1932

Abstract

Thermoacoustic instability is a flow instability that arises due to a two-way coupling between acoustic waves and unsteady heat release rate. It can cause damaging, large-amplitude oscillations in the combustors of gas turbines, aeroengines, rocket engines, etc., and the transition to decarbonized fuels is likely to introduce new thermoacoustic instability problems. With a focus on practical thermoacoustic instability problems, especially in gas turbine combustors, this review presents the common types of combustor and burner geometry used. It discusses the relevant flow physics underpinning their acoustic and unsteady flame behaviors, including how these differ across combustor and burner types. Computational tools for predicting thermoacoustic instability can be categorized into direct computational approaches, in which a single flow simulation resolves all of the most important length scales and timescales, and coupled/hybrid approaches, which couple separate computational treatments for the acoustic waves and flame, exploiting the large disparity in length scales associated with these. Examples of successful computational prediction of thermoacoustic instability in realistic combustors are given, along with outlooks for future research in this area.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121021-032828
2025-01-22
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/fluid/57/1/annurev-fluid-121021-032828.html?itemId=/content/journals/10.1146/annurev-fluid-121021-032828&mimeType=html&fmt=ahah

Literature Cited

  1. Acharya VS, Bothien MR, Lieuwen TC. 2018.. Non-linear dynamics of thermoacoustic eigen-mode interactions. . Combust. Flame 194::30921
    [Crossref] [Google Scholar]
  2. Æsøy E, Aguilar JG, Bothien MR, Worth NA, Dawson JR. 2021.. Acoustic-convective interference in transfer functions of methane/hydrogen and pure hydrogen flames. . J. Eng. Gas Turbines Power 143:(12):121017
    [Crossref] [Google Scholar]
  3. Æsøy E, Nygård HT, Worth NA, Dawson JR. 2022.. Tailoring the gain and phase of the flame transfer function through targeted convective-acoustic interference. . Combust. Flame 236::111813
    [Crossref] [Google Scholar]
  4. Agostinelli P, Laera D, Boxx I, Gicquel L, Poinsot T. 2021.. Impact of wall heat transfer in large eddy simulation of flame dynamics in a swirled combustion chamber. . Combust. Flame 234::111728
    [Crossref] [Google Scholar]
  5. Bake F, Richter C, Mühlbauer B, Kings N, Röhle I, et al. 2009.. The entropy wave generator (EWG): a reference case on entropy noise. . J. Sound Vib. 326:(3–5):57498
    [Crossref] [Google Scholar]
  6. Balachandran R, Ayoola B, Kaminski C, Dowling AP, Mastorakos E. 2005.. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. . Combust. Flame 143:(1–2):3755
    [Crossref] [Google Scholar]
  7. Bauerheim M, Cazalens M, Poinsot T. 2015.. A theoretical study of mean azimuthal flow and asymmetry effects on thermo-acoustic modes in annular combustors. . Proc. Combust. Inst. 35:(3):321927
    [Crossref] [Google Scholar]
  8. Bauerheim M, Nicoud F, Poinsot T. 2016.. Progress in analytical methods to predict and control azimuthal combustion instability modes in annular chambers. . Phys. Fluids 28:(2):021303
    [Crossref] [Google Scholar]
  9. Bauerheim M, Parmentier JF, Salas P, Nicoud F, Poinsot T. 2014a.. An analytical model for azimuthal thermoacoustic modes in an annular chamber fed by an annular plenum. . Combust. Flame 161:(5):137489
    [Crossref] [Google Scholar]
  10. Bauerheim M, Salas P, Nicoud F, Poinsot T. 2014b.. Symmetry breaking of azimuthal thermo-acoustic modes in annular cavities: a theoretical study. . J. Fluid Mech. 760::43165
    [Crossref] [Google Scholar]
