Precise, tunable emulsions and foams produced in microfluidic geometries have found wide application in biochemical analysis and materials synthesis and characterization. Superb control of the volume, uniformity, and generation rate of droplets and bubbles arises from unique features of the microscale behavior of fluid interfaces. Fluid interfaces confined within microfluidic channels behave quite differently than their counterparts in unbounded flows. Confinement inhibits capillary instabilities so that breakup occurs by largely quasi-static mechanisms. The three-dimensional flow near confined interfaces in rectangular geometries and feedback effects from resistance changes in the entire microfluidic network play important roles in regulating the interfacial deformation. Timescales for transport of surfactants and particles to interfaces compete with flow timescales at the microscale, providing further opportunity for tuning the interfacial coverage and properties of individual droplets and bubbles.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abate AR, Mary P, van Steijn V, Weitz DA. 2012. Experimental validation of plugging during drop formation in a T-junction. Lab Chip 12:1516–21 [Google Scholar]
  2. Abkarian M, Subramaniam AB, Kim S-H, Larsen RJ, Yang S-M, Stone HA. 2007. Dissolution arrest and stability of particle-covered bubbles. Phys. Rev. Lett. 99:188301 [Google Scholar]
  3. Adzima BJ, Velankar SS. 2006. Pressure drops for droplet flows in microfluidic channels. J. Micromech. Microeng. 16:1504–10 [Google Scholar]
  4. Afkhami S, Leshansky AM, Renardy Y. 2011. Numerical investigation of elongated drops in a microfluidic T-junction. Phys. Fluids 23:022002 [Google Scholar]
  5. Ahn B, Lee K, Lee H, Panchapakesan R, Oh KW. 2011. Parallel synchronization of two trains of droplets using a railroad-like channel network. Lab Chip 11:3956–62 [Google Scholar]
  6. Al-Housseiny TT, Hernandez J, Stone HA. 2014. Preferential flow penetration in a network of identical channels. Phys. Fluids 26:042110 [Google Scholar]
  7. Alvarez NJ, Lee W, Walker LM, Anna SL. 2011. The effect of alkane tail length of CiE8 surfactants on transport to the silicone oil-water interface. J. Colloid Interface Sci. 355:231–36 [Google Scholar]
  8. Alvarez NJ, Walker LM, Anna SL. 2010. Diffusion-limited adsorption to a spherical geometry: the impact of curvature and competitive time scales. Phys. Rev. E 82:E011604 [Google Scholar]
  9. Anna SL, Bontoux N, Stone HA. 2003. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82:364–66 [Google Scholar]
  10. Anna SL, Mayer HC. 2006. Microscale tipstreaming in a microfluidic flow focusing device. Phys. Fluids 18:121512 [Google Scholar]
  11. Barbier V, Willaime H, Tabeling P, Jousse F. 2006. Producing droplets in parallel microfluidic systems. Phys. Rev. E 74:046306 [Google Scholar]
  12. Baret J-C, Kleinschmidt F, El Harrak A, Griffiths AD. 2009. Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis. Langmuir 25:6088–93 [Google Scholar]
  13. Baroud CN, Tsikata S, Heil M. 2006. The propagation of low-viscosity fingers into fluid-filled branching networks. J. Fluid Mech. 546:285–94 [Google Scholar]
  14. Bazhlekov IB, Anderson PD, Meijer HEH. 2006. Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J. Colloid Interface Sci. 298:369–94 [Google Scholar]
  15. Belloul M, Engl W, Colin A, Panizza P, Ajdari A. 2009. Competition between local collisions and collective hydrodynamic feedback controls traffic flows in microfluidic networks. Phys. Rev. Lett. 102:194502 [Google Scholar]
  16. Binks BP. 2002. Particles as surfactants: similarities and differences. Curr. Opin. Colloid Interface Sci. 7:21–41 [Google Scholar]
  17. Blanchette F, Zhang WW. 2009. Force balance at the transition from selective withdrawal to viscous entrainment. Phys. Rev. Lett. 102:144501 [Google Scholar]
  18. Booty MR, Siegel M. 2010. A hybrid numerical method for interfacial fluid flow with soluble surfactant. J. Comput. Phys. 229:3864–83 [Google Scholar]
