1932

Abstract

The merging of two fluid drops is one of the fundamental topological transitions occurring in free surface flow. Its description has many applications, for example, in the chemical industry (emulsions, sprays, etc.), in natural flows driving our climate, and for the sintering of materials. After the reconnection of two drops, strongly localized surface tension forces drive a singular flow, characterized by a connecting liquid bridge that grows according to scaling laws. We review theory, experiment, and simulation of the coalescence of two spherical drops for different parameters and in the presence of an outer fluid. We then generalize to other geometries, such as drops spreading on a substrate and in Hele–Shaw flow, and we discuss other types of mass transport, apart from viscous flow. Our focus is on times immediately after reconnection and on the limit of initially undeformed drops at rest relative to one another.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121021-044919
2025-01-22
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/fluid/57/1/annurev-fluid-121021-044919.html?itemId=/content/journals/10.1146/annurev-fluid-121021-044919&mimeType=html&fmt=ahah

Literature Cited

  1. Aarts DGAL, Lekkerkerker HNW, Guo H, Wegdam GH, Bonn D. 2005.. Hydrodynamics of droplet coalescence. . Phys. Rev. Lett. 95::164503
    [Crossref] [Google Scholar]
  2. Anthony CR, Harris MT, Basaran OA. 2020.. Initial regime of drop coalescence. . Phys. Rev. Fluids 5::033608
    [Crossref] [Google Scholar]
  3. Anthony CR, Kamat PM, Thete SS, Munro JP, Lister JR, et al. 2017.. Scaling laws and dynamics of bubble coalescence. . Phys. Rev. Fluids 2::083601
    [Crossref] [Google Scholar]
  4. Anthony CR, Wee H, Garg V, Thete SS, Kamat PM, et al. 2023.. Sharp interface methods for simulation and analysis of free surface flows with singularities: breakup and coalescence. . Annu. Rev. Fluid Mech. 55::70747
    [Crossref] [Google Scholar]
  5. Aryafar H, Kavehpour HP. 2008.. Hydrodynamic instabilities of viscous coalescing droplets. . Phys. Rev. E 78::037302
    [Crossref] [Google Scholar]
  6. Ashgriz N, Poo JY. 1990.. Coalescence and separation in binary collisions of liquid drops. . J. Fluid Mech. 221::183204
    [Crossref] [Google Scholar]
  7. Baroudi L, Kawaji M, Lee T. 2014.. Effects of initial conditions on the simulation of inertial coalescence of two drops. . Comput. Math. Appl. 67::28289
    [Crossref] [Google Scholar]
  8. Baroudi L, Nagel SR, Lee T. 2016.. Comment on viscous coalescence of droplets: a lattice Boltzmann study. . Phys. Fluids 28::079101
    [Crossref] [Google Scholar]
  9. Bartlett CT, Généro GA, Bird JC. 2015.. Coalescence and break-up of nearly inviscid conical droplets. . J. Fluid Mech. 763::36985
    [Crossref] [Google Scholar]
  10. Batchelor GK. 1967.. An Introduction to Fluid Dynamics. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  11. Beaty E, Lister JR. 2022.. Nonuniversal self-similarity for jump-to-contact dynamics between viscous drops under van der Waals attraction. . Phys. Rev. Lett. 129::064501
    [Crossref] [Google Scholar]
  12. Beaty E, Lister JR. 2023.. Inertial and viscous dynamics of jump-to-contact between fluid drops under van der Waals attraction. . J. Fluid Mech. 957::A25
    [Crossref] [Google Scholar]
  13. Biance AL, Clanet C, Quéré D. 2004.. First steps of the spreading of a liquid droplet. . Phys. Rev. E 69::016301
    [Crossref] [Google Scholar]
  14. Billingham J, King AC. 2005.. Surface-tension-driven flow outside a slender wedge with an application to the inviscid coalescence of drops. . J. Fluid Mech. 533::193221
    [Crossref] [Google Scholar]