  11. Beita J, Talibi M, Sadasivuni S, Balachandran R. 2021.. Thermoacoustic instability considerations for high hydrogen combustion in lean premixed gas turbine combustors: a review. . Hydrogen 2:(1):3357
    [Crossref] [Google Scholar]
  12. Bellucci V, Flohr P, Paschereit CO, Magni F. 2004.. On the use of Helmholtz resonators for damping acoustic pulsations in industrial gas turbines. . J. Eng. Gas Turbines Power 126:(2):27175
    [Crossref] [Google Scholar]
  13. Berger FM, Hummel T, Hertweck M, Kaufmann J, Schuermans B, Sattelmayer T. 2017.. High-frequency thermoacoustic modulation mechanisms in swirl-stabilized gas turbine combustors—part I: experimental investigation of local flame response. . J. Eng. Gas Turbines Power 139:(7):071501
    [Crossref] [Google Scholar]
  14. Bothien MR, Noiray N, Schuermans B. 2014.. A novel damping device for broadband attenuation of low-frequency combustion pulsations in gas turbines. . J. Eng. Gas Turbines Power 136:(4):041504
    [Crossref] [Google Scholar]
  15. Bourgouin JF, Durox D, Moeck JP, Schuller T, Candel S. 2015a.. A new pattern of instability observed in an annular combustor: the slanted mode. . Proc. Combust. Inst. 35:(3):323744
    [Crossref] [Google Scholar]
  16. Bourgouin JF, Durox D, Moeck JP, Schuller T, Candel S. 2015b.. Characterization and modeling of a spinning thermoacoustic instability in an annular combustor equipped with multiple matrix injectors. . J. Eng. Gas Turbines Power 137:(2):021503
    [Crossref] [Google Scholar]
  17. Brokof P, Guzmán-Iñigo J, Yang D, Morgans AS. 2023.. The acoustics of short circular holes with reattached bias flow. . J. Sound Vib. 546::117435
    [Crossref] [Google Scholar]
  18. Brouzet D, Krisna B, McCormick D, Reimann CA, Mendoza J, Ihme M. 2024.. Analysis of direct and indirect noise in a next-generation aviation gas turbine combustor. . Combust. Flame 260::113249
    [Crossref] [Google Scholar]
  19. Buschmann PE, Worth NA, Moeck JP. 2023.. Thermoacoustic oscillations in a can-annular model combustor with asymmetries in the can-to-can coupling. . Proc. Combust. Inst. 39:(4):570715
    [Crossref] [Google Scholar]
  20. Campa G, Camporeale SM. 2014.. Prediction of the thermoacoustic combustion instabilities in practical annular combustors. . J. Eng. Gas Turbines Power 136:(9):091504
    [Crossref] [Google Scholar]
  21. Camporeale SM, Fortunato B, Mastrovito M. 2008.. Prediction of thermoacoustic instability in combustion chamber equipped with passive dampers. . In Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air, Vol. 3: Combustion, Fuels and Emissions, Parts A and B, pp. 108794. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  22. Candel S. 2002.. Combustion dynamics and control: progress and challenges. . Proc. Comb. Inst. 29::128
    [Crossref] [Google Scholar]
  23. Candel S, Durox D, Schuller T, Bourgouin JF, Moeck JP. 2014.. Dynamics of swirling flames. . Annu. Rev. Fluid Mech. 46::14773
    [Crossref] [Google Scholar]
  24. Choi Y, Kim KT. 2023.. Mode shape-dependent thermoacoustic interactions between a lean-premixed primary flame and an axially-staged transverse reacting jet. . Combust. Flame 255::112884
    [Crossref] [Google Scholar]
  25. Chu BT. 1965.. On the energy transfer to small disturbances in fluid flow (Part I). . Acta Mech. 1:(3):21534
    [Crossref] [Google Scholar]
  26. Crocco L. 1951.. Aspects of combustion stability in liquid propellant rocket motors Part I: Fundamentals. Low frequency instability with monopropellants. . J. Am. Rocket Soc. 21:(6):16378
    [Crossref] [Google Scholar]
  27. Culick FE, Yang V. 1995.. Overview of combustion instabilities in liquid-propellant rocket engines. . In Liquid Rocket Engine Combustion Instability, ed. V Yang , pp. 337. Washington, DC:: Am. Inst. Aeronaut. Astrophys.
