1932

Abstract

Digitalization transforms many industries, especially manufacturing, with new concepts such as Industry 4.0 and the Industrial Internet of Things. However, information technology also has the potential to integrate and connect the various steps in the supply chain. For the food industry, the situation is ambivalent: It has a high level of automatization, but the potential of digitalization is so far not used today. In this review, we discuss current trends in information technology that have the potential to transform the food industry into an integrated food system. We show how this digital transformation can integrate various activities within the agri-food chain and support the idea of integrated food systems. Based on a future-use case, we derive the potential of digitalization to tackle future challenges in the food industry and present a research agenda.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-012422-024649
2024-06-28
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-012422-024649.html?itemId=/content/journals/10.1146/annurev-food-012422-024649&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmadi A, Halstead M, McCool C. 2022.. Bonnbot-I: a precise weed management and crop monitoring platform. . In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 92029. Piscataway, NJ:: IEEE
    [Google Scholar]
  2. Alabi MO, Ngwenyama O. 2023.. Food security and disruptions of the global food supply chains during COVID-19: building smarter food supply chains for post COVID-19 era. . Br. Food J. 125:(1):16785
    [Crossref] [Google Scholar]
  3. Allmendinger A, Spaeth M, Saile M, Peteinatos GG, Gerhards R. 2022.. Precision chemical weed management strategies: a review and a design of a new CNN-based modular spot sprayer. . Agronomy 12:(7):1620
    [Crossref] [Google Scholar]
  4. Anastasiadis F, Manikas I, Apostolidou I, Wahbeh S. 2022.. The role of traceability in end-to-end circular agri-food supply chains. . Ind. Mark. Manag. 104::196211
    [Crossref] [Google Scholar]
  5. Arablouei R, Wang L, Currie L, Yates J, Alvarenga FA, Bishop-Hurley GJ. 2023.. Animal behavior classification via deep learning on embedded systems. . Comput. Electron. Agric. 207::107707
    [Crossref] [Google Scholar]
  6. Arad B, Balendonck J, Barth R, Ben-Shahar O, Edan Y, et al. 2020.. Development of a sweet pepper harvesting robot. . J. Field Robot. 37:(6):102739
    [Crossref] [Google Scholar]
  7. Ashton K. 2009.. That “Internet of Things” thing: in the real world things matter more than ideas. . RFID J. https://www.rfidjournal.com/that-internet-of-things-thing
    [Google Scholar]
  8. Baerdemaeker JD. 2023.. Artificial intelligence in the agri-food sector: applications, risks and impacts. Study, Panel Future Sci. Technol., Eur. Parliam., Brussels:. https://www.europarl.europa.eu/RegData/etudes/STUD/2023/734711/EPRS_STU(2023)734711_EN.pdf
    [Google Scholar]
  9. Baheti R, Gill H. 2011.. Cyber-physical systems. . Impact Control Technol. 12:(1):16166
    [Google Scholar]
  10. Balafoutis AT, Beck B, Fountas S, Tsiropoulos Z, Vangeyte J, et al. 2017.. Smart Farming TechnologiesDescription, Taxonomy and Economic Impact. Cham, Switz:.: Springer
    [Google Scholar]
  11. Bao J, Xie Q. 2022.. Artificial intelligence in animal farming: a systematic literature review. . J. Clean. Prod. 331::129956
    [Crossref] [Google Scholar]
  12. Barroso da Silva FL, Carloni P, Cheung D, Cottone G, Donnini S, et al. 2020.. Understanding and controlling food protein structure and function in foods: perspectives from experiments and computer simulations. . Annu. Rev. Food Sci. Technol. 11::36587
    [Crossref] [Google Scholar]
  13. Bechar A, Vigneault C. 2016.. Agricultural robots for field operations: concepts and components. . Biosyst. Eng. 149::94111
    [Crossref] [Google Scholar]
  14. Blender T, Buchner T, Fernandez B, Pichlmaier B, Schlegel C. 2016.. Managing a mobile agricultural robot swarm for a seeding task. . In IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 687986. Piscataway, NJ:: IEEE
    [Google Scholar]
  15. Bökle S, Paraforos DS, Reiser D, Griepentrog HW. 2022.. Conceptual framework of a decentral digital farming system for resilient and safe data management. . Smart Agric. Technol. 2::100039
    [Crossref] [Google Scholar]
  16. Bottani E, Vignali G, Tancredi GPC. 2020.. A digital twin model of a pasteurization system for food beverages: tools and architecture. . In 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 18. Piscataway, NJ:: IEEE
    [Google Scholar]
  17. Boysen J, Stein A. 2022.. AI-supported data annotation in the context of UAV-based weed detection in sugar beet fields using deep neural networks. . In 42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft, pp. 6368. Bonn:: Gesellschaft für Informatik e.V.