  19. Brugarolas T, Gianola DS, Zhang L, Campbell GM, Bassani JL. et al. 2014. Tailoring and understanding the mechanical properties of nanoparticle-shelled bubbles. ACS Appl. Mater. Interfaces 6:11558–72 [Google Scholar]
  20. Castro-Hernández E, Campo-Cortés F, Gordillo JM. 2012. Slender-body theory for the generation of micrometre-sized emulsions through tip streaming. J. Fluid Mech. 698:423–45 [Google Scholar]
  21. Chang C-H, Franses EI. 1995. Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloids Surf. A 100:1–45 [Google Scholar]
  22. Choi W, Hashimoto M, Ellerbee AK, Chen X, Bishop KJM. et al. 2011. Bubbles navigating through networks of microchannels. Lab Chip 11:3970–78 [Google Scholar]
  23. Christopher GF, Anna SL. 2007. Microfluidic methods for generating continuous droplet streams. J. Phys. D 40:R319–36 [Google Scholar]
  24. Christopher GF, Noharuddin NN, Taylor JA, Anna SL. 2008. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys. Rev. E 78:036317 [Google Scholar]
  25. Cristobal G, Benoit J-P, Joanicot M, Ajdari A. 2006. Microfluidic bypass for efficient passive regulation of droplet traffic at a junction. Appl. Phys. Lett. 89:034104 [Google Scholar]
  26. Cubaud T, Mason TG. 2008. Capillary threads and viscous droplets in square microchannels. Phys. Fluids 20:053302 [Google Scholar]
  27. de Bruijn RA. 1993. Tip-streaming of drops in simple shear flows. Chem. Eng. Sci. 48:277–84 [Google Scholar]
  28. de Lózar A, Juel A, Hazel AL. 2008. The steady propagation of an air finger into a rectangular tube. J. Fluid Mech. 614:173–95 [Google Scholar]
  29. De Menech M. 2006. Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model. Phys. Rev. E 73:031505 [Google Scholar]
  30. De Menech M, Garstecki P, Jousse F, Stone HA. 2008. Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 595:141–61 [Google Scholar]
  31. Dickinson E. 2013. Stabilising emulsion-based colloidal structures with mixed food ingredients. J. Sci. Food Agric. 93:710–21 [Google Scholar]
  32. Dollet B, van Hoeve W, Raven J-P, Marmottant P, Versluis M. 2008. Role of the channel geometry on the bubble pinch-off in flow-focusing devices. Phys. Rev. Lett. 100:034504 [Google Scholar]
  33. Eastoe J, Dalton JS. 2000. Dynamic surface tension and adsorption mechanisms of surfactants at the air–water interface. Adv. Colloid Interface Sci. 85:103–44 [Google Scholar]
  34. Eggers J. 1993. Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71:3458–60 [Google Scholar]
  35. Eggers J, Villermaux E. 2008. Physics of liquid jets. Rep. Prog. Phys. 71:036601 [Google Scholar]
  36. Eggleton CD, Stebe KJ. 1998. An adsorption-desorption-controlled surfactant on a deforming droplet. J. Colloid Interface Sci. 208:68–80 [Google Scholar]
  37. Ferri JK, Stebe KJ. 2000. Which surfactants reduce surface tension faster? A scaling argument for diffusion-controlled adsorption. Adv. Colloid Interface Sci. 85:61–97 [Google Scholar]
  38. Fuerstman MJ, Lai A, Thurlow ME, Shevkoplyas SS, Stone HA, Whitesides GM. 2007. The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7:1479–89 [Google Scholar]
  39. Funfschilling D, Debas H, Li HZ, Mason TG. 2009. Flow-field dynamics during droplet formation by dripping in hydrodynamic-focusing microfluidics. Phys. Rev. E 80:015301 [Google Scholar]
  40. Gañán-Calvo AM. 2008. Unconditional jetting. Phys. Rev. E 78:026304 [Google Scholar]
  41. Gañán-Calvo AM, Gonzalez-Prieto R, Riesco-Chueca P, Herrada MA, Flores-Mosquera M. 2007. Focusing capillary jets close to the continuum limit. Nat. Phys. 3:737–42 [Google Scholar]
  42. Ganesan S, Tobiska L. 2012. Arbitrary Lagrangian–Eulerian finite-element method for computation of two-phase flows with soluble surfactants. J. Comput. Phys. 231:3685–702 [Google Scholar]
  43. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM. 2006. Formation of droplets and bubbles in a microfluidic T-junction: scaling and mechanism of break-up. Lab Chip 6:437–46 [Google Scholar]