    [Google Scholar]
  28. Cumpsty N, Marble F. 1977.. The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise. . Proc. R. Soc. A 357:(1690):32344
    [Google Scholar]
  29. Dowling AP. 1995.. The calculation of thermoacoustic oscillations. . J. Sound Vib. 180:(4):55781
    [Crossref] [Google Scholar]
  30. Dowling AP. 1997.. Nonlinear self-excited oscillations of a ducted flame. . J. Fluid Mech. 346::27190
    [Crossref] [Google Scholar]
  31. Dowling AP, Mahmoudi Y. 2015.. Combustion noise. . Proc. Combust. Inst. 35::65100
    [Crossref] [Google Scholar]
  32. Dowling AP, Morgans AS. 2005.. Feedback control of combustion oscillations. . Annu. Rev. Fluid Mech. 37::15182
    [Crossref] [Google Scholar]
  33. Dowling AP, Stow SR. 2003.. Acoustic analysis of gas turbine combustors. . J. Propul. Power 19:(5):75164
    [Crossref] [Google Scholar]
  34. Ducruix S, Schuller T, Durox D, Candel S. 2003.. Combustion dynamics and instabilities: elementary coupling and driving mechanisms. . J. Propul. Power 19:(5):72234
    [Crossref] [Google Scholar]
  35. Dupere ID, Dowling AP. 2005.. The use of Helmholtz resonators in a practical combustor. . J. Eng. Gas Turbines Power 127:(2):26875
    [Crossref] [Google Scholar]
  36. Duran I, Moreau S. 2013.. Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. . J. Fluid Mech. 723::190231
    [Crossref] [Google Scholar]
  37. Duran I, Moreau S, Nicoud F, Livebardon T, Bouty E, Poinsot T. 2014.. Combustion noise in modern aero-engines. . Aerosp. Lab 7::5
    [Google Scholar]
  38. Duran I, Morgans AS. 2015.. On the reflection and transmission of circumferential waves through nozzles. . J. Fluid Mech. 773::13753
    [Crossref] [Google Scholar]
  39. Durox D, Schuller T, Noiray N, Birbaud AL, Candel S. 2009.. Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames. . Combust. Flame 156:(1):10619
    [Crossref] [Google Scholar]
  40. Eldredge JD, Dowling AP. 2003.. The absorption of axial acoustic waves by a perforated liner with bias flow. . J. Fluid Mech. 485::30735
    [Crossref] [Google Scholar]
  41. Emmert T, Bomberg S, Polifke W. 2015.. Intrinsic thermoacoustic instability of premixed flames. . Combust. Flame 162:(1):7585
    [Crossref] [Google Scholar]
  42. Evesque S, Polifke W. 2002.. Low-order acoustic modelling for annular combustors: validation and inclusion of modal coupling. . In Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air, Vol. 1: Turbo Expo 2002, pp. 32131. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  43. Fabre D, Longobardi R, Citro V, Luchini P. 2020.. Acoustic impedance and hydrodynamic instability of the flow through a circular aperture in a thick plate. . J. Fluid Mech. 885::A11
    [Crossref] [Google Scholar]
  44. Farisco F, Panek L, Kok JB. 2017.. Thermo-acoustic cross-talk between cans in a can-annular combustor. . Int. J. Spray Combust. Dyn. 9:(4):45269
    [Crossref] [Google Scholar]
  45. Fleifil M, Annaswamy AM, Ghoneim Z, Ghoniem AF. 1996.. Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results. . Combust. Flame 106:(4):487510
    [Crossref] [Google Scholar]
  46. Fredrich D, Jones WP, Marquis AJ. 2021.. Thermo-acoustic instabilities in the PRECCINSTA combustor investigated using a compressible LES-pdf approach. . Flow Turbul. Combust. 106::1399415
    [Crossref] [Google Scholar]
  47. Gaudron R, Gatti M, Mirat C, Schuller T. 2017.. Impact of the injector size on the transfer functions of premixed laminar conical flames. . Combust. Flame 179::13853
    [Crossref] [Google Scholar]
  48. Gaudron R, Guzmán Iñigo J, Morgans AS. 2023.. Variation of acoustic energy across sudden area expansions sustaining a subsonic flow. . AIAA J. 61:(1):37890
    [Crossref] [Google Scholar]
  49. Gaudron R, Yang D, Morgans A. 2021.. Acoustic energy balance during the onset, growth, and saturation of thermoacoustic instabilities. . J. Eng. Gas Turbines Power 143:(4):041026
    [Crossref] [Google Scholar]
  50. Ghirardo G, Bothien MR. 2018.. Quaternion structure of azimuthal instabilities. . Phys. Rev. Fluids 3:(11):113202
    [Crossref] [Google Scholar]
  51. Ghirardo G, Di Giovine C, Moeck JP, Bothien MR. 2019.. Thermoacoustics of can-annular combustors. . J. Eng. Gas Turbines Power 141:(1):011007
    [Crossref] [Google Scholar]
  52. Ghirardo G, Juniper M, Moeck JP. 2016.. Weakly nonlinear analysis of thermoacoustic instabilities in annular combustors. . J. Fluid Mech. 805::5287
    [Crossref] [Google Scholar]