    [Google Scholar]
  18. Buşoniu L, Babuška R, De Schutter B. 2010.. Multi-Agent Reinforcement Learning: An Overview. Berlin:: Springer
    [Google Scholar]
  19. Cao K, Liu Y, Meng G, Sun Q. 2020.. An overview on edge computing research. . IEEE Access 8::8571428
    [Crossref] [Google Scholar]
  20. Cetinic E, She J. 2022.. Understanding and creating art with AI: review and outlook. . ACM Trans. Multimedia Comput. Commun. Appl. 18:(2):66
    [Crossref] [Google Scholar]
  21. Chaterji S, DeLay N, Evans J, Mosier N, Engel B, et al. 2021.. Lattice: a vision for machine learning, data engineering, and policy considerations for digital agriculture at scale. . IEEE Open J. Comput. Soc. 2::22740
    [Crossref] [Google Scholar]
  22. Chen L, Zhao K, Tao WQ. 2023.. Research on one-dimensional digital twin algorithm of plate heat exchanger. . Numer. Heat Transf. Part A. https://doi.org/10.1080/10407782.2023.2222906
    [Google Scholar]
  23. Chen S, Zhang T, Shi W. 2017.. Fog computing. . IEEE Internet Comput. 21:(2):46
    [Crossref] [Google Scholar]
  24. Chin R, Catal C, Kassahun A. 2023.. Plant disease detection using drones in precision agriculture. . Precis. Agric. 20::166382
    [Crossref] [Google Scholar]
  25. Chung MMS, Bao Y, Zhang BY, Le TM, Huang JY. 2022.. Life cycle assessment on environmental sustainability of food processing. . Annu. Rev. Food Sci. Technol. 13::21737
    [Crossref] [Google Scholar]
  26. Clark RL, McGuckin RL. 1996.. Variable Rate Application Technology: An Overview. Hoboken, NJ:: Wiley
    [Google Scholar]
  27. Cole R, Stevenson M, Aitken J. 2019.. Blockchain technology: implications for operations and supply chain management. . Supply Chain Manag. Int. J. 24:(4):46983
    [Crossref] [Google Scholar]
  28. Dannenberg P, Fuchs M, Riedler T, Wiedemann C. 2020.. Digital transition by COVID-19 pandemic? The German food online retail. . Tijdschr. Econ. Soc. Geogr. 111:(3):54360
    [Crossref] [Google Scholar]
  29. Das A, Rad P. 2020.. Opportunities and challenges in explainable artificial intelligence (XAI): a survey. . arXiv:2006.11371 [cs.CV]
  30. De Mauro A, Greco M, Grimaldi M. 2015.. What is big data? A consensual definition and a review of key research topics. . In AIP Conference Proceedings, Vol. 1644, pp. 97104. College Park, MD:: Am. Inst. Phys.