  44. Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA. 2004. Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl. Phys. Lett. 85:2649–51 [Google Scholar]
  45. Garstecki P, Stone HA, Whitesides GM. 2005. Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys. Rev. Lett. 94:164501 [Google Scholar]
  46. Glawdel T, Elbuken C, Ren C. 2011. Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab Chip 11:3774–84 [Google Scholar]
  47. Glawdel T, Elbuken C, Ren CL. 2012a. Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Phys. Rev. E 85:016322 [Google Scholar]
  48. Glawdel T, Elbuken C, Ren CL. 2012b. Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling. Phys. Rev. E 85:016323 [Google Scholar]
  49. Gopalan B, Katz J. 2010. Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets. Phys. Rev. Lett. 104:054501 [Google Scholar]
  50. Gordillo JM, Sevilla A, Campo-Cortés F. 2014. Global stability of stretched jets: conditions for the generation of monodisperse micro-emulsions using coflows. J. Fluid Mech. 738:335–57 [Google Scholar]
  51. Guillot P, Colin A, Ajdari A. 2008. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Phys. Rev. E 78:016307 [Google Scholar]
  52. Guillot P, Colin A, Utada AS, Ajdari A. 2007. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys. Rev. Lett. 99:104502 [Google Scholar]
  53. Gupta A, Kumar R. 2010. Flow regime transition at high capillary numbers in a microfluidic T-junction: viscosity contrast and geometry effect. Phys. Fluids 22:122001 [Google Scholar]
  54. Hashimoto M, Shevkoplyas SS, Zasonska B, Szymborski T, Garstecki P, Whitesides GM. 2008. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries. Small 4:1795–805 [Google Scholar]
  55. Herrada MA, Gañán-Calvo AM, Guillot P. 2008. Spatiotemporal instability of a confined capillary jet. Phys. Rev. E 78:046312 [Google Scholar]
  56. Herrada MA, Gañán-Calvo AM, López-Herrera JM. 2011. Generation of small mono-disperse bubbles in axisymmetric T-junction: the role of swirl. Phys. Fluids 23:072004 [Google Scholar]
  57. Hoang DA, Portela LM, Kleijn CR, Kreutzer MT, van Steijn V. 2013. Dynamics of droplet breakup in a T-junction. J. Fluid Mech. 717:R4 [Google Scholar]
  58. Holt DJ, Payne RJ, Abell C. 2010. Synthesis of novel fluorous surfactants for microdroplet stabilisation in fluorous oil streams. J. Fluor. Chem. 131:398–407 [Google Scholar]
  59. Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angile FE. et al. 2008. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8:1632–39 [Google Scholar]
  60. Hong J, Choi M, Edel JB, deMello AJ. 2010. Passive self-synchronized two-droplet generation. Lab Chip 10:2702–9 [Google Scholar]
  61. Humphry KJ, Ajdari A, Fernández-Nieves A, Stone HA, Weitz DA. 2009. Suppression of instabilities in multiphase flow by geometric confinement. Phys. Rev. E 79:056310 [Google Scholar]
  62. Husny J, Cooper-White JJ. 2006. The effect of elasticity on drop creation in T-shaped microchannels. J. Non-Newton. Fluid Mech. 137:121–36 [Google Scholar]
  63. Jakiela S, Makulska S, Korczyk PM, Garstecki P. 2011. Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities. Lab Chip 11:3603–8 [Google Scholar]
  64. Janssen PJA, Anderson PD. 2008. Surfactant-covered drops between parallel plates. Chem. Eng. Res. Des. 86:1388–96 [Google Scholar]
  65. Janssen PJA, Meijer HEH, Anderson PD. 2012. Stability and breakup of confined threads. Phys. Fluids 24:012102 [Google Scholar]
  66. Jensen MJ, Stone HA, Bruus H. 2006. A numerical study of two-phase Stokes flow in an axisymmetric flow-focusing device. Phys. Fluids 18:077103 [Google Scholar]
  67. Jeong W-C, Lim J-M, Choi J-H, Kim J-H, Lee Y-J. et al. 2012. Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices. Lab Chip 12:1446–53 [Google Scholar]
  68. Jin F, Balasubramaniam R, Stebe KJ. 2004. Surfactant adsorption to spherical particles: the intrinsic length scale governing the shift from diffusion to kinetic-controlled mass transfer. J. Adhes. 80:773–96 [Google Scholar]