  53. Ghirardo G, Nygård HT, Cuquel A, Worth NA. 2021.. Symmetry breaking modelling for azimuthal combustion dynamics. . Proc. Combust. Inst. 38:(4):595362
    [Crossref] [Google Scholar]
  54. Giauque A, Selle L, Gicquel L, Poinsot T, Buechner H, et al. 2005.. System identification of a large-scale swirled partially premixed combustor using LES and measurements. . J. Turbul. (6):N21
    [Crossref] [Google Scholar]
  55. Goh CS, Morgans AS. 2013.. The influence of entropy waves on the thermoacoustic stability of a model combustor. . Combust. Sci. Technol. 185::24968
    [Crossref] [Google Scholar]
  56. Guan Y, Li LK, Jegal H, Kim KT. 2023.. Effect of flame response asymmetries on the modal patterns and collective states of a can-annular lean-premixed combustion system. . Proc. Combust. Inst. 39:(4):473139
    [Crossref] [Google Scholar]
  57. Guzmán-Iñigo J, Durán I, Morgans AS. 2021.. Scattering of entropy waves into sound by isolated aerofoils. . J. Fluid Mech. 923::A10
    [Crossref] [Google Scholar]
  58. Guzmán-Iñigo J, Morgans AS. 2024.. Designing the edges of holes (with bias flow) to maximise acoustic damping. . J. Sound Vib. 575::118224
    [Crossref] [Google Scholar]
  59. Guzmán-Iñigo J, Yang D, Gaudron R, Morgans AS. 2022.. On the scattering of entropy waves at sudden area expansions. . J. Sound Vib. 540::117261
    [Crossref] [Google Scholar]
  60. Guzmán-Iñigo J, Yang D, Johnson HG, Morgans AS. 2019.. Sensitivity of the acoustics of short circular holes with bias flow to inlet edge geometries. . AIAA J. 57:(11):483544
    [Crossref] [Google Scholar]
  61. Haeringer M, Fournier GJ, Meindl M, Polifke W. 2021.. A strategy to tune acoustic terminations of single-can test-rigs to mimic thermoacoustic behavior of a full engine. . J. Eng. Gas Turbines Power 143:(7):071029
    [Crossref] [Google Scholar]
  62. Han X, Li J, Morgans AS. 2015.. Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model. . Combust. Flame 162:(10):363247
    [Crossref] [Google Scholar]
  63. Han X, Morgans AS. 2015.. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver. . Combust. Flame 162:(5):177892
    [Crossref] [Google Scholar]
  64. Heilmann G, Sattelmayer T. 2022.. On the convective wave equation for the investigation of combustor stability using FEM-methods. . Int. J. Spray Combust. Dyn. 14:(1–2):5571
    [Crossref] [Google Scholar]
  65. Hoeijmakers M, Kornilov V, Arteaga IL, de Goey P, Nijmeijer H. 2014.. Intrinsic instability of flame–acoustic coupling. . Combust. Flame 161:(11):286067
    [Crossref] [Google Scholar]
  66. Howe M. 1979.. On the theory of unsteady high Reynolds number flow through a circular aperture. . Proc. R. Soc. A 366:(1725):20523
    [Google Scholar]
  67. Ihme M. 2017.. Combustion and engine-core noise. . Annu. Rev. Fluid Mech. 49::277310
    [Crossref] [Google Scholar]
  68. Illingworth SJ, Morgans AS. 2010.. Adaptive feedback control of combustion instability in annular combustors. . Combust. Sci. Technol. 182:(2):14364
    [Crossref] [Google Scholar]
  69. Jing X, Sun X. 2000.. Effect of plate thickness on impedance of perforated plates with bias flow. . AIAA J. 38:(9):157378
    [Crossref] [Google Scholar]
  70. John T, Acharya VS, Bothien MR, Lieuwen TC. 2023.. Dynamics of coupled thermoacoustic modes: noise and frequency spacing effects. . Combust. Flame 252::112738
    [Crossref] [Google Scholar]
  71. Juniper MP, Sujith RI. 2018.. Sensitivity and nonlinearity of thermoacoustic oscillations. . Annu. Rev. Fluid Mech. 50::66189
    [Crossref] [Google Scholar]
  72. Kim D, Lee JG, Quay BD, Santavicca DA, Kim K, Srinivasan S. 2010.. Effect of flame structure on the flame transfer function in a premixed gas turbine combustor. . J. Eng. Gas Turbines Power 132:(2):021502
    [Crossref] [Google Scholar]
  73. Kopitz J, Huber A, Sattelmayer T, Polifke W. 2005.. Thermoacoustic stability analysis of an annular combustion chamber with acoustic low order modeling and validation against experiment. . In Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Vol. 2: Turbo Expo 2005, pp. 58393. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  74. Kumar AD, Massey JC, Stöhr M, Meier W, Swaminathan N. 2023.. Period-2 thermoacoustics in a swirl-stabilised partially premixed flame computed using large eddy simulation. . Flow Turbul. Combust. 111:(3):9951028
    [Crossref] [Google Scholar]