    [Google Scholar]
  31. Diez-Simon C, Mumm R, Hall RD. 2019.. Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. . Metabolomics 15:(3):41
    [Crossref] [Google Scholar]
  32. Dwivedi YK, Pandey N, Currie W, Micu A. 2024.. Leveraging ChatGPT and other generative artificial intelligence (AI)-based applications in the hospitality and tourism industry: practices, challenges and research agenda. . Int. J. Contemp. Hospitality Manag. 36:(1):112
    [Crossref] [Google Scholar]
  33. Ebert C, Louridas P. 2023.. Generative AI for software practitioners. . IEEE Softw. 40:(4):3038
    [Crossref] [Google Scholar]
  34. El Morr C, Ali-Hassan H. 2019.. Descriptive, Predictive, and Prescriptive Analytics. Cham, Switz:.: Springer
    [Google Scholar]
  35. Elbehri A, Chestnov R, eds. 2021.. Digital Agriculture in ActionArtificial Intelligence for Agriculture. Bangkok:: FAO ITU
    [Google Scholar]
  36. Ericksen P, Stewart B, Dixon J, Barling D, Loring P, et al. 2012.. The value of a food system approach. . In Food Security and Global Environmental Change, ed. J Ingram, P Ericksen, D Liverman , pp. 2545. Abingdon, UK:: Routledge
    [Google Scholar]
  37. Escamilla-Ambrosio PJ, Rodríguez-Mota A, Aguirre-Anaya E, Acosta-Bermejo R, Salinas-Rosales M. 2018.. Distributing Computing in the Internet of Things: Cloud, Fog and Edge Computing Overview. Cham, Switz.:: Springer
    [Google Scholar]
  38. Esposito B, Sessa MR, Sica D, Malandrino O. 2020.. Towards circular economy in the agri-food sector. A systematic literature review. . Sustainability 12:(18):7401
    [Crossref] [Google Scholar]
  39. Eur. Comm. 2019.. Ethics guidelines for trustworthy AI. Rep. , High Lev. Expert Group Artif. Intell., Brussels:
    [Google Scholar]
  40. Feldkamp N, Strassburger S. 2023.. From explainable AI to explainable simulation: using machine learning and XAI to understand system robustness. . In Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, pp. 96106. New York:: Assoc. Comput. Mach.
    [Google Scholar]
  41. Fountas S, Carli G, Sørensen C, Tsiropoulos Z, Cavalaris C, et al. 2015.. Farm management information systems: current situation and future perspectives. . Comput. Electron. Agric. 115::4050
    [Crossref] [Google Scholar]
  42. Fukushima K. 1980.. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. . Biol. Cybernet. 36:(4):193202
    [Crossref] [Google Scholar]
  43. Gerhards R, Andújar Sanchez D, Hamouz P, Peteinatos GG, Christensen S, Fernandez-Quintanilla C. 2022.. Advances in site-specific weed management in agriculture—a review. . Weed Res. 62:(2):12333
    [Crossref] [Google Scholar]
  44. Grieves MW. 2014.. Digital twin: manufacturing excellence through virtual factory replication. White Paper. https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf
    [Google Scholar]
  45. Gunning D, Aha D. 2019.. DARPA's explainable artificial intelligence (XAI) program. . AI Mag. 40:(2):4458
    [Google Scholar]
  46. Gunning D, Stefik M, Choi J, Miller T, Stumpf S, Yang GZ. 2019.. XAI—explainable artificial intelligence. . Sci. Robot. 4:(37):eaay7120
    [Crossref] [Google Scholar]
  47. Harvey J, Smith A, Goulding J, Branco Illodo I. 2020.. Food sharing, redistribution, and waste reduction via mobile applications: a social network analysis. . Ind. Mark. Manag. 88::43748
    [Crossref] [Google Scholar]
  48. Heil J, Valencia JM, Stein A. 2023.. Towards crop yield prediction using automated machine learning. . In 43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme, pp. 89100. Bonn:: Gesellschaft für Informatik e.V.
    [Google Scholar]
  49. Henrichs E, Noack T, Pinzon Piedrahita AM, Salem MA, Stolz J, Krupitzer C. 2022.. Can a byte improve our bite? An analysis of digital twins in the food industry. . Sensors 22:(1):115
    [Crossref] [Google Scholar]
  50. Herlitzius T, Noack P, Späth J, Barth R, Wolfert S, et al. 2022.. Technology Perspective. Berlin:: Springer
    [Google Scholar]
