1932

Abstract

The dynamics and deformations of immersed flexible fibers are at the heart of important industrial and biological processes, induce peculiar mechanical and transport properties in the fluids that contain them, and are the basis for novel methods of flow control. Here we focus on the low–Reynolds number regime where advances in studying these fiber–fluid systems have been especially rapid. On the experimental side, this is due to new methods of fiber synthesis, microfluidic flow control, and microscope-based tracking measurement techniques. Likewise, there have been continuous improvements in the specialized mathematical modeling and numerical methods needed to capture the interactions of slender flexible fibers with flows, boundaries, and each other.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122316-045153
2019-01-05
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/fluid/51/1/annurev-fluid-122316-045153.html?itemId=/content/journals/10.1146/annurev-fluid-122316-045153&mimeType=html&fmt=ahah

Literature Cited

  1. Alvarado J, Comtet J, De Langre E, Hosoi AE 2017. Nonlinear flow response of soft hair beds. Nat. Phys. 13:1014–19
    [Google Scholar]
  2. Amir A, Babaeipour F, McIntosh DB, Nelson DR, Jun S 2014. Bending forces plastically deform growing bacterial cell walls. PNAS 111:5778–83
    [Google Scholar]
  3. Attia R, Pregibon DC, Doyle PS, Viovy JL, Bartolo D 2009. Soft microflow sensors. Lab Chip 9:1213–18
    [Google Scholar]
  4. Autrusson N, Guglielmini L, Lecuyer S, Rusconi R, Stone HA 2011. The shape of an elastic filament in a two-dimensional corner flow. Phys. Fluids 23:063602
    [Google Scholar]
  5. Babataheri A, Roper ML, Fermigier M, du Roure O 2011. Tethered fleximags as artificial cilia. J. Fluid Mech. 678:5–13
    [Google Scholar]
  6. Babu D, Roy S 2013. Left–right asymmetry: Cilia stir up new surprises in the node. Open Biol. 3:130052
    [Google Scholar]
  7. Becker L, Shelley M 2001. The instability of elastic filaments in shear flow yields first normal stress differences. Phys. Rev. Lett. 87:198301
    [Google Scholar]
  8. Berthet H, du Roure O, Lindner A 2016. Microfluidic fabrication solutions for tailor-designed fiber suspensions. Appl. Sci. 6:385
    [Google Scholar]
  9. Bouzarth E, Layton A, Young YN 2011. Modeling a semi-flexible filament in cellular Stokes flow using regularized Stokeslets. Int. J. Num. Meth. Biomed. Eng. 27:2021–34
    [Google Scholar]
  10. Bray D 2001. Cell Movements: From Molecules to Motility New York: Garland Sci.
    [Google Scholar]
  11. Broedersz CP, MacKintosh FC 2014. Modeling semiflexible polymer networks. Rev. Mod. Phys. 86:995–1036
    [Google Scholar]
  12. Butler JE, Shaqfeh ES 2002. Dynamic simulations of the inhomogeneous sedimentation of rigid fibres. J. Fluid Mech. 468:205–37
    [Google Scholar]
  13. Butler JE, Snook B 2018. Microstructural dynamics and rheology of suspensions of rigid fibers. Annu. Rev. Fluid Mech. 50:299–318
    [Google Scholar]
  14. Camalet S, Jülicher F, Prost J 1999. Self-organized beating and swimming of internally driven filaments. Phys. Rev. Lett. 82:1590–93
    [Google Scholar]
  15. Cappello J, Duprat C, du Roure O, Nagel M, Bechert M et al. 2018. Transport of flexible fibers in confined micro-channels. arXiv:1807.05158 [physics.flu-dyn]