  75. Laera D, Schuller T, Prieur K, Durox D, Camporeale SM, Candel S. 2017a.. Flame describing function analysis of spinning and standing modes in an annular combustor and comparison with experiments. . Combust. Flame 184::13652
    [Crossref] [Google Scholar]
  76. Laera D, Yang D, Li J, Morgans AS. 2017b.. A novel acoustic network model to study the influence of mean flow and axial temperature distribution on spinning limit cycles in annular combustors. Paper presented at 23rd AIAA/CEAS Aeroacoustics Conference , Denver, CO:, AIAA Pap. 2017-3191
    [Google Scholar]
  77. Lahiri C, Bake F. 2017.. A review of bias flow liners for acoustic damping in gas turbine combustors. . J. Sound Vib. 400::564605
    [Crossref] [Google Scholar]
  78. Lee SH, Ih JG, Peat KS. 2007.. A model of acoustic impedance of perforated plates with bias flow considering the interaction effect. . J. Sound Vib. 303:(3–5):74152
    [Crossref] [Google Scholar]
  79. Lepers J, Krebs W, Prade B, Flohr P, Pollarolo G, Ferrante A. 2005.. Investigation of thermoacoustic stability limits of an annular gas turbine combustor test-rig with and without Helmholtz-resonators. . In Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Vol. 2: Turbo Expo 2005, pp. 17789. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  80. Leyko M, Duran I, Moreau S, Nicoud F, Poinsot T. 2014.. Simulation and modelling of the waves transmission and generation in a stator blade row in a combustion-noise framework. . J. Sound Vib. 333:(23):6090106
    [Crossref] [Google Scholar]
  81. Leyko M, Nicoud F, Poinsot T. 2009.. Comparison of direct and indirect combustion noise mechanisms in a model combustor. . AIAA J. 47:(11):270916
    [Crossref] [Google Scholar]
  82. Li C, Yang D, Li S, Zhu M. 2019.. An analytical study of the effect of flame response to simultaneous axial and transverse perturbations on azimuthal thermoacoustic modes in annular combustors. . Proc. Combust. Inst. 37:(4):527987
    [Crossref] [Google Scholar]
  83. Li J, Morgans AS. 2015.. Time domain simulations of nonlinear thermoacoustic behaviour in a simple combustor using a wave-based approach. . J. Sound Vib. 346::34560
    [Crossref] [Google Scholar]
  84. Li J, Morgans AS. 2016.. Feedback control of combustion instabilities from within limit cycle oscillations using H loop-shaping and the ν-gap metric. . Proc. R. Soc. A 472:(2191):20150821
    [Crossref] [Google Scholar]
  85. Li J, Morgans AS. 2017.. The one-dimensional acoustic field in a duct with arbitrary mean axial temperature gradient and mean flow. . J. Sound Vib. 400::24869
    [Crossref] [Google Scholar]
  86. Li J, Wang D, Morgans AS, Yang L. 2021.. Analytical solutions of acoustic field in annular combustion chambers with non-uniform cross-sectional surface area and mean flow. . J. Sound Vib. 506::116175
    [Crossref] [Google Scholar]
  87. Li J, Xia Y, Morgans AS, Han X. 2017.. Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame. . Combust. Flame 185::2843
    [Crossref] [Google Scholar]
  88. Li J, Yang D, Morgans AS. 2018.. The effect of an axial mean temperature gradient on communication between one-dimensional acoustic and entropy waves. . Int. J. Spray Combust. Dyn. 10:(2):13153
    [Crossref] [Google Scholar]
  89. Lieuwen T. 2003.. Modeling premixed combustion-acoustic wave interactions: a review. . J. Propuls. Power 19::76581
    [Crossref] [Google Scholar]
  90. Lim Z, Li J, Morgans AS. 2021.. The effect of hydrogen enrichment on the forced response of CH4/H2/Air laminar flames. . Int. J. Hydrogen Energy 46:(46):2394353
    [Crossref] [Google Scholar]
  91. Magri L, O'Brien J, Ihme M. 2016.. Compositional inhomogeneities as a source of indirect combustion noise. . J. Fluid Mech. 799::R4
    [Crossref] [Google Scholar]
  92. Marble FE, Candel SM. 1977.. Acoustic disturbance from gas non-uniformities convected through a nozzle. . J. Sound Vib. 55::22543
    [Crossref] [Google Scholar]
  93. Mensah GA, Campa G, Moeck JP. 2016.. Efficient computation of thermoacoustic modes in industrial annular combustion chambers based on Bloch-wave theory. . J. Eng. Gas Turbines Power 138:(8):081502
    [Crossref] [Google Scholar]
  94. Miniero L, Mensah GA, Bourquard C, Noiray N. 2023.. Failure of thermoacoustic instability control due to periodic hot gas ingestion in Helmholtz dampers. . J. Sound Vib. 548::117544
    [Crossref] [Google Scholar]
  95. Mishra A, Bodony DJ. 2013.. Evaluation of actuator disk theory for predicting indirect combustion noise. . J. Sound Vib. 332:(4):82138
    [Crossref] [Google Scholar]