  51. Hesse M. 2017.. Cleaning 4.0. The way to intelligent tank cleaning. Tech. Rep. , Fraunhofer Inst. Proc. Eng. Packag., Freising, Ger.:
    [Google Scholar]
  52. Hornik K, Stinchcombe M, White H. 1989.. Multilayer feedforward networks are universal approximators. . Neural Netw. 2:(5):35966
    [Crossref] [Google Scholar]
  53. Jeschke S, Brecher C, Meisen T, Özdemir D, Eschert T. 2017.. Industrial Internet of Things and Cyber Manufacturing Systems. Cham, Switz:.: Springer
    [Google Scholar]
  54. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with alphafold. . Nature 596:(7873):58389
    [Crossref] [Google Scholar]
  55. Kagermann H, Lukas WD, Wahlster W. 2011.. Industrie 4.0: mit dem internet der dinge auf dem weg zur 4. industriellen revolution. . VDI Nachrichten 13::2
    [Google Scholar]
  56. Kamath R. 2018.. Food traceability on blockchain: Walmart's pork and mango pilots with IBM. . J. Br. Blockchain Assoc. 1:(1). https://doi.org/10.31585/jbba-1-1-(10)2018
    [Google Scholar]
  57. Kamilaris A, Fonts A, Prenafeta Boldú F. 2019.. The rise of blockchain technology in agriculture and food supply chains. . Trends Food Sci. Technol. 91::64052
    [Crossref] [Google Scholar]
  58. Khan WZ, Ahmed E, Hakak S, Yaqoob I, Ahmed A. 2019.. Edge computing: a survey. . Future Gener. Comput. Syst. 97::21935
    [Crossref] [Google Scholar]
  59. Kitchin R, Lauriault TP. 2015.. Small data in the era of big data. . GeoJournal 80::46375
    [Crossref] [Google Scholar]
  60. Koulouris A, Misailidis N, Petrides D. 2021.. Applications of process and digital twin models for production simulation and scheduling in the manufacturing of food ingredients and products. . Food Bioprod. Proc. 126::31733
    [Crossref] [Google Scholar]
  61. Kramer MP, Bitsch L, Hanf J. 2021.. Blockchain and its impacts on agri-food supply chain network management. . Sustainability 13:(4):2168
    [Crossref] [Google Scholar]
  62. Krause D. 2023.. Mitigating risks for financial firms using generative AI tools. SSRN Work. Pap. 4452600
    [Google Scholar]
  63. Krizhevsky A, Sutskever I, Hinton GE. 2012.. ImageNet classification with deep convolutional neural networks. . In Advances in Neural Information Processing Systems, Vol. 25, ed. F Pereira, CJ Burges, L Bottou, KQ Weinberger . Red Hook, NY:: Curran Assoc., Inc.
    [Google Scholar]
  64. Krupitzer C, Noack T, Borsum C. 2022.. Digital food twins combining data science and food science: system model, applications, and challenges. . Processes 10:(9):1781
    [Crossref] [Google Scholar]
  65. Krupitzer C, Roth FM, VanSyckel S, Schiele G, Becker C. 2015.. A survey on engineering approaches for self-adaptive systems. . Pervasive Mob. Comput. 17:(PB):184206
    [Crossref] [Google Scholar]
  66. Kumperščak S, Medved M, Terglav M, Wrzalik A, Obrecht M. 2019.. Traceability systems and technologies for better food supply chain management. . Conf. Q. Prod. Improv. 1:(1):56774
    [Google Scholar]
  67. Lardy R, Mialon MM, Wagner N, Gaudron Y, Meunier B, et al. 2022.. Understanding anomalies in animal behaviour: data on cow activity in relation to health and welfare. . Anim. Open Space 1:(1):100004
    [Crossref] [Google Scholar]
  68. LeCun Y, Bengio Y, Hinton G. 2015.. Deep learning. . Nature 521:(7553):43644
    [Crossref] [Google Scholar]
  69. LeCun Y, Boser B, Denker J, Henderson D, Howard R, et al. 1989.. Handwritten digit recognition with a back-propagation network. . Adv. Neural Inf. Proc. Syst. 2::396404
    [Google Scholar]
  70. Lesch V, Züfle M, Bauer A, Iffländer L, Krupitzer C, Kounev S. 2023.. A literature review of IoT and CPS—what they are, and what they are not. . J. Syst. Softw. 200::111631
    [Crossref] [Google Scholar]
  71. Lezoche M, Hernandez JE, del Mar Eva Alemany Díaz M, Panetto H, Kacprzyk J. 2020.. Agri-food 4.0: a survey of the supply chains and technologies for the future agriculture. . Comput. Ind. 117::103187
    [Crossref] [Google Scholar]