  15. Bird JC, Ristenpart WD, Belmonte A, Stone HA. 2009.. Critical angle for electrically driven coalescence of two conical droplets. . Phys. Rev. Lett. 103:(16):164502
    [Crossref] [Google Scholar]
  16. Boreyko JB, Chen CH. 2009.. Self-propelled dropwise condensate on superhydrophobic surfaces. . Phys. Rev. Lett. 103:(18):184501
    [Crossref] [Google Scholar]
  17. Bouillant A, Dekker PJ, Hack MA, Snoeijer JH. 2022.. Rapid viscoelastic spreading. . Phys. Rev. Fluids 7:(12):123604
    [Crossref] [Google Scholar]
  18. Burton JC, Taborek P. 2007.. Role of dimensionality and axisymmetry in fluid pinch-off and coalescence. . Phys. Rev. Lett. 98:(22):224502
    [Crossref] [Google Scholar]
  19. Caragine CM, Haley SC, Zidovska A. 2018.. Surface fluctuations and coalescence of nucleolar droplets in the human cell nucleus. . Phys. Rev. Lett. 121::148101
    [Crossref] [Google Scholar]
  20. Carlson A, Do-Quang M, Amberg G. 2011.. Dissipation in rapid dynamic wetting. . J. Fluid Mech. 682::21340
    [Crossref] [Google Scholar]
  21. Case SC, Nagel SR. 2008.. Coalescence in low-viscosity liquids. . Phys. Rev. Lett. 100::084503
    [Crossref] [Google Scholar]
  22. Chan DYC, Klaseboer E, Manic R. 2011.. Film drainage and coalescence between deformable drops and bubbles. . Soft Matter 7::223564
    [Crossref] [Google Scholar]
  23. Charles GE, Mason SG. 1960a.. The coalescence of liquid drops with flat liquid/liquid interfaces. . J. Colloid Sci. 15::23667
    [Crossref] [Google Scholar]
  24. Charles GE, Mason SG. 1960b.. The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. . J. Colloid Sci. 15::10522
    [Crossref] [Google Scholar]
  25. Chen H, Pan X, Nie Q, Ma Q, Fang H, Yin Z. 2022.. Probing the coalescence of non-Newtonian droplets on a substrate. . Phys. Fluids 34:(3):032109
    [Crossref] [Google Scholar]
  26. Chesters AK. 1991.. The modelling of coalescence processes in fluid-liquid dispersions: a review of current understanding. . Chem. Engin. Res. Des. 69::25970
    [Google Scholar]
  27. Chireux V, Protat M, Risso F, Ondarcuhu T, Tordjeman P. 2018.. Jump-to-contact instability: the nanoscale mechanism of droplet coalescence in air. . Phys. Rev. Fluids 3::102001(R)
    [Crossref] [Google Scholar]
  28. Chireux V, Tordjeman P, Risso F. 2021.. Bridge expansion after coalescence of two droplets in air: inertial regime. . Phys. Fluids 33::06112
    [Crossref] [Google Scholar]
  29. Courbin L, Bird JC, Reyssat M, Stone HA. 2009.. Dynamics of wetting: from inertial spreading to viscous imbibition. . J. Phys. Condens. Matter 21:(46):464127
    [Crossref] [Google Scholar]
  30. Culick FEC. 1960.. Comments on a ruptured soap film. . J. Appl. Phys. 31::112829
    [Crossref] [Google Scholar]
  31. Dallaston MC, Fontelos MA, Herrada MA, Lopez-Herrera JM, Eggers J. 2021.. Regular and complex singularities of the generalized thin film equation in two dimensions. . J. Fluid Mech. 917::A20
    [Crossref] [Google Scholar]
  32. Davis R, Schonberg J, Rallison J. 1989.. The lubrication force between two viscous drops. . Phys. Fluids 1::7781
    [Crossref] [Google Scholar]
  33. de Gennes P-G, Brochart-Wyart F, Quéré D. 2004.. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. New York:: Springer
    [Google Scholar]
  34. de la Hoz F, Fontelos MA, Vega L. 2008.. The effect of surface tension on the Moore singularity of vortex sheet dynamics. . J. Nonlinear Sci. 18::46384
    [Crossref] [Google Scholar]
  35. de la Mora JF. 2007.. The fluid dynamics of Taylor cones. . Annu Rev. Fluid Mech. 39::21743
    [Crossref] [Google Scholar]
  36. Deblais A, Xie K, Lewin-Jones P, Aarts D, Herrada MA, et al. 2024.. Early stages of drop coalescence. . arXiv:2402.00500 [physics.flu-dyn]
  37. Dekker PJ, Hack MA, Tewes W, Datt C, Bouillant A, Snoeijer JH. 2022.. When elasticity affects drop coalescence. . Phys. Rev. Lett. 128::028004