  16. Chelakkot R, Winkler RG, Gompper G 2010. Migration of semiflexible polymers in microcapillary flow. Europhs. Lett. 91:14001
    [Google Scholar]
  17. Chelakkot R, Winkler RG, Gompper G 2012. Flow-induced helical coiling of semiflexible polymers in structured microchannels. Phys. Rev. Lett. 109:178101
    [Google Scholar]
  18. Choi CH, Yi H, Hwang S, Weitz DA, Lee CS 2011. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow. Lab Chip 11:1477–83
    [Google Scholar]
  19. Coq N, Bricard A, Delapierre FD, Malaquin L, du Roure O et al. 2011. Collective beating of artificial microcilia. Phys. Rev. Lett. 107:014501
    [Google Scholar]
  20. Coq N, du Roure O, Marthelot J, Bartolo D, Fermigier M 2008. Rotational dynamics of a soft filament: wrapping transition and propulsive forces. Phys. Fluids 20:051703
    [Google Scholar]
  21. Cortez R 2001. The method of regularized Stokeslets. SIAM J. Sci. Comput. 23:1204–25
    [Google Scholar]
  22. Cortez R, Nicholas M 2012. Slender body theory for stokes flows with regularized forces. Commun. Appl. Math. Comput. Sci. 7:33–62
    [Google Scholar]
  23. Cosentino Lagomarsino M, Pagonabarraga I, Lowe CP 2005. Hydrodynamic induced deformation and orientation of a microscopic elastic filament. Phys. Rev. Lett. 94:148104
    [Google Scholar]
  24. D'Angelo MV, Semin B, Picard G, Poitzsch ME, Hulin JP, Auradou H 2009. Single fiber transport in a fracture slit: influence of the wall roughness and of the fiber flexibility. Trans. Porous Med. 84:389–408
    [Google Scholar]
  25. Darnige T, Bohec P, Lindner A, Clément E 2017. Lagrangian 3D tracking of fluorescent microscopic objects in motion. Rev. Sci. Instrum. 88:055106
    [Google Scholar]
  26. De Canio G, Lauga E, Goldstein RE, Goldstein RE 2017. Spontaneous oscillations of elastic filaments induced by molecular motors. J. R. Soc. Interface 14:20170491
    [Google Scholar]
  27. Delmotte B, Climent E, Plouraboué F 2015. A general formulation of Bead Models applied to flexible fibers and active filaments at low Reynolds number. J. Comput. Phys. 286:14–37
    [Google Scholar]
  28. Deng M, Grinberg L, Caswell B, Karniadakis GE 2015. Effects of thermal noise on the transitional dynamics of an inextensible elastic filament in stagnation flow. Soft Matter 11:4962–72
    [Google Scholar]
  29. Ding Y, Nawroth J, McFall-Ngai M, Kanso E 2014. Mixing and transport by ciliary carpets: a numerical study. J. Fluid Mech. 743:124–40
    [Google Scholar]
  30. Doi M, Edwards S 1978. Dynamics of rod-like macromolecules in concentrated solution. Part 1. J. Chem. Soc., Faraday Trans. 2 74:560–70
    [Google Scholar]
  31. Drescher K, Shen Y, Bassler BL, Stone HA 2013. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. PNAS 110:4345–50
    [Google Scholar]
  32. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J 2005. Microscopic artificial swimmers. Nature 437:862–65
    [Google Scholar]
  33. Duprat C, Berthet H, Wexler JS, du Roure O, Lindner A 2015. Microfluidic in situ mechanical testing of photopolymerized gels. Lab Chip 15:244–52
    [Google Scholar]
  34. Elfring GJ, Lauga E 2015. Theory of locomotion through complex fluids. Complex Fluids in Biological Systems S Spagnolie283–317 New York: Springer-Verlag
    [Google Scholar]
  35. Everaers R, Jülicher F, Ajdari A, Maggs A 1999. Dynamic fluctuations of semiflexible filaments. Phys. Rev. Lett. 82:3717
    [Google Scholar]
