1932

Abstract

This article reviews state-of-the-art adaptive, multiresolution wavelet methodologies for modeling and simulation of turbulent flows with various examples. Different numerical methods for solving the Navier-Stokes equations in adaptive wavelet bases are described. We summarize coherent vortex extraction methodologies, which utilize the efficient wavelet decomposition of turbulent flows into space-scale contributions, and present a hierarchy of wavelet-based turbulence models. Perspectives for modeling and computing industrially relevant flows are also given.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-121108-145637
2011-09-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/fluid/42/1/annurev-fluid-121108-145637.html?itemId=/content/journals/10.1146/annurev-fluid-121108-145637&mimeType=html&fmt=ahah

Literature Cited

  1. Abry P. 1997. Ondelettes et Turbulences Paris: Diderot [Google Scholar]
  2. Alam J, Kevlahan NR, Vasilyev OV. 2006. Simultaneous space-time adaptive wavelet solution of nonlinear partial differential equations. J. Comp. Phys. 214:829–57 [Google Scholar]
  3. Albukrek C, Urban K, Rempfer D, Lumley J. 2002. Divergence-free wavelet analysis of turbulent flows. J. Sci. Comput. 17:49–66 [Google Scholar]
  4. Angot P, Bruneau CH, Fabrie P. 1999. A penalization method to take into account obstacles in viscous flows. Numer. Math. 81:497–520 [Google Scholar]
  5. Arquis E, Caltagirone JP. 1984. Sur les conditions hydrodynamiques au voisinage d'une interface milieu fluide—milieu poreux: application à la convection naturelle. C. R. Acad. Sci. Paris II 299:1–4 [Google Scholar]
  6. Azzalini A, Farge M, Schneider K. 2005. Nonlinear wavelet thresholding: a recursive method to determine the optimal denoising threshold. Appl. Comput. Harmon. Anal. 18:177–85 [Google Scholar]
  7. Baccou J, Liandrat J. 2006. Definition and analysis of a wavelet/fictitious domain solver for the 2D-heat equation on a general domain. Math. Models Methods Appl. Sci. 16:819–45 [Google Scholar]
  8. Bacry E, Mallat S, Papanicolaou G. 1992. A wavelet based space-time adaptive numerical method for partial differential equation. Math. Model. Num. Anal. 26:793–834 [Google Scholar]
  9. Basdevant C, Holschneider M, Perrier V. 1990. Traveling wavelets method. C. R. Acad. Sci. Ser. I Math. 310:647–52 [Google Scholar]
  10. Bergdorf M, Koumoutsakos P. 2006. A Lagrangian particle-wavelet method. Multiscale Model. Simul. 5:980–95 [Google Scholar]
  11. Berger MJ, Oliger J. 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53:484–512 [Google Scholar]
  12. Beylkin G, Coifman R, Rokhlin V. 1991. Fast wavelet transforms and numerical algorithms. 1. Commun. Pure Appl. Math. 44:141–83 [Google Scholar]
  13. Bittner K, Urban K. 2007. On interpolatory divergence-free wavelets. Math. Comput. 76:903–29 [Google Scholar]
  14. Boiron O, Chiavassa G, Donat R. 2009. A high-resolution penalization method for large Mach number flows in the presence of obstacles. Comput. Fluids 38:703–14 [Google Scholar]
  15. Bos WJT, Liechtenstein L, Schneider K. 2007. Small-scale intermittency in anisotropic turbulence. Phys. Rev. E 76:046310 [Google Scholar]
  16. Burger R, Kodakevicius A. 2007. Adaptive multiresolution WENO schemes for multi-species kinematic flow models. J. Comput. Phys. 224:1190–222 [Google Scholar]
  17. Cai W, Wang JZ. 1996. Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs. SIAM J. Numer. Anal. 33:937–70 [Google Scholar]
  18. Canuto C, Hussaini MY, Quarteroni A, Zang TA. 1987. Spectral Methods in Fluid Dynamics Springer Ser. Comput. Phys Berlin: Springer-Verlag [Google Scholar]