  69. Jin F, Gupta NR, Stebe KJ. 2006. The detachment of a viscous drop in a viscous solution in the presence of a soluble surfactant. Phys. Fluids 18:022103 [Google Scholar]
  70. Jin F, Stebe KJ. 2007. The effects of a diffusion controlled surfactant on a viscous drop injected into a viscous medium. Phys. Fluids 19:112103 [Google Scholar]
  71. Jullien MC, Ching MJTM, Cohen C, Menetrier L, Tabeling P. 2009. Droplet breakup in microfluidic T-junctions at small capillary numbers. Phys. Fluids 21:072001 [Google Scholar]
  72. Koester S, Angile FE, Duan H, Agresti JJ, Wintner A. et al. 2008. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8:1110–15 [Google Scholar]
  73. Korczyk PM, Cybulski O, Makulska S, Garstecki P. 2011. Effects of unsteadiness of the rates of flow on the dynamics of formation of droplets in microfluidic systems. Lab Chip 11:173–75 [Google Scholar]
  74. Kotula AP, Anna SL. 2012. Probing timescales for colloidal particle adsorption using slug bubbles in rectangular microchannels. Soft Matter 8:10759–72 [Google Scholar]
  75. Krechetnikov R. 2012. Structure of Marangoni-driven singularities. Phys. Fluids 24:022111 [Google Scholar]
  76. Lee W, Walker LM, Anna SL. 2009. Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Phys. Fluids 21:032103 [Google Scholar]
  77. Leshansky AM, Pismen LM. 2009. Breakup of drops in a microfluidic T junction. Phys. Fluids 21:023303 [Google Scholar]
  78. Li W, Young EWK, Seo M, Nie Z, Garstecki P. et al. 2008. Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter 4:258–62 [Google Scholar]
  79. Link DR, Anna SL, Weitz DA, Stone HA. 2004. Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92:054503 [Google Scholar]
  80. Liu H, Zhang Y. 2010. Phase-field modeling droplet dynamics with soluble surfactants. J. Comput. Phys. 229:9166–87 [Google Scholar]
  81. Marín AG, Campo-Cortés F, Gordillo JM. 2009. Generation of micron-sized drops and bubbles through viscous coflows. Colloids Surf. A 344:2–7 [Google Scholar]
  82. Martin JD, Hudson SD. 2009. Mass transfer and interfacial properties in two-phase microchannel flows. New J. Phys. 11:115005 [Google Scholar]
  83. Mazutis L, Baret J-C, Griffiths AD. 2009. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion. Lab Chip 9:2665–72 [Google Scholar]
  84. Mazutis L, Griffiths AD. 2012. Selective droplet coalescence using microfluidic systems. Lab Chip 12:1800–6 [Google Scholar]
  85. McClements DJ. 2012. Advances in fabrication of emulsions with enhanced functionality using structural design principles. Curr. Opin. Colloid Interface Sci. 17:235–45 [Google Scholar]
  86. McDonald JCD, David C, Anderson JR, Chiu DT, Wu H. et al. 2000. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40 [Google Scholar]
  87. Moyle TM, Walker LM, Anna SL. 2012. Predicting conditions for microscale surfactant mediated tipstreaming. Phys. Fluids 24:082110 [Google Scholar]
  88. Moyle TM, Walker LM, Anna SL. 2013. Controlling thread formation during tipstreaming through an active feedback control loop. Lab Chip 13:4534–41 [Google Scholar]
  89. Mulligan MK, Rothstein JP. 2011. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows. Langmuir 27:9760–68 [Google Scholar]
  90. Mulligan MK, Rothstein JP. 2012. Scale-up and control of droplet production in coupled microfluidic flow-focusing geometries. Microfluid. Nanofluid. 13:65–73 [Google Scholar]
  91. Musterd M, van Steijn V, Kleijn C, Kreutzer MT. 2015. Calculating the volume of elongated bubbles and droplets in microchannels from a top view image. RSC Adv 5:16042–49 [Google Scholar]
  92. Nie Z, Seo M, Xu S, Lewis P, Mok M. et al. 2008. Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluid. Nanofluid. 5:585–94 [Google Scholar]
  93. Olbricht WL. 1996. Pore-scale prototypes of multiphase flow in porous media. Annu. Rev. Fluid Mech. 28:187–213 [Google Scholar]