  36. Faubel R, Westendorf C, Bodenschatz E, Eichele G 2016. Cilia-based flow network in the brain ventricles. Science 353:176–78
    [Google Scholar]
  37. Fauci LJ, Dillon R 2006. Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38:371–94
    [Google Scholar]
  38. Fiore AM, Balboa Usabiaga F, Donev A, Swan JW 2017. Rapid sampling of stochastic displacements in Brownian dynamics simulations. J. Chem. Phys. 146:124116
    [Google Scholar]
  39. Fixman M 1978. Simulation of polymer dynamics. I. General theory. J. Chem. Phys. 69:1527–37
    [Google Scholar]
  40. Flores H, Lobaton E, Méndez-Diez S, Tlupova S, Cortez R 2005. A study of bacterial flagellar bundling. Bull. Math. Bio. 67:137–68
    [Google Scholar]
  41. Forgacs OL, Mason SG 1959.a Particle motions in sheared suspensions: IX. Spin and deformation of threadlike particles. J. Colloid Sci. 14:457–72
    [Google Scholar]
  42. Forgacs OL, Mason SG 1959.b Particle motions in sheared suspensions: X. Orbits of flexible threadlike particles. J. Colloid Sci. 14:473–91
    [Google Scholar]
  43. Galambos PC, Forster F 1998. An optical micro-fluidic viscometer. Micro-Electro-Mechanicical System (MEMS) L Lin, NR Aluru, FK Forster, X Zhang187–91 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  44. Gauger E, Stark H 2006. Numerical study of a microscopic artificial swimmer. Phys. Rev. E 74:021907
    [Google Scholar]
  45. Gittes F, Mickey B, Nettleton J, Howard J 1993. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120:923–34
    [Google Scholar]
  46. Goto S, Nagazono H, Kato H 1986. The flow behavior of fiber suspensions in Newtonian fluids and polymer solutions. Rheol. Acta 25:119–29
    [Google Scholar]
  47. Götz T 2000. Interactions of fibers and flow: asymptotics, theory and numerics PhD Thesis, Univ. Kaiserslautern, Kaiserslautern, Ger.
    [Google Scholar]
  48. Goubault C, Leal-Calderon F, Viovy JL, Bibette J 2005. Self-assembled magnetic nanowires made irreversible by polymer bridging. Langmuir 21:3725–29
    [Google Scholar]
  49. Griffith B, Hornung R, McQueen D, Peskin C 2007. An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223:10–19
    [Google Scholar]
  50. Guazzelli É, Hinch J 2011. Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech. 43:97–116
    [Google Scholar]
  51. Guglielmini L, Kushwaha A, Shaqfeh ES, Stone HA 2012. Buckling transitions of an elastic filament in a viscous stagnation point flow. Phys. Fluids 24:123601
    [Google Scholar]
  52. Guo H, Fauci L, Shelley M, Kanso E 2018. Bistability in the synchronization of actuated microfilaments. J. Fluid Mech. 836:304–23
    [Google Scholar]
  53. Hämäläinen J, Lindström S, Hämäläinen T, Niskanen H 2011. Papermaking fibre-suspension flow simulations at multiple scales. J. Eng. Math. 71:55–79
    [Google Scholar]
  54. Harasim M, Wunderlich B, Peleg O, Kröger M, Bausch AR 2013. Direct observation of the dynamics of semiflexible polymers in shear flow. Phys. Rev. Lett. 110:108302
    [Google Scholar]
  55. Haward SJ, Oliveira MS, Alves MA, McKinley GH 2012. Optimized cross-slot flow geometry for microfluidic extensional rheometry. Phys. Rev. Lett. 109:128301
    [Google Scholar]
  56. Helgeson ME, Chapin SC, Doyle PS 2011. Hydrogel microparticles from lithographic processes: novel materials for fundamental and applied colloid science. Curr. Opin. Colloid Interface Sci. 16:106–17