  96. Moeck JP, Durox D, Schuller T, Candel S. 2019.. Nonlinear thermoacoustic mode synchronization in annular combustors. . Proc. Combust. Inst. 37:(4):534350
    [Crossref] [Google Scholar]
  97. Moers E, Tonon D, Hirschberg A. 2017.. Strouhal number dependency of the aero-acoustic response of wall perforations under combined grazing-bias flow. . J. Sound Vib. 389::292308
    [Crossref] [Google Scholar]
  98. Mongia HC, Held T, Hsiao G, Pandalai R. 2003.. Challenges and progress in controlling dynamics in gas turbine combustors. . J. Propul. Power 19:(5):82229
    [Crossref] [Google Scholar]
  99. Moon K, Jegal H, Gu J, Kim KT. 2019.. Combustion-acoustic interactions through cross-talk area between adjacent model gas turbine combustors. . Combust. Flame 202::40516
    [Crossref] [Google Scholar]
  100. Moon K, Yoon C, Kim KT. 2021.. Influence of rotational asymmetry on thermoacoustic instabilities in a can-annular lean-premixed combustor. . Combust. Flame 223::295306
    [Crossref] [Google Scholar]
  101. Morgans AS, Duran I. 2016.. Entropy noise: a review of theory, progress and challenges. . Int. J. Spray Combust. 8:(4):28598
    [Crossref] [Google Scholar]
  102. Morgans AS, Stow SR. 2007.. Model-based control of combustion instabilities in annular combustors. . Combust. Flame 150:(4):38099
    [Crossref] [Google Scholar]
  103. Nakaya S, Omi K, Okamoto T, Ikeda Y, Zhao C, et al. 2021.. Instability and mode transition analysis of a hydrogen-rich combustion in a model afterburner. . Proc. Combust. Inst. 38:(4):593342
    [Crossref] [Google Scholar]
  104. Ni F, Miguel-Brebion M, Nicoud F, Poinsot T. 2017.. Accounting for acoustic damping in a Helmholtz solver. . AIAA J. 55:(4):120520
    [Crossref] [Google Scholar]
  105. Ni F, Nicoud F, Méry Y, Staffelbach G. 2018.. Including flow–acoustic interactions in the Helmholtz computations of industrial combustors. . AIAA J. 56:(12):481529
    [Crossref] [Google Scholar]
  106. Nicoud F, Benoit L, Sensiau C, Poinsot T. 2007.. Acoustic modes in combustors with complex impedances and multidimensional active flames. . AIAA J. 45:(2):42641
    [Crossref] [Google Scholar]
  107. Noiray N, Bothien MR, Schuermans B. 2011.. Investigation of azimuthal staging concepts in annular gas turbines. . Combust. Theory Model. 15:(5):585606
    [Crossref] [Google Scholar]
  108. Noiray N, Durox D, Schuller T, Candel S. 2008.. A unified framework for nonlinear combustion instability analysis based on the flame describing function. . J. Fluid Mech. 615::13967
    [Crossref] [Google Scholar]
  109. Nygård HT, Ghirardo G, Worth NA. 2021.. Azimuthal flame response and symmetry breaking in a forced annular combustor. . Combust. Flame 233::111565
    [Crossref] [Google Scholar]
  110. Oefelein JC, Yang V. 1993.. Comprehensive review of liquid-propellant combustion instabilities in F-1 engines. . J. Propul. Power 9:(5):65777
    [Crossref] [Google Scholar]
  111. Orchini A. 2022.. An effective impedance for modelling the aeroacoustic coupling of ducts connected via apertures. . J. Sound Vib. 520::116622
    [Crossref] [Google Scholar]
  112. Orchini A, Mensah GA, Moeck JP. 2019.. Effects of nonlinear modal interactions on the thermoacoustic stability of annular combustors. . J. Eng. Gas Turbines Power 141:(2):021002
    [Crossref] [Google Scholar]
  113. Palies P, Durox D, Schuller T, Candel S. 2011.. Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames. . Combust. Flame 158:(10):198091
    [Crossref] [Google Scholar]
  114. Paschereit CO, Schuermans B, Polifke W, Mattson O. 2002.. Measurement of transfer matrices and source terms of premixed flames. . J. Eng. Gas Turbines Power 124:(2):23947
    [Crossref] [Google Scholar]
  115. Poinsot T. 2017.. Prediction and control of combustion instabilities in real engines. . Proc. Combust. Inst. 36:(1):128
    [Crossref] [Google Scholar]
  116. Polifke W. 2020.. Modeling and analysis of premixed flame dynamics by means of distributed time delays. . Prog. Energy Combust. Sci. 79::100845
    [Crossref] [Google Scholar]
  117. Prieur K, Durox D, Schuller T, Candel S. 2017.. A hysteresis phenomenon leading to spinning or standing azimuthal instabilities in an annular combustor. . Combust. Flame 175::28391
    [Crossref] [Google Scholar]