  19. Canuto C, Tabacco A, Urban K. 1999. The wavelet element method part I. Construction and analysis. Appl. Comput. Harmon. Anal. 6:1–52 [Google Scholar]
  20. Carbou G, Fabrie P. 2003. Boundary layer for a penalization method for viscous incompressible flow. Adv. Differ. Equ. 8:1453–80 [Google Scholar]
  21. Charton P, Perrier V. 1996. A pseudo-wavelet scheme for the two-dimensional Navier-Stokes equation. Comput. Appl. Math. 15:139–60 [Google Scholar]
  22. Chiavassa G, Donat R. 2001. Point value multiscale algorithms for 2D compressible flows. SIAM J. Sci. Comput. 23:805–23 [Google Scholar]
  23. Chiavassa G, Donat R, Müller S. 2003. Multiresolution-based adaptive schemes for hyperbolic conservation laws. Adaptive Mesh Refinement: Theory and Applications T Plewa, T Linde, V Weiss 137–59 41 Lect. Notes Comput. Sci. Eng. Berlin: Springer-Verlag [Google Scholar]
  24. Chiavassa G, Liandrat J. 1997. On the effective construction of compactly supported wavelets satisfying homogeneous boundary conditions on the interval. Appl. Comput. Harmon. Anal. 4:62–73 [Google Scholar]
  25. Cohen A. 2000. Wavelet Methods in Numerical Analysis. vol. 7 Handb. Numer. Anal Amsterdam: Elsevier [Google Scholar]
  26. Cohen A, Daubechies I. 1993. Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1:54–81 [Google Scholar]
  27. Cohen A, Kaber SM, Müller S, Postel M. 2003. Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72:183–225 [Google Scholar]
  28. Courant R, Friedrichs K, Lewy H. 1928. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100:32–74 [Google Scholar]
  29. Dahmen W. 1997. Wavelet and multiscale methods for operator equations. Acta Numer. 6:55–228 [Google Scholar]
  30. Dahmen W, Kunoth A. 1992. Multilevel preconditioning. Numer. Math. 63:315–44 [Google Scholar]
  31. Dahmen W, Kunoth A, Urban K. 1996. A wavelet Galerkin method for the Stokes equations. Computing 56:259–301 [Google Scholar]
  32. Dahmen W, Urban K, Vorloeper J. 2002. Adaptive wavelet methods: basic concepts and applications to the Stokes problem. Wavelet Analysis DX Zhou 39–80 Singapore: World Sci. [Google Scholar]
  33. Daubechies I. 1988. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41:909–96 [Google Scholar]
  34. Daubechies I. 1992. Ten Lectures on Wavelets CBMS-NSF Ser. Appl. Math. No. 61. Philadelphia: SIAM [Google Scholar]
  35. De Stefano G, Goldstein DE, Vasilyev OV. 2005. On the role of sub-grid scale coherent modes in large eddy simulation. J. Fluid Mech. 525:263–74 [Google Scholar]
  36. De Stefano G, Vasilyev OV, Goldstein DE. 2008. Localized dynamic kinetic energy-based models for stochastic coherent adaptive large eddy simulation. Phys. Fluids 20:045102 [Google Scholar]
  37. Deriaz E, Domingues MO, Perrier V, Schneider K, Farge M. 2007. Divergence-free wavelets for coherent vortex extraction in 3D homogeneous isotropic turbulence. Esaim Proc. 16:146–63 [Google Scholar]
  38. Deriaz E, Perrier V. 2006. Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows. J. Turbul. 7:1–37 [Google Scholar]
  39. Diaz AR. 1999. A wavelet-Galerkin scheme for analysis of large-scale problems on simple domains. Int. J. Numer. Methods Eng. 44:1599–616 [Google Scholar]
  40. Domingues MO, Gomes SM, Roussel O, Schneider K. 2008. An adaptive multiresolution scheme with local time stepping for evolutionary PDEs. J. Comput. Phys. 227:3758–80 [Google Scholar]
  41. Domingues MO, Gomes SM, Roussel O, Schneider K. 2009. Space-time adaptive multiresolution methods for hyperbolic conservation laws: applications to compressible Euler equations. Appl. Numer. Math. 59:2303–21 [Google Scholar]