    [Google Scholar]
  57. Herzhaft B, Guazzelli É 1999. Experimental study of the sedimentation of dilute and semi-dilute suspensions of fibres. J. Fluid Mech. 384:133–58
    [Google Scholar]
  58. Hinch E 1994. Brownian motion with stiff bonds and rigid constraints. J. Fluid Mech. 271:219–34
    [Google Scholar]
  59. Hirokawa N, Tanaka Y, Okada Y, Takeda S 2006. Nodal flow and the generation of left-right asymmetry. Cell 125:33–45
    [Google Scholar]
  60. Huber B, Harasim M, Wunderlich B, Kro M, Bausch AR 2014. Microscopic origin of the non-Newtonian viscosity of semi flexible polymer solutions in the semidilute regime. ACS Macro Lett. 3:136–40
    [Google Scholar]
  61. Jawed MK, Khouri NK, Da F, Grinspun E, Reis PM 2015. Propulsion and instability of a flexible helical rod rotating in a viscous fluid. Phys. Rev. Lett. 115:168101
    [Google Scholar]
  62. Jeffrey G 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. A 102:161–79
    [Google Scholar]
  63. Jeong W, Kim J, Kim S, Lee S, Mensing G, Beebe DJ 2004. Hydrodynamic microfabrication via “on the fly” photopolymerization of microscale fibers and tubes. Lab Chip 4:576–80
    [Google Scholar]
  64. Jiang H, Wu Y, Yang B, Zhao YP 2014. Force–moment line element method for Stokes flow around a slender body. Eng. Anal. Boundary Elem. 44:120–29
    [Google Scholar]
  65. Johnson R 1980. An improved slender-body theory for Stokes flow. J. Fluid Mech. 99:411–31
    [Google Scholar]
  66. Jun Y, Kang E, Chae S, Lee SH 2014. Microfluidic spinning of micro- and nano-scale fibers for tissue engineering. Lab Chip 14:2145–60
    [Google Scholar]
  67. Kantsler V, Goldstein RE 2012. Fluctuations, dynamics, and the stretch-coil transition of single actin filaments in extensional flows. Phys. Rev. Lett. 108:038103
    [Google Scholar]
  68. Keller J, Rubinow S 1976. Slender-body theory for slow viscous flow. J. Fluid Mech. 75:705–14
    [Google Scholar]
  69. Kim MJ, Bird JC, Van Parys AJ, Breuer KS, Powers TR 2003. A macroscopic scale model of bacterial flagellar bundling. PNAS 100:15481–85
    [Google Scholar]
  70. Kirchenbuechler I, Guu D, Kurniawan Na, Koenderink GH, Lettinga MP 2014. Direct visualization of flow-induced conformational transitions of single actin filaments in entangled solutions. Nat. Commun. 5:5060
    [Google Scholar]
  71. Koens L, Lauga E 2018. The boundary integral formulation of Stokes flows includes slender-body theory. J. Fluid Mech. 850:R1
    [Google Scholar]
  72. Kuei S, Słowicka AM, Ekiel-Jezewska ML, Wajnryb E, Stone HA 2015. Dynamics and topology of a flexible chain: knots in steady shear flow. New J. Phys. 17:053009
    [Google Scholar]
  73. Lauga E, Powers TR 2009. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72:096601
    [Google Scholar]
  74. Li D, Xia Y 2004. Electrospinning of nanofibers: Reinventing the wheel?. Adv. Mater. 16:1151
    [Google Scholar]
  75. Li L, Manikantan H, Saintillan D 2013. The sedimentation of flexible filaments. J. Fluid Mech. 735:705–36
    [Google Scholar]
  76. Lim S, Peskin CS 2004. Simulations of the whirling instability by the immersed boundary method. SIAM J. Sci. Comput. 25:2066–83
    [Google Scholar]
  77. Lindner A, Arratia PE 2016. Preface to special topic: invited articles on microfluidic rheology. Biomicrofluidics 10:043301
    [Google Scholar]