  72. Li K, Lee JY, Gharehgozli A. 2023.. Blockchain in food supply chains: a literature review and synthesis analysis of platforms, benefits and challenges. . Int. J. Prod. Res. 61:(11):352746
    [Crossref] [Google Scholar]
  73. Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D. 2018.. Machine learning in agriculture: a review. . Sensors 18:(8):2674
    [Crossref] [Google Scholar]
  74. Lin Y, Ma J, Wang Q, Sun DW. 2023.. Applications of machine learning techniques for enhancing nondestructive food quality and safety detection. . Crit. Rev. Food Sci. Nutr. 63:(12):164969
    [Crossref] [Google Scholar]
  75. Lobbezoo A, Qian Y, Kwon HJ. 2021.. Reinforcement learning for pick and place operations in robotics: a survey. . Robotics 10:(3):105
    [Crossref] [Google Scholar]
  76. Lüling N, Boysen J, Kuper H, Stein A. 2022.. A context aware and self-improving monitoring system for field vegetables. . In International Conference on Architecture of Computing Systems, pp. 22640. Berlin:: Springer
    [Google Scholar]
  77. Lüling N, Reiser D, Straub J, Stana A, Griepentrog HW. 2023.. Fruit volume and leaf-area determination of cabbage by a neural-network-based instance segmentation for different growth stages. . Sensors 23:(1):129
    [Crossref] [Google Scholar]
  78. Malik PK, Sharma R, Singh R, Gehlot A, Satapathy SC, et al. 2021.. Industrial internet of things and its applications in industry 4.0: state of the art. . Comput. Commun. 166::12539
    [Crossref] [Google Scholar]
  79. Meherishi L, Narayana SA, Ranjani KS. 2019.. Sustainable packaging for supply chain management in the circular economy: a review. . J. Clean. Prod. 237::117582
    [Crossref] [Google Scholar]
  80. Misra NN, Dixit Y, Al-Mallahi A, Bhullar MS, Upadhyay R, Martynenko A. 2022.. IoT, big data, and artificial intelligence in agriculture and food industry. . IEEE Internet Things J. 9:(9):630524
    [Crossref] [Google Scholar]
  81. Mitchell TM. 1997.. Machine Learning. New York:: McGraw-Hill. , 1st ed..
    [Google Scholar]
  82. Morella P, Lambán MP, Royo J, Sánchez JC. 2021.. Study and analysis of the implementation of 4.0 technologies in the agri-food supply chain: a state of the art. . Agronomy 11:(12):2526
    [Crossref] [Google Scholar]
  83. Moss R, Barker S, Falkeisen A, Gorman M, Knowles S, McSweeney MB. 2022.. An investigation into consumer perception and attitudes towards plant-based alternatives to milk. . Food Res. Int. 159::111648
    [Crossref] [Google Scholar]
  84. Mueller-Sim T, Jenkins M, Abel J, Kantor G. 2017.. The robotanist: a ground-based agricultural robot for high-throughput crop phenotyping. . In 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 363439. Piscataway, NJ:: IEEE
    [Google Scholar]
  85. Müller P, Schmid M. 2019.. Intelligent packaging in the food sector: a brief overview. . Foods 8:(1):16
    [Crossref] [Google Scholar]
  86. Murshed MGS, Murphy C, Hou D, Khan N, Ananthanarayanan G, Hussain F. 2021.. Machine learning at the network edge: a survey. . ACM Comput. Surv. 54:(8):170
    [Google Scholar]
  87. Osinga SA, Paudel D, Mouzakitis SA, Athanasiadis IN. 2022.. Big data in agriculture: between opportunity and solution. . Agric. Syst. 195::103298
    [Crossref] [Google Scholar]
  88. Paraforos DS, Griepentrog HW. 2021.. Digital farming and field robotics: internet of things, cloud computing, and big data. . In Fundamentals of Agricultural and Field Robotics, ed. M Karkee, Q Zhang , pp. 36585. Cham, Switz.:: Springer
    [Google Scholar]
  89. Petrescu DC, Vermeir I, Petrescu-Mag RM. 2020.. Consumer understanding of food quality, healthiness, and environmental impact: a cross-national perspective. . Int. J. Environ. Res. Public Health 17:(1):169
    [Crossref] [Google Scholar]
  90. Pylianidis C, Osinga S, Athanasiadis IN. 2021.. Introducing digital twins to agriculture. . Comput. Electron. Agric. 184::105942
    [Crossref] [Google Scholar]
  91. Qian C, Murphy SI, Orsi RH, Wiedmann M. 2023.. How can AI help improve food safety?. Annu. Rev. Food Sci. Technol. 14::51738
