Particle characterization in dispersed multiphase flows is important in quantifying transport processes both in fundamental and applied research: Examples include atomization and spray processes, cavitation and bubbly flows, and solid particle transport in gas and liquid carrier phases. Optical techniques of particle characterization are preferred owing to their nonintrusiveness, and they can yield information about size, velocity, composition, and to some extent the shape of individual particles. This review focuses on recent advances for measuring size, temperature, and the composition of particles, including several planar methods, various imaging techniques, laser-induced fluorescence, and the more recent use of femtosecond pulsed light sources. It emphasizes the main sources of uncertainty, the achievable accuracy, and the outlook for improvement of specific techniques and for specific applications. Some remarks are also directed toward the computational tools used to design and investigate the performance of optical particle diagnostic instruments.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error