
  89. Mauroy B, Filoche M, Weibel ER, Sapoval B. 2004.. An optimal bronchial tree may be dangerous. . Nature 427:(6975):63336
    [Crossref] [Google Scholar]
  90. Nawroth JC, van der Does AM, Ryan A, Kanso E. 2020.. Multiscale mechanics of mucociliary clearance in the lung. . Philos. Trans. R. Soc. B 375:(1792):20190160
    [Crossref] [Google Scholar]
  91. Newman SP, Chan HK. 2020.. In vitro-in vivo correlations (IVIVCs) of deposition for drugs given by oral inhalation. . Adv. Drug Deliv. Rev. 167::13547
    [Crossref] [Google Scholar]
  92. Nicolaou L, Zaki TA. 2013.. Direct numerical simulations of flow in realistic mouth-throat geometries. . J. Aerosol Sci. 57::7187
    [Crossref] [Google Scholar]
  93. Nicolaou L, Zaki TA. 2016.. Characterization of aerosol Stokes number in 90° bends and idealized extrathoracic airways. . J. Aerosol Sci. 102::10527
    [Crossref] [Google Scholar]
  94. Nof E, Bhardwaj S, Koullapis P, Bessler R, Kassinos S, Sznitman J. 2023.. In vitro–in silico correlation of three-dimensional turbulent flows in an idealized mouth-throat model. . PLOS Comput. Biol. 19:(3):e1010537
    [Crossref] [Google Scholar]
  95. Oakes JM, Amirav I, Sznitman J. 2023.. Pediatric inhalation therapy and the aerodynamic rationale for age-based aerosol sizes. . Expert Opin. Drug Deliv. 20:(8):103740
    [Crossref] [Google Scholar]
  96. Oakes JM, Hofemeier P, Vignon-Clementel IE, Sznitman J. 2016.. Aerosols in healthy and emphysematous in silico pulmonary acinar rat models. . J. Biomech. 49:(11):221320
    [Crossref] [Google Scholar]
  97. Oakes JM, Roth SC, Shadden SC. 2018.. Airflow simulations in infant, child, and adult pulmonary conducting airways. . Ann. Biomed. Eng. 46:(3):498512
    [Crossref] [Google Scholar]
  98. Oakes JM, Shadden SC, Grandmont C, Vignon-Clementel IE. 2017.. Aerosol transport throughout inspiration and expiration in the pulmonary airways. . Int. J. Numer. Method. Biomed. Eng. 33::e2847
    [Crossref] [Google Scholar]
  99. Olsson B, Kassinos SC. 2021.. On the validation of generational lung deposition computer models using planar scintigraphic images: the case of Mimetikos Preludium. . J. Aerosol Med. Pulm. Drug Deliv. 34:(2):11523
    [Crossref] [Google Scholar]
  100. Patarin J, Ghiringhelli É, Darsy G, Obamba M, Bochu P, et al. 2020.. Rheological analysis of sputum from patients with chronic bronchial diseases. . Sci. Rep. 10:(1):15685
    [Crossref] [Google Scholar]
  101. Patton JS, Brain JD, Davies LA, Fiegel J, Gumbleton M, et al. 2010.. The particle has landed—characterizing the fate of inhaled pharmaceuticals. . J. Aerosol Med. Pulm. Drug Deliv. 23:(Suppl. 2):S7187
    [Crossref] [Google Scholar]
  102. Pedley TJ. 1977.. Pulmonary fluid dynamics. . Annu. Rev. Fluid Mech. 9::22974
    [Crossref] [Google Scholar]
  103. Petersson-Sjögren M, Chan HF, Collier GJ, Norquay G, Olsson LE, et al. 2021.. Airspace dimension assessment (AiDA) by inhaled nanoparticles: benchmarking with hyperpolarised 129Xe diffusion-weighted lung MRI. . Sci. Rep. 11:(1):4721
    [Crossref] [Google Scholar]
  104. Phillips CG, Kaye SR. 1997.. On the asymmetry of bifurcations in the bronchial tree. . Respir. Physiol. 107:(1):8598
    [Crossref] [Google Scholar]
  105. Poorbahrami K, Mummy DG, Fain SB, Oakes JM. 2019.. Patient-specific modeling of aerosol delivery in healthy and asthmatic adults. . J. Appl. Physiol. 127:(6):172032
    [Crossref] [Google Scholar]
  106. Poorbahrami K, Vignon-Clementel IE, Shadden SC, Oakes JM. 2021.. A whole lung in silico model to estimate age dependent particle dosimetry. . Sci. Rep. 11:(1):11180
    [Crossref] [Google Scholar]
  107. Qiu Y, Lu C, Bao F, Hu G. 2023.. Design of a multilayer lung chip with multigenerational alveolar ducts to investigate the inhaled particle deposition. . Lab Chip 23:(19):430212