  42. Donoho DL. 1992. Interpolating wavelet transforms. Tech. Rep. 408 Dep. Stat. Stanford Univ. [Google Scholar]
  43. Donoho DL, Johnstone IM. 1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–55 [Google Scholar]
  44. Douady S, Couder Y, Brachet ME. 1991. Direct observation of the intermittency of intense vorticity filaments in turbulence. Phys. Rev. Lett. 67:983–86 [Google Scholar]
  45. Durbin PA, Reif BAP. 2001. Statistical Theory and Modeling for Turbulent Flows New York: Wiley [Google Scholar]
  46. Farge M. 1992. Wavelet transforms and their application to turbulence. Annu. Rev. Fluid Mech. 24:395–457 [Google Scholar]
  47. Farge M, Guezennec Y, Ho CM, Meneveau C. 1990. Continuous wavelet analysis of coherent structures. Proc. 1990 Summer Prog., Center Turbul. Res. 82:331–48 [Google Scholar]
  48. Farge M, Pellegrino G, Schneider K. 2001. Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets. Phys. Rev. Lett. 87:054501 [Google Scholar]
  49. Farge M, Rabreau G. 1988. Transformée en ondelettes pour détecter et analyser les structures cohérentes dans les écoulements turbulents bidimensionnels. C. R. Acad. Sci. Paris 307:1479–86 [Google Scholar]
  50. Farge M, Schneider K. 2001. Coherent vortex simulation (CVS), a semi-deterministic turbulence model using wavelets. Flow Turbul. Combust. 66:393–426 [Google Scholar]
  51. Farge M, Schneider K. 2006. Wavelets: application to turbulence. Encyclopedia of Mathematical Physics JP Françoise, GL Naber, TS Tsun 408–20 Oxford: Academic [Google Scholar]
  52. Farge M, Schneider K. 2010. Wavelets and Turbulence Cambridge, UK: Cambridge Univ. Press In press [Google Scholar]
  53. Farge M, Schneider K, Kevlahan N. 1999. Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Phys. Fluids 11:2187–201 [Google Scholar]
  54. Farge M, Schneider K, Pellegrino G, Wray AA, Rogallo R. 2003. Coherent vortex extraction in three-dimensional homogeneous turbulence: comparison between CVS-wavelet and POD-Fourier decompositions. Phys. Fluids 15:2886–96 [Google Scholar]
  55. Fröhlich J, Schneider K. 1994. An adaptive wavelet Galerkin algorithm for one-dimensional and two-dimensional flame computations. Eur. J. Mech. B Fluids 13:439–71 [Google Scholar]
  56. Fröhlich J, Schneider K. 1996. Numerical simulation of decaying turbulence in an adaptive wavelet basis. Appl. Comput. Harmon. Anal. 3:393–97 [Google Scholar]
  57. Fröhlich J, Schneider K. 1997. An adaptive wavelet-vaguelette algorithm for the solution of PDEs. J. Comput. Phys. 130:174–90 [Google Scholar]
  58. Fröhlich J, Schneider K. 1999. Computation of decaying turbulence in an adaptive wavelet basis. Phys. D 134:337–61 [Google Scholar]
  59. Gagnon L, Lina JM. 1994. Symmetrical Daubechies wavelets and numerical solution of NLS equations. J. Phys. A Math. Gen. 27:8207–30 [Google Scholar]
  60. Gatski TB, Hussaini MY, Lumley JL. 1996. Simulation and Modeling of Turbulent Flows Oxford: Oxford Univ. Press [Google Scholar]
  61. Germano M, Piomelli U, Moin P, Cabot W. 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3:1760–65 [Google Scholar]
  62. Glowinski R, Pan TW, Wells RO, Zhou XD. 1996. Wavelet and finite element solutions for the Neumann problem using fictitious domains. J. Comput. Phys. 126:40–51 [Google Scholar]
  63. Goldstein DE, Vasilyev OV. 2004. Stochastic coherent adaptive large eddy simulation method. Phys. Fluids 16:2497–513 [Google Scholar]
  64. Goldstein DE, Vasilyev OV, Kevlahan NKR. 2005. CVS and SCALES simulation of 3D isotropic turbulences. J. Turbul. 6:1–20 [Google Scholar]