    [Crossref] [Google Scholar]
  38. Delabre U, Cazabat AM. 2010.. Coalescence driven by line tension in thin nematic films. . Phys. Rev. Lett. 104:(22):227801
    [Crossref] [Google Scholar]
  39. Duchemin L, Eggers J, Josserand C. 2003.. Inviscid coalescence of drops. . J. Fluid Mech. 487::16778
    [Crossref] [Google Scholar]
  40. Eddi A, Winkels KG, Snoeijer JH. 2013.. Influence of droplet geometry on the coalescence of low viscosity drops. . Phys. Rev. Lett. 111:(14):144502
    [Crossref] [Google Scholar]
  41. Eggers J. 1993.. Universal pinching of 3D axisymmetric free-surface flow. . Phys. Rev. Lett. 71::345860
    [Crossref] [Google Scholar]
  42. Eggers J. 1997.. Nonlinear dynamics and breakup of free-surface flows. . Rev. Mod. Phys. 69::865929
    [Crossref] [Google Scholar]
  43. Eggers J. 1998.. Coalescence of spheres by surface diffusion. . Phys. Rev. Lett. 80::263437
    [Crossref] [Google Scholar]
  44. Eggers J, Fontelos MA. 2015.. Singularities: Formation, Structure, and Propagation. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  45. Eggers J, Fontelos MA. 2019.. Selection of singular solutions in non-local transport equations. . Nonlinearity 33::325
    [Crossref] [Google Scholar]
  46. Eggers J, Lister JR, Stone HA. 1999.. Coalescence of liquid drops. . J. Fluid Mech. 401::293310
    [Crossref] [Google Scholar]
  47. Eggers J, Villermaux E. 2008.. Physics of liquid jets. . Rep. Progr. Phys. 71::036601
    [Crossref] [Google Scholar]
  48. Fezzaa K, Wang Y. 2008.. Ultrafast x-ray phase-contrast imaging of the initial coalescence phase of two water droplets. . Phys. Rev. Lett. 100::104501
    [Crossref] [Google Scholar]
  49. Flenner E, Janosi L, Barz B, Neagu A, Forgacs G, Kosztin I. 2012.. Kinetic Monte Carlo and cellular particle dynamics simulations of multicellular systems. . Phys. Rev. E 85::031907
    [Crossref] [Google Scholar]
  50. Frenkel J. 1945.. Viscous flow of crystalline bodies under the action of surface tension. . J. Phys. 9::38591
    [Google Scholar]
  51. Gillow K. 1998.. Codimension-two free boundary problems. PhD Thesis , Univ. Oxford, Oxford, UK:
    [Google Scholar]
  52. Gradshteyn IS, Ryzhik IM. 2014.. Table of Integrals Series and Products. New York:: Academic
    [Google Scholar]
  53. Grosser S, Lippoldt J, Oswald L, Merkel M, Sussman DM, et al. 2021.. Cell and nucleus shape as an indicator of tissue fluidity in carcinoma. . Phys. Rev. X 11::011033
    [Google Scholar]
  54. Hack MA, Tewes W, Xie Q, Datt C, Harth K, et al. 2020.. Self-similar liquid lens coalescence. . Phys. Rev. Lett. 124:(19):194502
    [Crossref] [Google Scholar]
  55. Hernandez-Sanchez JF, Lubbers LA, Eddi A, Snoeijer JH. 2012.. Symmetric and asymmetric coalescence of drops on a substrate. . Phys. Rev. Lett. 109::104501
    [Crossref] [Google Scholar]
  56. Herring C. 1950.. Effect of change of scale on sintering phenomena. . J. Appl. Phys. 21::3013
    [Crossref] [Google Scholar]
  57. Hopper RW. 1990.. Plane Stokes flow driven by capillarity on a free surface. . J. Fluid Mech. 213::34975
    [Crossref] [Google Scholar]
  58. Hopper RW. 1991.. Plane Stokes flow driven by capillarity on a free surface. Part 2. Further developments. . J. Fluid Mech. 230::35564
    [Crossref] [Google Scholar]
  59. Howison SD, Morgan JD, Ockendon JR. 1997.. A class of codimension-two free boundary problems. . SIAM Rev. 39::22153
    [Crossref] [Google Scholar]
  60. Ishiguro R, Graner F, Rolley E, Balibar S. 2004.. Coalescence of crystalline drops. . Phys. Rev. Lett. 93::235301
    [Crossref] [Google Scholar]
  61. Ishiguro R, Graner F, Rolley E, Balibar S, Eggers J. 2007.. Dripping of a crystal. . Phys. Rev. E 75::041606