    [Crossref] [Google Scholar]
  108. Quirk JD, Sukstanskii AL, Woods JC, Lutey BA, Conradi MS, et al. 2016.. Experimental evidence of age-related adaptive changes in human acinar airways. . J. Appl. Physiol. 120:(2):15965
    [Crossref] [Google Scholar]
  109. Rahman MM, Zhao M, Islam MS, Dong K, Saha SC. 2022.. Nanoparticle transport and deposition in a heterogeneous human lung airway tree: an efficient one path model for CFD simulations. . Eur. J. Pharm. Sci. 177::106279
    [Crossref] [Google Scholar]
  110. Rajaraman PK, Choi J, Hoffman EA, O'Shaughnessy PT, Choi S, et al. 2020.. Transport and deposition of hygroscopic particles in asthmatic subjects with and without airway narrowing. . J. Aerosol Sci. 146::105581
    [Crossref] [Google Scholar]
  111. Ramirez-San Juan GR, Mathijssen AJTM, He M, Jan L, Marshall W, Prakash M. 2020.. Multi-scale spatial heterogeneity enhances particle clearance in airway ciliary arrays. . Nat. Phys. 16:(9):95864
    [Crossref] [Google Scholar]
  112. Sadafi H, Monshi Tousi N, De Backer W, De Backer J. 2024.. Validation of computational fluid dynamics models for airway deposition with SPECT data of the same population. . Sci. Rep. 14:(1):5492
    [Crossref] [Google Scholar]
  113. Schneider CS, Xu Q, Boylan NJ, Chisholm J, Tang BC, et al. 2017.. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. . Sci. Adv. 3:(4):e1601556
    [Crossref] [Google Scholar]
  114. Sedaghat MH, Sadrizadeh S, Abouali O. 2023.. Three-dimensional simulation of mucociliary clearance under the ciliary abnormalities. . J. Non-Newton. Fluid Mech. 316::105029
    [Crossref] [Google Scholar]
  115. Semple T, Calder A, Owens CM, Padley S. 2017.. Current and future approaches to large airways imaging in adults and children. . Clin. Radiol. 72:(5):35674
    [Crossref] [Google Scholar]
  116. Shinneeb AM, Pollard A. 2012.. Investigation of the flow physics in the human pharynx/larynx region. . Exp. Fluids 53:(4):9891003
    [Crossref] [Google Scholar]
  117. Smith BM, Kirby M, Hoffman EA, Kronmal RA, Aaron SD, et al. 2020.. Association of dysanapsis with chronic obstructive pulmonary disease among older adults. . JAMA 323:(22):226880
    [Crossref] [Google Scholar]
  118. Smith DJ, Gaffney EA, Blake JR. 2008.. Modelling mucociliary clearance. . Respir. Physiol. Neurobiol. 163:(1–3):17888
    [Crossref] [Google Scholar]
  119. Sommerfeld M, Sgrott OL, Taborda MA, Koullapis P, Bauer K, Kassinos S. 2021.. Analysis of flow field and turbulence predictions in a lung model applying RANS and implications for particle deposition. . Eur. J. Pharm. Sci. 166::105959
    [Crossref] [Google Scholar]
  120. Spasov GH, Rossi R, Vanossi A, Cottini C, Benassi A. 2022.. A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in extra-thoracic airways. . Int. J. Pharm. 629::122331
    [Crossref] [Google Scholar]
  121. Stahlhofen W, Rudolf G, James AC. 1989.. Intercomparison of experimental regional aerosol deposition data. . J. Aerosol Med. 2:(3):285308
    [Crossref] [Google Scholar]
  122. Stanojevic S, Kaminsky DA, Miller MR, Thompson B, Aliverti A, et al. 2022.. ERS/ATS technical standard on interpretive strategies for routine lung function tests. . Eur. Respir. J. 60::2101499
    [Crossref] [Google Scholar]
  123. Stylianou FS, Sznitman J, Kassinos SC. 2016.. Direct numerical simulation of particle laden flow in a human airway bifurcation model. . Int. J. Heat Fluid Flow 61::677710
    [Crossref] [Google Scholar]
  124. Sul B, Oppito Z, Jayasekera S, Vanger B, Zeller A, et al. 2018.. Assessing airflow sensitivity to healthy and diseased lung conditions in a computational fluid dynamics model validated in vitro. . J. Biomech. Eng. 140:(5):051009
    [Crossref] [Google Scholar]
  125. Sznitman J. 2013.. Respiratory microflows in the pulmonary acinus. . J. Biomech. 46:(2):28498
    [Crossref] [Google Scholar]