  78. Ling F, Guo H, Kanso E 2018. Instability-driven oscillations of elastic microfilaments. arXiv:1808.01583 [physics.flu-dyn]
  79. Liu Y, Chakrabarti B, Saintillan D, Lindner A, du Roure O 2018. Morphological transitions of elastic filaments in shear flow. PNAS 115:9438–43
    [Google Scholar]
  80. Machu G, Meile W, Nitsche LC, Schaflinger U 2001. Coalescence, torus formation and breakup of sedimenting drops: experiments and computer simulations. J. Fluid Mech. 447:299–336
    [Google Scholar]
  81. Man Y, Page W, Poole RJ, Lauga E 2017. Bundling of elastic filaments induced by hydrodynamic interactions. Phys. Rev. Fluids 2:123101
    [Google Scholar]
  82. Manghi M, Schlagberger X, Netz RR 2006. Propulsion with a rotating elastic nanorod. Phys. Rev. Lett. 96:68101
    [Google Scholar]
  83. Manikantan H, Li L, Spagnolie SE, Saintillan D 2014. The instability of a sedimenting suspension of weakly flexible fibres. J. Fluid Mech. 756:935–64
    [Google Scholar]
  84. Manikantan H, Saintillan D 2013. Subdiffusive transport of fluctuating elastic filaments in cellular flows. Phys. Fluids 25:073603
    [Google Scholar]
  85. Manikantan H, Saintillan D 2015. Buckling transition of a semiflexible filament in extensional flow. Phys. Rev. E 92:041002
    [Google Scholar]
  86. Manikantan H, Saintillan D 2016. Effect of flexibility on the growth of concentration fluctuations in a suspension of sedimenting fibers: particle simulations. Phys. Fluids 28:013303
    [Google Scholar]
  87. Marchetti B, Raspa V, Lindner A, du Roure O, Bergougnoux L et al. 2018. The deformation of a flexible fiber settling in a quiescent viscous fluid. Phys. Rev. Fluids. In press
    [Google Scholar]
  88. Mercader C, Lucas A, Derre A, Zakri C, Moisan S et al. 2010. Kinetics of fiber solidification. PNAS 107:18331–35
    [Google Scholar]
  89. Metzger B, Guazzelli E, Butler JE 2005. Large-scale streamers in the sedimentation of a dilute fiber suspension. Phys. Rev. Lett. 95:164506
    [Google Scholar]
  90. Metzger B, Nicolas M, Guazzelli É 2007. Falling clouds of particles in viscous fluids. J. Fluid Mech. 580:283–301
    [Google Scholar]
  91. Mitran SM 2007. Metachronal wave formation in a model of pulmonary cilia. Comput. Struct. 85:763–74
    [Google Scholar]
  92. Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA et al. 2013. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12:253–61
    [Google Scholar]
  93. Morse DC 1998. Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response. Macromolecules 31:7044–67
    [Google Scholar]
  94. Munk T, Hallatschek O, Wiggins CH, Frey E 2006. Dynamics of semiflexible polymers in a flow field. Phys. Rev. E 74:041911
    [Google Scholar]
  95. Nagel M, Brun PT, Berthet H, Lindner A, Gallaire F, Duprat C 2018. Oscillations of confined fibres transported in microchannels. J. Fluid Mech. 835:444–70
    [Google Scholar]
  96. Nakielski P, Pawłowska S, Pierini F, Liwińska W, Hejduk P et al. 2015. Hydrogel nanofilaments via core-shell electrospinning. PLOS ONE 10:e0129816. Erratum. 2015. PLOS ONE 10:e0133458
    [Google Scholar]
  97. Nawroth JC, Guo H, Koch E, Heath-Heckman EA, Hermanson JC et al. 2017. Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome. PNAS 114:9510–16
    [Google Scholar]
  98. Nazockdast E, Rahimian A, Needleman D, Shelley M 2017.a Cytoplasmic flows as signatures for the mechanics of mitotic positioning. Mol. Biol. Cell 28:3261–70