    [Crossref] [Google Scholar]
  62. Kamat PM, Anthony CR, Basaran OA. 2020.. Bubble coalescence in low-viscosity power-law fluids. . J. Fluid Mech. 902::A8
    [Crossref] [Google Scholar]
  63. Kamp J, Villwock J, Kraume M. 2017.. Drop coalescence in technical liquid/liquid applications: a review on experimental techniques and modeling approaches. . Rev. Chem. Eng. 33::147
    [Crossref] [Google Scholar]
  64. Kaneelil PR, Pahlavan AA, Xue N, Stone HA. 2022.. Three-dimensional self-similarity of coalescing viscous drops in the thin-film regime. . Phys. Rev. Lett. 129:(14):144501
    [Crossref] [Google Scholar]
  65. Kavehpour HP. 2015.. Coalescence of drops. . Annu. Rev. Fluid Mech. 47::24568
    [Crossref] [Google Scholar]
  66. Keij DL, Winkels KG, Castelijns H, Riepen M, Snoeijer JH. 2013.. Bubble formation during the collision of a sessile drop with a meniscus. . Phys. Fluids 25:(8):082005
    [Crossref] [Google Scholar]
  67. Keller JB. 1983.. Breaking of liquid films and threads. . Phys. Fluids 26::345153
    [Crossref] [Google Scholar]
  68. Keller JB, Milewski PA, Vanden-Broeck JM. 2000.. Merging and wetting driven by surface tension. . Eur. J. Mech. B Fluids 19:(4):491502
    [Crossref] [Google Scholar]
  69. Kern VR, Sæter T, Carlson A. 2022.. Viscoplastic sessile drop coalescence. . Phys. Rev. Fluids 7:(8):L081601
    [Crossref] [Google Scholar]
  70. Kingery WD. 1960.. Regelation, surface diffusion, and ice sintering. . J. Appl. Phys. 31::83338
    [Crossref] [Google Scholar]
  71. Klopp C, Eremin A. 2020.. On droplet coalescence in quasi-two-dimensional fluids. . Langmuir 36:(35):1061521
    [Crossref] [Google Scholar]
  72. Klopp C, Trittel T, Harth K, Stannarius R. 2024.. Coalescence of biphasic droplets embedded in free standing smectic A films. . Soft Matter 20:(5):103646
    [Crossref] [Google Scholar]
  73. Klopp C, Trittel T, Stannarius R. 2020.. Self similarity of liquid droplet coalescence in a quasi-2D free-standing liquid-crystal film. . Soft Matter 16:(19):460714
    [Crossref] [Google Scholar]
  74. Kuczynski GC. 1949.. Self-diffusion in sintering of metallic particles. . JOM 185::16978
    [Crossref] [Google Scholar]
  75. Lamstaes C, Eggers J. 2013.. Blunting of conical tips by surface diffusion. . Phys. Rev. E 87::062408
    [Crossref] [Google Scholar]
  76. Li J. 2016.. Macroscopic model for head-on binary droplet collisions in a gaseous medium. . Phys. Rev. Lett. 117::214502
    [Crossref] [Google Scholar]
  77. Liao Y, Lucas D. 2010.. A literature review on mechanisms and models for the coalescence process of fluid particles. . Chem. Eng. Sci. 65::285164
    [Crossref] [Google Scholar]
  78. Lohse D. 2022.. Fundamental fluid dynamics challenges in inkjet printing. . Annu. Rev. Fluid Mech. 54::34982
    [Crossref] [Google Scholar]
  79. Maris HJ. 2003.. Analysis of the early stage of coalescence of helium drops. . Phys. Rev. E 67::066309
    [Crossref] [Google Scholar]
  80. Menchaca-Rocha A, Martinez-Davalos A, Nunez R, Popinet S, Zaleski S. 2001.. Coalescence of liquid drops by surface tension. . Phys. Rev. E 63::046309
    [Crossref] [Google Scholar]
  81. Miksis MJ, Vanden-Broeck JM. 1999.. Self-similar dynamics of a viscous wedge of fluid. . Phys. Fluids 11:(11):322731
    [Crossref] [Google Scholar]
  82. Mizushima I, Sato T, Taniguchi S, Tsunashima Y. 2000.. Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure. . Appl. Phys. Lett. 77::329092
    [Crossref] [Google Scholar]
  83. Mullins WW. 1959.. Flattening of a nearly plane solid surface due to capillarity. . J. Appl. Phys. 30::7783
    [Crossref] [Google Scholar]
  84. Munro JP, Anthony CR, Basaran OA, Lister JR. 2015.. Thin-sheet flow between coalescing bubbles. . J. Fluid Mech. 773::R3