  118. Richards GA, Straub DL, Robey EH. 2005.. Passive control of combustion instabilities in stationary gas turbines. . In Combustion Instabilities in Gas Turbine Engines, ed. TC Lieuwen, V Yang , pp. 53379. Reston, VA:: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  119. Rogers DE, Marble FE. 1956.. A mechanism for high-frequency oscillation in ramjet combustors and afterburners. . J. Jet Propul. 26:(6):45662
    [Crossref] [Google Scholar]
  120. Rolland E, De Domenico F, Hochgreb S. 2017.. Theory and application of reverberated direct and indirect noise. . J. Fluid Mech. 819::43564
    [Crossref] [Google Scholar]
  121. Ronneberger D. 1987.. Theoretische und experimentelle Untersuchung der Schallausbreitung durch Querschnittssprünge und Lochplatten in Strömungskanälen. Tech. Rep., DFG-Abschlussbericht , Drittes Phys. Inst. Univ. Göttingen, Göttingen, Ger.:
    [Google Scholar]
  122. Schleicher RM, Howe MS. 2013.. On the interaction of sound with an annular aperture in a mean flow duct. . J. Sound Vib. 332:(21):5594605
    [Crossref] [Google Scholar]
  123. Schuermans B, Bellucci V, Paschereit CO. 2003.. Thermoacoustic modeling and control of multi burner combustion systems. . In Proceedings of the ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference, Vol. 2: Turbo Expo 2003, pp. 50919. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  124. Schuller T, Durox D, Palies P, Candel S. 2012.. Acoustic decoupling of longitudinal modes in generic combustion systems. . Combust. Flame 159:(5):192131
    [Crossref] [Google Scholar]
  125. Schulz O, Doll U, Ebi D, Droujko J, Bourquard C, Noiray N. 2019.. Thermoacoustic instability in a sequential combustor: large eddy simulation and experiments. . Proc. Combust. Inst. 37:(4):532532
    [Crossref] [Google Scholar]
  126. Schwing J, Sattelmayer T, Noiray N. 2011.. Interaction of vortex shedding and transverse high-frequency pressure oscillations in a tubular combustion chamber. . In Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vol. 2: Combustion, Fuels and Emissions, Parts A and B, pp. 25968. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  127. Silva CF. 2023.. Intrinsic thermoacoustic instabilities. . Prog. Energy Combust. Sci. 95::101065
    [Crossref] [Google Scholar]
  128. Silva CF, Nicoud F, Schuller T, Durox D, Candel S. 2013.. Combining a Helmholtz solver with the flame describing function to assess combustion instability in a premixed swirled combustor. . Combust. Flame 160:(9):174354
    [Crossref] [Google Scholar]
  129. Staffelbach G, Gicquel L, Boudier G, Poinsot T. 2009.. Large eddy simulation of self excited azimuthal modes in annular combustors. . Proc. Combust. Inst. 32:(2):290916
    [Crossref] [Google Scholar]
  130. Stopper U, Meier W, Sadanandan R, Stöhr M, Aigner M, Bulat G. 2013.. Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape. . Combust. Flame 160:(10):210318
    [Crossref] [Google Scholar]
  131. Stow SR, Dowling AP. 2001.. Thermoacoustic oscillations in an annular combustor. . In Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air, Vol. 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations, V002T02A004 . New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  132. Stow SR, Dowling AP. 2003.. Modelling of circumferential modal coupling due to Helmholtz resonators. . In Proceedings of the ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference, Vol. 2: Turbo Expo 2003, pp. 12937. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  133. Stow SR, Dowling AP. 2004.. Low-order modelling of thermoacoustic limit cycles. . In Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vol. 1: Turbo Expo 2004, pp. 77586. New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  134. Stow SR, Dowling AP. 2009.. A time-domain network model for nonlinear thermoacoustic oscillations. . J. Eng. Gas Turbines Power 131:(3):031502
    [Crossref] [Google Scholar]
  135. Su J, Garmory A, Carrotte J. 2019.. On the acoustic response of a generic gas turbine fuel injector passage. . J. Sound Vib. 446::34373
    [Crossref] [Google Scholar]
  136. Su J, Rupp J, Garmory A, Carrotte JF. 2015.. Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices. . J. Sound Vib. 352::17491
    [Crossref] [Google Scholar]
  137. Su J, Yang D, Morgans AS. 2021.. Modelling of sound-vortex interaction for the flow through an annular aperture. . J. Sound Vib. 509::116250
    [Crossref] [Google Scholar]
  138. Sun X, Jing X, Zhang H, Shi Y. 2002.. Effect of grazing–bias flow interaction on acoustic impedance of perforated plates. . J. Sound Vib. 254:(3):55773
    [Crossref] [Google Scholar]