    [Google Scholar]
  99. Nazockdast E, Rahimian A, Zorin D, Shelley MJ 2017.b A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics. J. Comput. Phys. 329:173–209
    [Google Scholar]
  100. Nguyen H, Fauci L 2014. Hydrodynamics of diatom chains and flexible fibers. J. R. Soc. Interface 11:20140314
    [Google Scholar]
  101. Nunes JK, Constantin H, Stone HA 2013. Microfluidic tailoring of the two-dimensional morphology of crimped microfibers. Soft Matter 9:4227–35
    [Google Scholar]
  102. Nunes JK, Sadlej K, Tam JI, Stone HA 2012. Control of the length of microfibers. Lab Chip 12:2301–4
    [Google Scholar]
  103. Olson SD, Lim S, Cortez R 2013. Modeling the dynamics of an elastic rod with intrinsic curvature and twist using a regularized stokes formulation. J. Comput. Phys. 238:169–87
    [Google Scholar]
  104. Park J, Metzger B, Guazzelli É, Butler JE 2010. A cloud of rigid fibres sedimenting in a viscous fluid. J. Fluid Mech. 648:351–62
    [Google Scholar]
  105. Pasquali M, Shankar V, Morse DC 2001. Viscoelasticity of dilute solutions of semiflexible polymers. Phys. Rev. E 64:020802
    [Google Scholar]
  106. Pawłowska S, Nakielski P, Pierini F, Piechocka IK, Zembrzycki K, Kowalewski TA 2017. Lateral migration of electrospun hydrogel nanofilaments in an oscillatory flow. PLOS ONE 12:e0187815
    [Google Scholar]
  107. Perazzo A, Nunes JK, Guido S, Stone HA 2017. Flow-induced gelation of microfiber suspensions. PNAS 114:41E8557–64
    [Google Scholar]
  108. Peskin C 2002. The immersed boundary method. Acta Num. 11:479–517
    [Google Scholar]
  109. Pham JT, Lawrence J, Lee DY, Grason GM, Emrick T, Crosby AJ 2013. Highly stretchable nanoparticle helices through geometric asymmetry and surface forces. Adv. Mater. 25:6703–8
    [Google Scholar]
  110. Pham JT, Morozov A, Crosby AJ, Lindner A, du Roure O 2015. Deformation and shape of flexible, microscale helices in viscous flow. Phys. Rev. E 92:011004(R)
    [Google Scholar]
  111. Pozrikidis C 1992. Boundary Integral and Singularity Methods for Linearized Viscous Flow Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  112. Prasath SG, Marthelot J, Govindarajan R, Menon N 2016. Relaxation of a highly deformed elastic filament at a fluid interface. Phys. Rev. Fluids 1:033903
    [Google Scholar]
  113. Qian B, Powers T, Breuer K 2008. Shape transition and propulsive force of an elastic rod rotating in a viscous fluid. Phys. Rev. Lett. 100:078101
    [Google Scholar]
  114. Qu Z, Temel FZ, Henderikx R, Breuer KS 2018. Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media. PNAS In press
    [Google Scholar]
  115. Quennouz N 2013. Déformation et transport d'un filament élastique dans un écoulement cellulaire visqueux PhD Thesis, Univ. Pierre Marie Curie, Paris, France
    [Google Scholar]
  116. Quennouz N, Shelley MJ, du Roure O, Lindner A 2015. Transport and buckling dynamics of an elastic fiber in a viscous cellular flow. J. Fluid Mech. 769:387–402
    [Google Scholar]
  117. Ramaswamy S 2001. Issues in the statistical mechanics of steady sedimentation. Adv. Phys. 50:297–341
    [Google Scholar]
  118. Reddig S, Stark H 2011. Cross-streamline migration of a semiflexible polymer in a pressure driven flow. J. Chem. Phys. 135:165101
    [Google Scholar]