    [Crossref] [Google Scholar]
  85. Narhe RD, Beysens DA, Pomeau Y. 2008.. Dynamic drying in the early-stage coalescence of droplets sitting on a plate. . Europhys. Lett. 81::46002
    [Crossref] [Google Scholar]
  86. Nichols FA, Mullins WW. 1965.. Morphological changes of a surface of revolution due to capillarity-induced surface diffusion. . J. Appl. Phys. 36::182635
    [Crossref] [Google Scholar]
  87. Oguz HN, Prosperetti A. 1989.. Surface-tension effects in the contact of liquid surfaces. . J. Fluid Mech. 203::14971
    [Crossref] [Google Scholar]
  88. Oratis AT, Bertin V, Snoeijer JH. 2023.. Coalescence of bubbles in a viscoelastic liquid. . Phys. Rev. Fluids 8:(8):083603
    [Crossref] [Google Scholar]
  89. Paulsen JD. 2013.. Approach and coalescence of liquid drops in air. . Phys. Rev. E 88::063010
    [Crossref] [Google Scholar]
  90. Paulsen JD, Burton JC, Nagel SR. 2011.. Viscous to inertial crossover in liquid drop coalescence. . Phys. Rev. Lett. 106::114501
    [Crossref] [Google Scholar]
  91. Paulsen JD, Burton JC, Nagel SR, Appathurai S, Harris MT, Basaran OA. 2012.. The inexorable resistance of inertia determines the initial regime of drop coalescence. . PNAS 109::685761
    [Crossref] [Google Scholar]
  92. Paulsen JD, Carmigniani R, Kannan A, Burton JC, Nagel SR. 2014.. Coalescence of bubbles and drops in an outer fluid. . Nat. Commun. 5::3182
    [Crossref] [Google Scholar]
  93. Peregrine DH, Shoker G, Symon A. 1990.. The bifurcation of liquid bridges. . J. Fluid Mech. 212::2539
    [Crossref] [Google Scholar]
  94. Perumanath S, Borg MK, Chubynsky MV, Sprittles JE, Reese JM. 2019.. Droplet coalescence is initiated by thermal motion. . Phys. Rev. Lett. 122::104501
    [Crossref] [Google Scholar]
  95. Planchette C, Lorenceau E, Brenn G. 2012.. The onset of fragmentation in binary liquid drop collisions. . J. Fluid Mech. 702::525
    [Crossref] [Google Scholar]
  96. Pokluda O, Bellehumeur CT, Machopoulos J. 1997.. Modification of Frenkel's model for sintering. . AIChE J. 43::325356
    [Crossref] [Google Scholar]
  97. Popinet S. 2018.. Numerical models of surface tension. . Annu. Rev. Fluid Mech. 50::4975
    [Crossref] [Google Scholar]
  98. Pozrikidis C. 1992.. Boundary Integral and Singularity Methods for Linearized Flow. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  99. Quinn DB, Feng J, Stone HA. 2013.. Analytical model for the deformation of a fluid–fluid interface beneath an AFM probe. . Langmuir 29::142734
    [Crossref] [Google Scholar]
  100. Rahaman MN. 2010.. Kinetics and mechanisms of densification. . In Sintering of Advanced Materials, ed. ZZ Fang , pp. 3364. Cambridge, UK:: Woodhead
    [Google Scholar]
  101. Reynolds O. 1900 (1881).. On the floating of drops on the surface of water depending only on the purity of the surface. . In Papers on Mechanical and Physical Subjects, Vol. 1, pp. 41314. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  102. Richardson S. 1992.. Two-dimensional slow viscous flows with time-dependent free boundaries driven by surface tension. . Eur. J. Appl. Math. 3::193207
    [Crossref] [Google Scholar]
  103. Ristenpart WD, McCalla PM, Roy RV, Stone HA. 2006.. Coalescence of spreading droplets on a wettable substrate. . Phys. Rev. Lett. 97::064501
    [Crossref] [Google Scholar]
  104. Ryu S, Zhang H, Anuta UJ. 2023.. A review on the coalescence of confined drops with a focus on scaling laws for the growth of the liquid bridge. . Micromachines 14::2046
    [Crossref] [Google Scholar]
  105. Sæter T, Pedersen C, Snoeijer JH, Salez T, Carlson A. 2024.. Coalescence of elastic blisters filled with a viscous fluid. . Phys. Rev. Lett. 132:(7):074001
    [Crossref] [Google Scholar]