  65. Grossmann A, Morlet J. 1984. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15:723–36 [Google Scholar]
  66. Gutnic M, Haefele A, Paun I, Sonnendrucker E. 2004. Vlasov simulations on an adaptive phase-space grid. Comput. Phys. Commun. 164:214–19 [Google Scholar]
  67. Harten A. 1994. Adaptive multiresolution schemes for shock computations. J. Comput. Phys 115:319–38 [Google Scholar]
  68. Harten A. 1995. Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math. 48:1305–42 [Google Scholar]
  69. Holmstrom M. 1999. Solving hyperbolic PDEs using interpolating wavelets. SIAM J. Sci. Comput. 21:405–20 [Google Scholar]
  70. Holmstrom M, Walden J. 1998. Adaptive wavelet methods for hyperbolic PDEs. J. Sci. Comput. 13:19–49 [Google Scholar]
  71. Jacobitz FG, Liechtenstein L, Schneider K, Farge M. 2008. On the structure and dynamics of sheared and rotating turbulence: direct numerical simulation and wavelet-based coherent vortex extraction. Phys. Fluids 20:045103 [Google Scholar]
  72. Jaffard S. 1992. Wavelet methods for fast resolution of elliptic problems. SIAM J. Numer. Anal. 29:965–86 [Google Scholar]
  73. Jameson L. 1998. A wavelet-optimized, very high order adaptive grid and order numerical method. SIAM J. Sci. Comput. 19:1980–2013 [Google Scholar]
  74. Kaibara M, Gomes SM. 2000. A fully adaptive multiresolution scheme for shock computations. Godunov Methods: Theory and Applications EF Toro 497–504 New York: Kluwer Academic/Plenum [Google Scholar]
  75. Kaneda Y, Ishihara T, Yokokawa M, Itakura K, Uno A. 2003. Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15:L21–24 [Google Scholar]
  76. Keetels GH, D'Ortona U, Kramer W, Clercx HJH, Schneider K, Van Heijst GJF. 2007. Fourier spectral and wavelet solvers for the incompressible Navier-Stokes equations with volume penalization: convergence of a dipole-wall collision. J. Comput. Phys. 227:919–45 [Google Scholar]
  77. Kevlahan NKR, Alam JM, Vasilyev OV. 2007. Scaling of space-time modes with Reynolds number in two-dimensional turbulence. J. Fluid Mech. 570:217–26 [Google Scholar]
  78. Kevlahan NKR, Vasilyev OV. 2005. An adaptive wavelet collocation method for fluid-structure interaction at high Reynolds numbers. SIAM J. Sci. Comput. 26:1894–915 [Google Scholar]
  79. Koumoutsakos P. 2005. Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37:457–87 [Google Scholar]
  80. Kunoth A. 2001. Wavelet techniques for the fictitious domain-Lagrange multiplier approach. Numer. Algorithms 27:291–316 [Google Scholar]
  81. Lemarié PG, Meyer Y. 1986. Ondelettes et bases hilbertiennes. Rev. Mat. Iberoam. 2:1–18 [Google Scholar]
  82. Leonard S, Terracol M, Sagaut P. 2006. A wavelet-based adaptive mesh refinement criterion for large-eddy simulation. J. Turbul. 7:1–25 [Google Scholar]
  83. Lesieur M, Métais O. 1996. New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28:45–82 [Google Scholar]
  84. Lewalle J, Delville J, Bonnet JP. 2000. Decomposition of mixing layer turbulence into coherent structures and background fluctuations. Flow Turbul. Combust. 64:301–28 [Google Scholar]
  85. Liandrat J, Tchamitchian P. 1990. Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation. NASA Contractor Rep. 187480, ICASE Rep. 90-83 NASA Langley Research Center Hampton: [Google Scholar]
  86. Lilly DK. 1992. A proposed modification to the Germano subgrid-scale closure model. Phys. Fluids 3:633–35 [Google Scholar]
  87. Liu Q, Vasilyev OV. 2006. Hybrid adaptive wavelet collocation: Brinkman penalization method for unsteady RANS simulations of compressible flow around bluff bodies Presented at AIAA Fluid Dyn. Conf. Exhibit, 36th San Francisco: AIAA Pap. No. 2006-3206 [Google Scholar]