  94. Pan M, Rosenfeld L, Kim M, Xu M, Lin E. et al. 2014. Fluorinated Pickering emulsions impede interfacial transport and form rigid interface for the growth of anchorage-dependent cells. ACS Appl. Mater. Interfaces 6:21446–53 [Google Scholar]
  95. Papageorgiou DT. 1995. On the breakup of viscous liquid threads. Phys. Fluids 7:1529–44 [Google Scholar]
  96. Park JM, Hulsen MA, Anderson PD. 2013. Numerical investigation of the effect of insoluble surfactant on drop formation in microfluidic device. Eur. Phys. J. Spec. Top. 222:199–210 [Google Scholar]
  97. Parthiban P, Khan SA. 2012. Filtering microfluidic bubble trains at a symmetric junction. Lab Chip 12:582–88 [Google Scholar]
  98. Pawar AB, Caggioni M, Ergun R, Hartel RW, Spicer PT. 2011. Arrested coalescence in Pickering emulsions. Soft Matter 7:7710–16 [Google Scholar]
  99. Pompano RR, Liu W, Du W, Ismagilov RF. 2011. Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions. Annu. Rev. Anal. Chem. 4:59–81 [Google Scholar]
  100. Prakash M, Gershenfeld N. 2007. Microfluidic bubble logic. Science 315:832–35 [Google Scholar]
  101. Priest C, Herminghaus S, Seemann R. 2006. Generation of monodisperse gel emulsions in a microfluidic device. Appl. Phys. Lett. 88:024106 [Google Scholar]
  102. Priest C, Reid MD, Whitby CP. 2011. Formation and stability of nanoparticle-stabilised oil-in-water emulsions in a microfluidic chip. J. Colloid Interface Sci. 363:301–6 [Google Scholar]
  103. Rayleigh L. 1879. On the capillary phenomena of jets. Proc. R. Soc. Lond. 29:71–97 [Google Scholar]
  104. Roché M, Aytouna M, Bonn D, Kellay H. 2009. Effect of surface tension variations on the pinch-off behavior of small fluid drops in the presence of surfactants. Phys. Rev. Lett. 103:264501 [Google Scholar]
  105. Romero PA, Abate AR. 2012. Flow focusing geometry generates droplets through a plug and squeeze mechanism. Lab Chip 12:5130–32 [Google Scholar]
  106. Rosenfeld L, Lin T, Derda R, Tang SKY. 2014. Review and analysis of performance metrics of droplet microfluidics systems. Microfluid. Nanofluid. 16:921–39 [Google Scholar]
  107. Sang L, Hong Y, Wang F. 2009. Investigation of viscosity effect on droplet formation in T-shaped microchannels by numerical and analytical methods. Microfluid. Nanofluid. 6:621–35 [Google Scholar]
  108. Schwalbe JT, Phelan FR Jr, Vlahovska PM, Hudson SD. 2011. Interfacial effects on droplet dynamics in Poiseuille flow. Soft Matter 7:7797–804 [Google Scholar]
  109. Shui L, van den Berg A, Eijkel JCT. 2011. Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics. Microfluid. Nanofluid. 11:87–92 [Google Scholar]
  110. Song H, Chen DL, Ismagilov RF. 2006. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. Engl. 45:7336–56 [Google Scholar]
  111. Steegmans MLJ, Schroën CGPH, Boom RM. 2009a. Generalised insights in droplet formation at T-junctions through statistical analysis. Chem. Eng. Sci. 64:3042–50 [Google Scholar]
  112. Steegmans MLJ, Schroën KGPH, Boom RM. 2009b. Characterization of emulsification at flat microchannel Y junctions. Langmuir 25:3396–401 [Google Scholar]
  113. Stoffel M, Wahl S, Lorenceau E, Höhler R, Mercier B, Angelescu DE. 2012. Bubble production mechanism in a microfluidic foam generator. Phys. Rev. Lett. 108:198302 [Google Scholar]
  114. Stone HA. 1994. Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26:65–102 [Google Scholar]
  115. Stone HA, Leal LG. 1990. The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220:161–86 [Google Scholar]
  116. Subramaniam AB, Mejean C, Abkarian M, Stone HA. 2006. Microstructure, morphology, and lifetime of armored bubbles exposed to surfactants. Langmuir 22:5986–90 [Google Scholar]
  117. Sugiura S, Nakajima M, Iwamoto S, Seki M. 2001. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17:5562–66 [Google Scholar]
  118. Sullivan MT, Stone HA. 2008. The role of feedback in microfluidic flow-focusing devices. Philos. Trans. R. Soc. Lond. A 366:2131–43 [Google Scholar]