  106. Scheel T, Xie Q, Sega M, Harting J. 2023.. Viscous to inertial coalescence of liquid lenses: a lattice Boltzmann investigation. . Phys. Rev. Fluids 8:(7):074201
    [Crossref] [Google Scholar]
  107. Sprittles JE. 2024.. Gas microfilms in droplet dynamics: When do drops bounce?. Annu. Rev. Fluid Mech. 56::91118
    [Crossref] [Google Scholar]
  108. Sprittles JE, Shikhmurzaev YD. 2012.. Coalescence of liquid drops: different models versus experiment. . Phys. Fluids 24::122105
    [Crossref] [Google Scholar]
  109. Sprittles JE, Shikhmurzaev YD. 2014a.. Dynamics of liquid drops coalescing in the inertial regime. . Phys. Rev. E 89::063008
    [Crossref] [Google Scholar]
  110. Sprittles JE, Shikhmurzaev YD. 2014b.. A parametric study of the coalescence of liquid drops in a viscous gas. . J. Fluid Mech. 753::279306
    [Crossref] [Google Scholar]
  111. Stapelbroek BBJ, Jansen HP, Kooij ES, Snoeijer JH, Eddi A. 2014.. Universal spreading of water drops on complex surfaces. . Soft Matter 10:(15):264148
    [Crossref] [Google Scholar]
  112. Sui Y, Maglio M, Spelt PDM, Legendre D, Ding H. 2013.. Inertial coalescence of droplets on a partially wetting substrate. . Phys. Fluids 25:(10):101701
    [Crossref] [Google Scholar]
  113. Taylor GI. 1959.. The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. . Proc. R. Soc. Lond. 253::31321
    [Google Scholar]
  114. Thoroddsen S, Takehara K, Etoh T. 2005a.. The coalescence speed of a pendent and a sessile drop. . J. Fluid Mech. 527::85114
    [Crossref] [Google Scholar]
  115. Thoroddsen ST, Etoh EG, Takeara K. 2008.. High-speed imaging of drops and bubbles. . Annu. Rev. Fluid Mech. 40::25785
    [Crossref] [Google Scholar]
  116. Thoroddsen ST, Takehara K. 2000.. The coalescence cascade of a drop. . Phys. Fluids 12:(6):126567
    [Crossref] [Google Scholar]
  117. Thoroddsen ST, Takehara K, Etoh TG. 2005b.. The coalescence speed of a pendent and a sessile drop. . J. Fluid Mech. 527::85114
    [Crossref] [Google Scholar]
  118. Tryggvason G, Scardovelli R, Zaleski S. 2011.. Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  119. Varma SC, Dasgupta D, Kumar A. 2022.. Elasticity can affect droplet coalescence. . Phys. Fluids 34:(9):093112
    [Crossref] [Google Scholar]
  120. Varma SC, Saha A, Kumar A. 2021.. Coalescence of polymeric sessile drops on a partially wettable substrate. . Phys. Fluids 33:(12):123101
    [Crossref] [Google Scholar]
  121. Varma SC, Saha A, Mukherjee S, Bandopadhyay A, Kumar A, Chakraborty S. 2020.. Universality in coalescence of polymeric fluids. . Soft Matter 16:(48):1092127
    [Crossref] [Google Scholar]
  122. Verdier C. 2001.. The influence of the viscosity ratio on polymer droplet collision in quiescent blends. . Polymer 42::69997007
    [Crossref] [Google Scholar]
  123. Winkels KG, Weijs JH, Eddi A, Snoeijer JH. 2012.. Initial spreading of low-viscosity drops on partially wetting surfaces. . Phys. Rev. E 85:(5):055301
    [Crossref] [Google Scholar]
  124. Wu M, Cubaud T, Ho CH. 2004.. Scaling law in liquid drop coalescence driven by surface tension. . Phys. Fluids 16::L5154
    [Crossref] [Google Scholar]
  125. Xia X, He C, Zhang P. 2019.. Universality in the viscous-to-inertial coalescence of liquid droplets. . PNAS 116::2346772
    [Crossref] [Google Scholar]
  126. Yao W, Maris HJ, Pennington P, Seidel GM. 2005.. Coalescence of viscous liquid drops. . Phys. Rev. E 71::016309
    [Crossref] [Google Scholar]
  127. Yokota M, Okumura K. 2011.. Dimensional crossover in the coalescence dynamics of viscous drops confined in between two plates. . PNAS 108::639598
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-fluid-121021-044919
Loading
/content/journals/10.1146/annurev-fluid-121021-044919
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error