    [Crossref] [Google Scholar]
  92. Qian L, Luo Z, Du Y, Guo L. 2009.. Cloud computing: an overview. . In Cloud Computing, ed. MG Jaatun, G Zhao, C Rong , pp. 62631. Berlin:: Springer
    [Google Scholar]
  93. Rashid MA, Hossain L, Patrick JD. 2002.. The evolution of ERP systems: a historical perspective. . In Enterprise Resource Planning: Solutions and Management, ed. FFH Nah , pp. 3550. Hershey, PA:: IGI Global
    [Google Scholar]
  94. Razzaq MS, Maqbool F, Ilyas M, Jabeen H. 2023.. Evorecipes: a generative approach for evolving context-aware recipes. . IEEE Access 11::7414864
    [Crossref] [Google Scholar]
  95. Reardon T, Timmer CP. 2012.. The economics of the food system revolution. . Annu. Rev. Resourc. Econ. 4::22564
    [Crossref] [Google Scholar]
  96. Reiser D, Sehsah ES, Bumann O, Morhard J, Griepentrog HW. 2019.. Development of an autonomous electric robot implement for intra-row weeding in vineyards. . Agriculture 9:(1):18
    [Crossref] [Google Scholar]
  97. Riekert M, Klein A, Adrion F, Hoffmann C, Gallmann E. 2020.. Automatically detecting pig position and posture by 2D camera imaging and deep learning. . Comput. Electron. Agric. 174::105391
    [Crossref] [Google Scholar]
  98. Rohleder B, Minhoff C. 2019.. Die ernährung 4.0: status quo, chancen und herausforderungen. . Bitkom. https://docplayer.org/131571181-Ernaehrung-4-0-status-quo-chancen-und-herausforderungen.html
    [Google Scholar]
  99. Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. 2022.. High-resolution image synthesis with latent diffusion models. . In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1068495. Piscataway, NJ:: IEEE
    [Google Scholar]
  100. Rosenblatt F. 1958.. The perceptron: a probabilistic model for information storage and organization in the brain. . Psychol. Rev. 65:(6):386
    [Crossref] [Google Scholar]
  101. Roy D, Srivastava R, Jat M, Karaca MS. 2022.. A Complete Overview of Analytics Techniques: Descriptive, Predictive, and Prescriptive. Cham, Switz:.: Springer
    [Google Scholar]
  102. Rumelhart DE, Widrow B, Lehr MA. 1994.. The basic ideas in neural networks. . Commun. ACM 37:(3):8793
    [Crossref] [Google Scholar]
  103. Sa I, Popović M, Khanna R, Chen Z, Lottes P, et al. 2018.. WeedMap: a large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming. . Remote Sens. 10:(9):1423
    [Crossref] [Google Scholar]
  104. Sawik T. 2013.. Integrated selection of suppliers and scheduling of customer orders in the presence of supply chain disruption risks. . Int. J. Prod. Res. 51:(23–24):700622
    [Crossref] [Google Scholar]
  105. Setiabudi KJ, Siagian H, Tarigan ZJH. 2021.. The effect of transformational leadership on firm performance through ERP systems and supply chain integration in the food and beverage industry. . Petra Int. J. Bus. Stud. 4:(1):6573
    [Crossref] [Google Scholar]
  106. Seymour DJ, Cant JP, Osborne VR, Chud TCS, Schenkel FS, Miglior F. 2022.. A novel method of estimating milking interval-adjusted 24-h milk yields in dairy cattle milked in automated milking systems. . Anim. Open Space 1:(1):100011
    [Crossref] [Google Scholar]
  107. Shockley J, Dillon CR, Stombaugh T, Shearer S. 2012.. Whole farm analysis of automatic section control for agricultural machinery. . Precis. Agric. 13::41120
    [Crossref] [Google Scholar]
  108. Shockley JM, Dillon CR, Stombaugh TS. 2011.. A whole farm analysis of the influence of auto-steer navigation on net returns, risk, and production practices. . J. Agric. Appl. Econ. 43:(1):5775
    [Crossref] [Google Scholar]
  109. Shrivastava C, Schudel S, Shoji K, Onwude D, da Silva FP, et al. 2023.. Digital twins for selecting the optimal ventilated strawberry packaging based on the unique hygrothermal conditions of a shipment from farm to retailer. . Postharvest Biol. Technol. 199::112283
    [Crossref] [Google Scholar]
  110. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, et al. 2017.. Mastering the game of go without human knowledge. . Nature 550:(7676):35459