  88. Liu Q, Vasilyev OV. 2007. A Brinkman penalization method for compressible flows in complex geometries. J. Comp. Phys. 227:946–66 [Google Scholar]
  89. Liu T, Schwarz P. 2005. Multiscale Modelling of Bubbly Systems Using Wavelet-Based Mesh Adaptation. Book Ser. Lect. Notes Comput. Sci. vol. 3516 Berlin: Springer [Google Scholar]
  90. Lounsbery M, Derose T, Warren J. 1997. Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. Graph. 16:34–73 [Google Scholar]
  91. Maday Y, Perrier V, Ravel JC. 1991. Dynamic adaptivity using wavelets basis for the approximation of partial-differential equations. C. R. Acad. Sci. Ser. I Math. 312:405–10 [Google Scholar]
  92. Maday Y, Ravel JC. 1992. Adaptivity using wavelets: boundary conditions and multidimensions. C. R. Acad. Sci. Ser. I Math. 315:85–90 [Google Scholar]
  93. Mallat S. 1989. Multiresolution approximation and orthonormal wavelet basis of . Trans. Am. Math. Soc. 315:69–87 [Google Scholar]
  94. Mallat SG. 1999. A Wavelet Tour of Signal Processing Paris: Academic [Google Scholar]
  95. Mehra M, Kevlahan NKR. 2008. An adaptive wavelet collocation method for the solution of partial differential equations on the sphere. J. Comput. Phys. 227:5610–32 [Google Scholar]
  96. Meneveau C. 1991. Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232:469–520 [Google Scholar]
  97. Meneveau C, Katz J. 2000. Scale invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32:1–32 [Google Scholar]
  98. Meyer Y. 1991. Ondelettes sur l'intervalle. Rev. Mat. Iberoam. 7:115–33 [Google Scholar]
  99. Mittal R, Iaccarino G. 2005. Immersed boundary methods. Annu. Rev. Fluid Mech. 37:239–61 [Google Scholar]
  100. Monasse P, Perrier V. 1998. Orthonormal wavelet bases adapted for partial differential equations with boundary conditions. SIAM J. Math. Anal. 29:1040–65 [Google Scholar]
  101. Müller S. 2003. Adaptive Multiscale Schemes for Conservation Laws Lect. Notes Comput. Sci. Eng. vol. 27 Heidelberg: Springer-Verlag [Google Scholar]
  102. Müller S, Stiriba Y. 2007. Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. J. Sci. Comput. 30:493–531 [Google Scholar]
  103. Myers M, Holmes P, Elezgaray J, Berkooz G. 1995. Wavelet projections of the Kuramoto-Sivashinsky equation I. Heteroclinic cycles and modulated traveling waves for short systems. Phys. D 86:396–427 [Google Scholar]
  104. Narasimha R, Saxena V, Kailas SV. 2002. Coherent structures in plumes with and without off-source heating using wavelet analysis of flow imagery. Exp. Fluids 33:196–201 [Google Scholar]
  105. Okamoto N, Yoshimatsu K, Schneider K, Farge M, Kaneda Y. 2007. Coherent vortices in high resolution direct numerical simulation of homogeneous isotropic turbulence: a wavelet viewpoint. Phys. Fluids 19:115109 [Google Scholar]
  106. Perrier V, Philipovitch T, Basdevant C. 1995. Wavelet spectra compared to Fourier spectra. J. Math. Phys. 36:1506–19 [Google Scholar]
  107. Perrier V, Wickerhauser MV. 1999. Multiplication of short wavelet series using connection coefficients. Advances in Wavelets KS Lau 77–101 Singapore: Springer-Verlag [Google Scholar]
  108. Peskin CS. 1972. Flow patterns around heart valves: a digital computer method for solving the equations of motion Ph.D. thesis Albert Einstein Coll. Med. [Google Scholar]
  109. Peskin CS. 2002. The immersed boundary method. Acta Numer. 11:479–517 [Google Scholar]
  110. Prosser R. 2007. An adaptive algorithm for compressible reacting flows using interpolating wavelets. Proc. Inst. Mech. Eng. Part C J. Eng. Mech. Eng. Sci. 221:1397–413 [Google Scholar]