  119. Suryo R, Basaran OA. 2006. Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Phys. Fluids 18:082102 [Google Scholar]
  120. Taylor GI. 1934. The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146:501–23 [Google Scholar]
  121. Tetradis-Meris G, Rossetti D, Pulido de Torres C, Cao R, Lian G, Janes R. 2009. Novel parallel integration of microfluidic device network for emulsion formation. Ind. Eng. Chem. Res. 48:8881–89 [Google Scholar]
  122. Thorsen T, Roberts RW, Arnold FH, Quake SR. 2001. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86:4163–66 [Google Scholar]
  123. Tomotika S. 1935. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A 150:322–37 [Google Scholar]
  124. Tseng Y, Prosperetti A. 2015. Local interfacial stability near a zero vorticity point. J. Fluid Mech. 776:5–36 [Google Scholar]
  125. Utada AS, Fernández-Nieves A, Gordillo JM, Weitz DA. 2008. Absolute instability of a liquid jet in a coflowing stream. Phys. Rev. Lett. 100:014502 [Google Scholar]
  126. Utada AS, Fernández-Nieves A, Stone HA, Weitz DA. 2007. Dripping to jetting transitions in coflowing liquid streams. Phys. Rev. Lett. 99:094502 [Google Scholar]
  127. van der Sman RGM, van der Graaf S. 2006. Diffuse interface model of surfactant adsorption onto flat and droplet interfaces. Rheol. Acta 46:3–11 [Google Scholar]
  128. van Dijke K, Veldhuis G, Schroen K, Boom R. 2009. Parallelized edge-based droplet generation (EDGE) devices. Lab Chip 9:2824–30 [Google Scholar]
  129. van Hoeve W, Gekle S, Snoeijer JH, Versluis M, Brenner MP, Lohse D. 2010. Breakup of diminutive Rayleigh jets. Phys. Fluids 22:122003 [Google Scholar]
  130. van Steijn V, Kleijn CR, Kreutzer MT. 2009. Flows around confined bubbles and their importance in triggering pinch-off. Phys. Rev. Lett. 103:214501 [Google Scholar]
  131. van Steijn V, Kleijn CR, Kreutzer MT. 2010. Predictive model for the size of bubbles and droplets created in microfluidic T-junctions. Lab Chip 10:2513–18 [Google Scholar]
  132. van Steijn V, Korczyk PM, Derzsi L, Abate AR, Weitz DA, Garstecki P. 2013. Block-and-break generation of microdroplets with fixed volume. Biomicrofluidics 7:024108 [Google Scholar]
  133. van Steijn V, Kreutzer MT, Kleijn CR. 2007. mu-PIV study of the formation of segmented flow in microfluidic T-junctions. Chem. Eng. Sci. 62:7505–14 [Google Scholar]
  134. Vladisavljević GT, Khalid N, Neves MA, Kuroiwa T, Nakajima M. et al. 2013. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery. Adv. Drug Deliv. Rev. 65:1626–63 [Google Scholar]
  135. Wan J, Stone HA. 2012. Coated gas bubbles for the continuous synthesis of hollow inorganic particles. Langmuir 28:37–41 [Google Scholar]
  136. Wang K, Lu YC, Xu JH, Luo GS. 2009. Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process. Langmuir 25:2153–58 [Google Scholar]
  137. Wang Q, Siegel M, Booty MR. 2014. Numerical simulation of drop and bubble dynamics with soluble surfactant. Phys. Fluids 26:052102 [Google Scholar]
  138. Whitesides GM, Stroock AD. 2001. Flexible methods for microfluidics. Phys. Today 54:42–48 [Google Scholar]
  139. Wong H, Radke CJ, Morris S. 1995a. The motion of long bubbles in polygonal capillaries. Part 1. Thin films. J. Fluid Mech. 292:71–94 [Google Scholar]
  140. Wong H, Radke CJ, Morris S. 1995b. The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow. J. Fluid Mech. 292:95–110 [Google Scholar]
  141. Xu JH, Dong PF, Zhao H, Tostado CP, Luo GS. 2012. The dynamic effects of surfactants on droplet formation in coaxial microfluidic devices. Langmuir 28:9250–58 [Google Scholar]
  142. Xu L, Lee H, Panchapakesan R, Oh KW. 2012. Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks. Lab Chip 12:3936–42 [Google Scholar]
  143. Young YN, Booty MR, Siegel M, Li J. 2009. Influence of surfactant solubility on the deformation and breakup of a bubble or capillary jet in a viscous fluid. Phys. Fluids 21:072105 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error