  139. Urbano A, Selle L, Staffelbach G, Cuenot B, Schmitt T, et al. 2016.. Exploration of combustion instability triggering using large eddy simulation of a multiple injector liquid rocket engine. . Combust. Flame 169::12940
    [Crossref] [Google Scholar]
  140. von Saldern JG, Moeck JP, Orchini A. 2021a.. Nonlinear interaction between clustered unstable thermoacoustic modes in can-annular combustors. . Proc. Combust. Inst. 38:(4):614553
    [Crossref] [Google Scholar]
  141. von Saldern JG, Orchini A, Moeck JP. 2021b.. Analysis of thermoacoustic modes in can-annular combustors using effective Bloch-type boundary conditions. . J. Eng. Gas Turbines Power 143:(7):071019
    [Crossref] [Google Scholar]
  142. Wolf P, Staffelbach G, Gicquel LY, Müller JD, Poinsot T. 2012.. Acoustic and large eddy simulation studies of azimuthal modes in annular combustion chambers. . Combust. Flame 159:(11):3398413
    [Crossref] [Google Scholar]
  143. Worth NA, Dawson JR. 2013.. Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber. . Combust. Flame 160:(11):247689
    [Crossref] [Google Scholar]
  144. Xia Y. 2019.. Prediction of thermoacoustic instability in gas turbine combustors. PhD Thesis , Imperial Coll. London, London:
    [Google Scholar]
  145. Xia Y, Duran I, Morgans AS, Han X. 2018.. Dispersion of entropy perturbations transporting through an industrial gas turbine combustor. . Flow Turbul. Combust. 100::481502
    [Crossref] [Google Scholar]
  146. Xia Y, Laera D, Jones WP, Morgans AS. 2019.. Numerical prediction of the flame describing function and thermoacoustic limit cycle for a pressurised gas turbine combustor. . Combust. Sci. Technol. 191:(5–6):9791002
    [Crossref] [Google Scholar]
  147. Xiong Y, Droujko J, Schulz O, Noiray N. 2021.. Investigation of thermoacoustic instability in sequential combustor during first stage lean blow-off. . Proc. Combust. Inst. 38:(4):616572
    [Crossref] [Google Scholar]
  148. Yang D, Guzmán-Iñigo J, Morgans AS. 2020.. Sound generation by entropy perturbations passing through a sudden flow expansion. . J. Fluid Mech. 905::R2
    [Crossref] [Google Scholar]
  149. Yang D, Guzmán-Iñigo J, Morgans AS. 2022.. Sound generated by axisymmetric non-plane entropy waves passing through flow contractions. . Int. J. Aeroacoust. 21:(5–7):52136
    [Crossref] [Google Scholar]
  150. Yang D, Laera D, Morgans AS. 2019a.. A systematic study of nonlinear coupling of thermoacoustic modes in annular combustors. . J. Sound Vib. 456::13761
    [Crossref] [Google Scholar]
  151. Yang D, Morgans AS. 2016.. A semi-analytical model for the acoustic impedance of finite length circular holes with mean flow. . J. Sound Vib. 384::294311
    [Crossref] [Google Scholar]
  152. Yang D, Morgans AS. 2017a.. Acoustic models for cooled Helmholtz resonators. . AIAA J. 55:(9):312027
    [Crossref] [Google Scholar]
  153. Yang D, Morgans AS. 2017b.. The acoustics of short circular holes opening to confined and unconfined spaces. . J. Sound Vib. 393::4161
    [Crossref] [Google Scholar]
  154. Yang D, Sogaro FM, Morgans AS, Schmid PJ. 2019b.. Optimising the acoustic damping of multiple Helmholtz resonators attached to a thin annular duct. . J. Sound Vib. 444::6984
    [Crossref] [Google Scholar]
  155. Yeddula SR, Guzmán-Iñigo J, Morgans AS. 2022.. A solution for the quasi-one-dimensional linearised Euler equations with heat transfer. . J. Fluid Mech. 936::R3
    [Crossref] [Google Scholar]
  156. Yeddula SR, Morgans AS. 2021.. A semi-analytical solution for acoustic wave propagation in varying area ducts with mean flow. . J. Sound Vib. 492::115770
    [Crossref] [Google Scholar]
  157. Zahn M, Betz M, Schulze M, Hirsch C, Sattelmayer T. 2017.. Predicting the influence of damping devices on the stability margin of an annular combustor. . In Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Vol. 4A: Combustion, Fuels and Emissions, V04AT04A081 . New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  158. Zhang G, Wang X, Li L, Sun X. 2020.. Effects of perforated liners on controlling combustion instabilities in annular combustors. . AIAA J. 58:(7):310014
    [Crossref] [Google Scholar]
  159. Zhao D, Li X. 2015.. A review of acoustic dampers applied to combustion chambers in aerospace industry. . Prog. Aerosp. Sci. 74::11430
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-fluid-121021-032828
Loading
/content/journals/10.1146/annurev-fluid-121021-032828
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error