  111. Prosser R, Cant RS. 1998. On the use of wavelets in computational combustion. J. Comput. Phys. 147:337–61 [Google Scholar]
  112. Qian S, Weiss J. 1993. Wavelets and the numerical solution of partial differential equations. J. Comput. Phys. 106:155–75 [Google Scholar]
  113. Rastigejev YA, Paolucci S. 2006. Wavelet-based adaptive multiresolution computation of viscous reactive flows. Int. J. Numer. Methods Fluids 52:749–84 [Google Scholar]
  114. Regele JD, Vasilyev OV. 2009. An adaptive wavelet-collocation method for shock computations. Int. J. Comput. Fluid Dyn. 23:50318 [Google Scholar]
  115. Reissell LM. 1996. Wavelet multiresolution representation of curves and surfaces. Graph. Models Image Process. 58:198–217 [Google Scholar]
  116. Roussel O, Schneider K. 2009. Coherent vortex simulation (CVS) of a 3D compressible turbulent mixing layer. Proc. 6th Int. Symp. Turbul. Shear Flow Phemon. 2:929–31 [Google Scholar]
  117. Roussel O, Schneider K, Farge M. 2005. Coherent vortex extraction in 3D homogeneous turbulence: comparison between orthogonal and biorthogonal wavelet decompositions. J. Turbul. 6:11 [Google Scholar]
  118. Roussel O, Schneider K, Tsigulin A, Bockhorn H. 2003. A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188:493–523 [Google Scholar]
  119. Ruppert-Felsot J, Farge M, Petitjeans P. 2009. Wavelet tools to study intermittency: application to vortex bursting. J. Fluid Mech. 636:427–53 [Google Scholar]
  120. Sagaut P, Deck S, Terracol M. 2006. Multiscale and Multiresolution Approaches in Turbulence London: Imperial Coll. Press [Google Scholar]
  121. Schneider K, Farge M. 2002. Adaptive wavelet simulation of a flow around an impulsively started cylinder using penalisation. Appl. Comput. Harmon. Anal. 12:374–80 [Google Scholar]
  122. Schneider K, Farge M, Azzalini A, Ziuber J. 2006. Coherent vortex extraction and simulation of 2D isotropic turbulence. J. Turbul. 7:1–24 [Google Scholar]
  123. Schneider K, Farge M, Kevlahan N. 2004. Spatial intermittency in two-dimensional turbulence: a wavelet approach. Woods Hole Mathematics: Perspectives in Mathematics and Physics N Tongring, R Penner 34302–28 Singapore: World Sci. [Google Scholar]
  124. Schneider K, Farge M, Koster F, Griebel M. 2001. Adaptive wavelet methods for the Navier-Stokes equations. Notes on Numerical Fluid Mechanics EH Hirschel 303–18 New York: Springer [Google Scholar]
  125. Schneider K, Farge M, Pellegrino G, Rogers MM. 2005. Coherent vortex simulation of three-dimensional turbulent mixing layers using orthogonal wavelets. J. Fluid Mech. 534:39–66 [Google Scholar]
  126. Schneider K, Kevlahan N, Farge M. 1997. Comparison of an adaptive wavelet method and nonlinearly filtered pseudo-spectral methods for two dimensional turbulence. Theoret. Comput. Fluid Dyn. 9:191–206 [Google Scholar]
  127. Sheta EF, Tosh A, Habchi SD, Frendi A. 2006. Wavelet-based adaptive multiresolution methodology for tandem cylinder noise Presented at 36th AIAA Fluid Dyn. Conf. Exhibit, San Francisco, AIAA Paper No. 2006-3205 [Google Scholar]
  128. Siggia ED. 1981. Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid Mech. 107:375–406 [Google Scholar]
  129. Sweldens W. 1996. The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3:186–200 [Google Scholar]
  130. Szczesna A. 2006. Modeling surfaces by subdivision methods. Stud. Inform. 27:21–35 [Google Scholar]
  131. Thompson JF, Warsi ZUA, Mastin CW. 1982. Boundary fitted coordinate systems for numerical solution of partial differential equations: a review. J. Comput. Phys. 47:1–108 [Google Scholar]