  126. Sznitman J. 2022.. Revisiting airflow and aerosol transport phenomena in the deep lungs with microfluidics. . Chem. Rev. 122:(7):7182204
    [Crossref] [Google Scholar]
  127. Taylor G, Warren S, Dwivedi S, Sommerville M, Mello L, et al. 2018.. Gamma scintigraphic pulmonary deposition study of glycopyrronium/formoterol metered dose inhaler formulated using co-suspension delivery technology. . Eur. J. Pharm. Sci. 111::45057
    [Crossref] [Google Scholar]
  128. Tian G, Hindle M, Lee S, Longest PW. 2015.. Validating CFD predictions of pharmaceutical aerosol deposition with in vivo data. . Pharm. Res. 32:(10):317087
    [Crossref] [Google Scholar]
  129. Torres-Tamayo N, García-Martínez D, Lois Zlolniski S, Torres-Sánchez I, García-Río F, Bastir M. 2018.. 3D analysis of sexual dimorphism in size, shape and breathing kinematics of human lungs. . J. Anat. 232:(2):22737
    [Crossref] [Google Scholar]
  130. Tsuda A, Rogers RA, Hydon PE, Butler JP. 2002.. Chaotic mixing deep in the lung. . PNAS 99:(15):1017378
    [Crossref] [Google Scholar]
  131. Usmani OS, Biddiscombe MF, Barnes PJ. 2005.. Regional lung deposition and bronchodilator response as a function of β2-agonist particle size. . Am. J. Respir. Crit. Care Med. 172::14971504
    [Crossref] [Google Scholar]
  132. Usmani OS, Mignot B, Kendall I, De Maria R, Cocconi D, et al. 2021.. Predicting lung deposition of extrafine inhaled corticosteroid-containing fixed combinations in patients with chronic obstructive pulmonary disease using functional respiratory imaging: an in silico study. . J. Aerosol Med. Pulm. Drug Deliv. 34:(3):20411
    [Crossref] [Google Scholar]
  133. Vameghestahbanati M, Kingdom L, Hoffman EA, Kirby M, Allen NB, et al. 2024.. Airway tree caliber heterogeneity and airflow obstruction among older adults. . J. Appl. Physiology 136:(5):114456
    [Crossref] [Google Scholar]
  134. Vameghestahbanati M, Sack C, Wysoczanski A, Hoffman EA, Angelini E, et al. 2023.. Association of dysanapsis with mortality among older adults. . Eur. Respir. J. 61::2300551
    [Crossref] [Google Scholar]
  135. Widdicombe JH. 2002.. Regulation of the depth and composition of airway surface liquid. . J. Anat. 201::31318
    [Crossref] [Google Scholar]
  136. Xi J, Si X, Zhou Y, Kim JW, Berlinski A. 2014.. Growth of nasal and laryngeal airways in children: implications in breathing and inhaled aerosol dynamics. . Respir. Care 59:(2):26373
    [Crossref] [Google Scholar]
  137. Xu X, Wu J, Weng W, Fu M. 2020.. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. . Biomech. Model. Mechanobiol. 19:(5):167995
    [Crossref] [Google Scholar]
  138. Ye Q, He XO, D'Urzo A. 2017.. A review on the safety and efficacy of inhaled corticosteroids in the management of asthma. . Pulm. Ther. 3::118
    [Crossref] [Google Scholar]
  139. Yeh H, Schum G. 1980.. Models of human lung airways and their application to inhaled particle deposition. . Bull. Math. Biol. 42:(3):46180
    [Crossref] [Google Scholar]
  140. Zeman KL, Bennett WD. 2006.. Growth of the small airways and alveoli from childhood to the adult lung measured by aerosol-derived airway morphometry. . J. Appl. Physiol. 100:(3):96571
    [Crossref] [Google Scholar]
  141. Zhang X, Li F, Rajaraman PK, Choi J, Comellas AP, et al. 2022.. A computed tomography imaging-based subject-specific whole-lung deposition model. . Eur. J. Pharm. Sci. 177::106272
    [Crossref] [Google Scholar]
  142. Zhao J, Feng Y, Fromen CA. 2020.. Glottis motion effects on the particle transport and deposition in a subject-specific mouth-to-trachea model: a CFPD study. . Comput. Biol. Med. 116::103532
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-fluid-031424-103721
Loading
/content/journals/10.1146/annurev-fluid-031424-103721
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error