  119. Rusconi R, Lecuyer S, Autrusson N, Guglielmini L, Stone HA 2011. Secondary flow as a mechanism for the formation of biofilm streamers. Biophys. J. 100:1392–99
    [Google Scholar]
  120. Rusconi R, Lecuyer S, Guglielmini L, Stone HA 2010. Laminar flow around corners triggers the formation of biofilm streamers. J. Roy. Soc. Interface 7:1293–99
    [Google Scholar]
  121. Saad Y, Schultz MH 1986. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7:856–69
    [Google Scholar]
  122. Saggiorato G, Elgeti J, Winkler RG, Gompper G 2015. Conformations, hydrodynamic interactions, and instabilities of sedimenting semiflexible filaments. Soft Matter 11:7337–44
    [Google Scholar]
  123. Saintillan D, Darve E, Shaqfeh ES 2005. A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: the sedimentation of fibers. Phys. Fluids 17:033301
    [Google Scholar]
  124. Schlagberger X, Netz RR 2005. Orientation of elastic rods in homogeneous Stokes flow. Europhys. Lett. 70:129–35. Erratum. 2005. Europhys. Lett. 70:563
    [Google Scholar]
  125. Schroeder CM, Babcock HP, Shaqfeh ESG, Chu S 2003. Observation of polymer conformation hysteresis in extensional flow. Science 301:1515–19
    [Google Scholar]
  126. Sellier A 1999. Stokes flow past a slender particle. Proc. R. Soc. Lond. A 455:2975–3002
    [Google Scholar]
  127. Shankar V, Pasquali M, Morse DC 2002. Theory of linear viscoelasticity of semiflexible rods in dilute solution. J. Rheol. 46:1111–54
    [Google Scholar]
  128. Shelley MJ 2016. The dynamics of microtubule/motor-protein assemblies in biology and physics. Annu. Rev. Fluid Mech. 48:487–506
    [Google Scholar]
  129. Silva PES, Vistulo de Abreu F, Godinho MH 2017. Shaping helical electrospun filaments: a review. Soft Matter 13:6678–88
    [Google Scholar]
  130. Słowicka AM, Wajnryb E, Ekiel-Jezewska ML 2013. Lateral migration of flexible fibers in Poiseuille flow between two parallel planar solid walls. Euro. Phys. J. E 36:31
    [Google Scholar]
  131. Smith DJ 2009. A boundary element regularized Stokeslet method applied to cilia- and flagella-driven flow. Proc. R. Soc. A 465:3605–26
    [Google Scholar]
  132. Son K, Guasto JS, Stocker R 2013. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9:494–98
    [Google Scholar]
  133. Stein DB, Guy RD, Thomases B 2017. Immersed boundary smooth extension (IBSE): a high-order method for solving incompressible flows in arbitrary smooth domains. J. Comput. Phys. 335:155–78
    [Google Scholar]
  134. Steinhauser D, Köster S, Pfohl T 2012. Mobility gradient induces cross-streamline migration of semiflexible polymers. ACS Macro Lett. 1:541–45
    [Google Scholar]
  135. Stockie JM, Green SI 1998. Simulating the motion of flexible pulp fibres using the immersed boundary method. J. Comput. Phys. 147:147–65
    [Google Scholar]
  136. Strelnikova N, Göllner M, Pfohl T 2017. Direct observation of alternating stretch-coil and coil-stretch transitions of semiflexible polymers in microstructured flow. Macromol. Chem. Phys. 218:1600474
    [Google Scholar]
  137. Strychalski W, Copos CA, Lewis OL, Guy RD 2015. A poroelastic immersed boundary method with applications to cell biology. J. Comput. Phys. 282:77–97
    [Google Scholar]
  138. Sznitman J, Arratia PE 2015. Locomotion through complex fluids: an experimental view. Complex Fluids in Biological Systems S Spagnolie245–81 New York: Springer-Verlag