  132. Valette S, Prost R. 2004. Wavelet-based progressive compression scheme for triangle meshes: wavemesh. IEEE Trans. Vis. Comput. Graph. 10:123–29 [Google Scholar]
  133. Van Den Berg JC. 1999. Wavelets in Physics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  134. van der Vorst HA. 1992. BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13:631–44 [Google Scholar]
  135. Vasilyev OV. 2003. Solving multi-dimensional evolution problems with localized structures using second generation wavelets. Int. J. Comp. Fluid Dyn. 17:151–68 [Google Scholar]
  136. Vasilyev OV, Bowman C. 2000. Second generation wavelet collocation method for the solution of partial differential equations. J. Comput. Phys. 165:660–93 [Google Scholar]
  137. Vasilyev OV, De Stefano G, Goldstein DE, Kevlahan NR. 2008. Lagrangian dynamic SGS model for stochastic coherent adaptive large eddy simulation. J. Turbul. 9:1–14 [Google Scholar]
  138. Vasilyev OV, Kevlahan NKR. 2002. Hybrid wavelet collocation: Brinkman penalization method for complex geometry flows. Int. J. Numer. Methods Fluids 40:531–38 [Google Scholar]
  139. Vasilyev OV, Kevlahan NKR. 2005. An adaptive multilevel wavelet collocation method for elliptic problems. J. Comput. Phys. 206:412–31 [Google Scholar]
  140. Vasilyev OV, Paolucci S. 1996. A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain. J. Comput. Phys. 125:498–512 [Google Scholar]
  141. Vasilyev OV, Paolucci S. 1997. A fast adaptive wavelet collocation algorithm for multi-dimensional PDEs. J. Comput. Phys. 125:16–56 [Google Scholar]
  142. Vasilyev OV, Paolucci S, Sen M. 1995. A multilevel wavelet collocation method for solving partial differential equations in a finite domain. J. Comput. Phys. 120:33–47 [Google Scholar]
  143. Vasilyev OV, Podladchikov YY, Yuen DA. 1998. Modeling of compaction driven flow in poro-viscoelastic medium using adaptive wavelet collocation method. Geophys. Res. Lett. 25:3239–42 [Google Scholar]
  144. Vasilyev OV, Podladchikov YY, Yuen DA. 2001. Modeling of viscoelastic plume-lithosphere interaction using adaptive multilevel wavelet collocation method. Geophys. J. Int. 147:579–89 [Google Scholar]
  145. Wang H, Tang K, Qin K. 2008. Biorthogonal wavelets based on gradual subdivision of quadrilateral meshes. Comput.-Aided Geom. Des. 25:816–36 [Google Scholar]
  146. Weller T, Schneider K, Oberlack M, Farge M. 2006. DNS and wavelet analysis of a turbulent channel flow rotating about the streamwise direction. ICHMT 1:163–66 [Google Scholar]
  147. Wirasaet D, Paolucci S. 2005a. Adaptive wavelet method for incompressible flows in complex domains. J. Fluids Eng. Trans. ASME 127:656–65 [Google Scholar]
  148. Wirasaet D, Paolucci S. 2005b. Application of an adaptive wavelet method to natural-convection flow in a differentially heated cavity. Ht2005: Proc. ASME Summer Heat Transf. Conf. 2005 3:499–511 [Google Scholar]
  149. Yakhot V, Sreenivasan K. 2005. Anomalous scaling of structure functions and dynamic constraints on turbulence simulations. J. Stat. Phys. 121:823–41 [Google Scholar]
  150. Yoshimatsu K, Okamoto N, Schneider K, Kaneda Y, Farge M. 2009. Intermittency and scale-dependent statistics in fully developed turbulence. Phys. Rev. E 79:026303 [Google Scholar]
  151. Zhou XL, He YN. 2005. Using divergence free wavelets for the numerical solution of the 2-D stationary Navier-Stokes equations. Appl. Math. Comput. 163:593–607 [Google Scholar]
/content/journals/10.1146/annurev-fluid-121108-145637
Loading
/content/journals/10.1146/annurev-fluid-121108-145637
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error