    [Google Scholar]
  139. Thomases B, Guy RD 2017. The role of body flexibility in stroke enhancements for finite-length undulatory swimmers in viscoelastic fluids. J. Fluid Mech. 825:109–32
    [Google Scholar]
  140. Tornberg A, Gustavsson K 2006. A numerical method for simulations of rigid fiber suspensions. J. Comput. Phys. 215:172–96
    [Google Scholar]
  141. Tornberg AK, Shelley M 2004. Simulating the dynamics and interactions of elastic filaments in Stokes flows. J. Comput. Phys. 196:8–40
    [Google Scholar]
  142. Trong PK, Doerflinger H, Dunkel J, St Johnston D, Goldstein RE 2015. Cortical microtubule nucleation can organise the cytoskeleton of Drosophila oocytes to define the anteroposterior axis. eLife 4:e06088
    [Google Scholar]
  143. Wandersman E, Quennouz N, Fermigier M, Lindner A, du Roure O 2010. Buckled in translation. Soft Matter 6:5715–19
    [Google Scholar]
  144. Wexler JS, Trinh PH, Berthet H, Quennouz N, du Roure O et al. 2013. Bending of elastic fibres in viscous flows: the influence of confinement. J. Fluid Mech. 720:517–44
    [Google Scholar]
  145. Wiens JK, Stockie JM 2015. Simulating flexible fiber suspensions using a scalable immersed boundary algorithm. Comput. Methods Appl. Mech. Eng. 290:1–18
    [Google Scholar]
  146. Wiggins CH, Riveline D, Ott A, Goldstein RE 1998. Trapping and wiggling: elastohydrodynamics of driven microfilaments. Biophys. J. 74:1043–60
    [Google Scholar]
  147. Wirtz D 2009. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38:301–26
    [Google Scholar]
  148. Wolgemuth CW, Powers TR, Goldstein RE 2000. Twirling and whirling: viscous dynamics of rotating elastic filaments. Phys. Rev. Lett. 84:1623–26
    [Google Scholar]
  149. Wu J, Aidun CK 2010. A method for direct simulation of flexible fiber suspensions using lattice Boltzmann equation with external boundary force. Int. J. Multiphase Flow 36:202–9
    [Google Scholar]
  150. Xu X, Nadim A 1994. Deformation and orientation of an elastic slender body sedimenting in a viscous liquid. Phys. Fluids 6:2889–93
    [Google Scholar]
  151. Yang Q, Fauci L 2017. Dynamics of a macroscopic elastic fibre in a polymeric cellular flow. J. Fluid Mech. 817:388–405
    [Google Scholar]
  152. Young YN 2009. Hydrodynamic interactions between two semiflexible inextensible filaments in Stokes flow. Phys. Rev. E 79:046317
    [Google Scholar]
  153. Young YN, Downs M, Jacobs CR 2012. Dynamics of the primary cilium in shear flow. Biophys. J. 103:629–39
    [Google Scholar]
  154. Young YN, Shelley M 2007. A stretch-coil transition and transport of fibers in cellular flows. Phys. Rev. Lett. 99:058303
    [Google Scholar]
  155. Zhang Q, Zeng S, Lin B, Qin J 2011. Controllable synthesis of anisotropic elongated particles using microvalve actuated microfluidic approach. J. Mater. Chem. 21:2466–69
    [Google Scholar]
  156. Zilz J, Schäfer C, Wagner C, Poole RJ, Alves MA, Lindner A 2014. Serpentine channels: micro-rheometers for fluid relaxation times. Lab Chip 14:351–58
    [Google Scholar]
  157. Zografos K, Pimenta F, Alves MA, Oliveira MS 2016. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation. Biomicrofluidics 10:043508
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-122316-045153
Loading
/content/journals/10.1146/annurev-fluid-122316-045153
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error