    [Crossref] [Google Scholar]
  111. Smitt C, Halstead M, Zaenker T, Bennewitz M, McCool C. 2021.. Pathobot: a robot for glasshouse crop phenotyping and intervention. . In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 232430. Piscataway, NJ:: IEEE
    [Google Scholar]
  112. Srivastava AK, Safaei N, Khaki S, Lopez G, Zeng W, et al. 2022.. Winter wheat yield prediction using convolutional neural networks from environmental and phenological data. . Sci. Rep. 12:(1):3215
    [Crossref] [Google Scholar]
  113. Stökle K, Kruse A. 2019.. Extraction of sugars from forced chicory roots. . Biomass Convers. Biorefin. 9::699708
    [Crossref] [Google Scholar]
  114. Tan J, Xu J. 2020.. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: a review. . Artif. Intel. Agric. 4::10415
    [Google Scholar]
  115. Van Berkum S, Dengerink J, Ruben R. 2018.. The food systems approach: sustainable solutions for a sufficient supply of healthy food. Tech. Rep. , Wageningen Econ. Res., Wageningen:
    [Google Scholar]
  116. van der Hoek W, Wooldridge M. 2008.. Multi-agent systems. . In Handbook of Knowledge Representation, ed. F van Harmelen, V Lifschitz, B Porter , pp. 887928. Amsterdam:: Elsevier
    [Google Scholar]
  117. Van Dis EA, Bollen J, Zuidema W, van Rooij R, Bockting CL. 2023.. ChatGPT: five priorities for research. . Nature 614:(7947):22426
    [Crossref] [Google Scholar]
  118. Venkataramanan R, Roy K, Raj K, Prasad R, Zi Y, et al. 2023.. Cook-gen: robust generative modeling of cooking actions from recipes. . arXiv:2306.01805v1 [cs.CL]
  119. Verboven P, Defraeye T, Datta AK, Nicolai B. 2020.. Digital twins of food process operations: the next step for food process models?. Curr. Opin. Food Sci. 35::7987
    [Crossref] [Google Scholar]
  120. Verdouw C, Tekinerdogan B, Beulens A, Wolfert S. 2021.. Digital twins in smart farming. . Agric. Syst. 189::103046
    [Crossref] [Google Scholar]
  121. Verdouw CN, Wolfert J, Beulens AJM, Rialland A. 2016.. Virtualization of food supply chains with the internet of things. . J. Food Eng. 176::12836
    [Crossref] [Google Scholar]
  122. Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, et al. 2019.. Grandmaster level in StarCraft II using multi-agent reinforcement learning. . Nature 575:(7782):35054
    [Crossref] [Google Scholar]
  123. Vly. 2021.. Werde Tester:in. . VlyFoods. https://www.vlyfoods.com/blogs/blog/werdetester
    [Google Scholar]
  124. Wang S, Chen H, Sun B. 2020.. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). . Food Chem. 315::126158
    [Crossref] [Google Scholar]
  125. Wang S, Wan J, Li D, Zhang C. 2016.. Implementing smart factory of industrie 4.0: an outlook. . Int. J. Distrib. Sens. Netw. 12:(1):3159805
    [Crossref] [Google Scholar]
  126. Wilson DI, Chew YMJ. 2023.. Fluid mechanics in food engineering. . Curr. Opin. Food Sci. 51::101038
    [Crossref] [Google Scholar]
  127. Yadav VS, Singh A, Gunasekaran A, Raut RD, Narkhede BE. 2022.. A systematic literature review of the agro-food supply chain: challenges, network design, and performance measurement perspectives. . Sustain. Prod. Consum. 29::685704
    [Crossref] [Google Scholar]
  128. YoY. 2021.. Environmentally friendly, sustainable & fair—transparency as a USP on the green market. . YoY. https://yoy.cool/en-us/transparency-as-usp-on-green-market#:∼:text=Transparency%20as%20a%20trademark,that%20they%20would%20buy%20it
    [Google Scholar]
  129. Yu W, Patros P, Young B, Klinac E, Walmsley TG. 2022.. Energy digital twin technology for industrial energy management: classification, challenges and future. . Renew. Sustain. Energy Rev. 161::112407
    [Crossref] [Google Scholar]
  130. Zadeh AH, Akinyemi BA, Jeyaraj A, Zolbanin HM. 2018.. Cloud ERP systems for small-and-medium enterprises: a case study in the food industry. . J. Cases Inform. Technol. 20:(4):5370
    [Crossref] [Google Scholar]
  131. Zaukuu JLZ, Bazar G, Gillay Z, Kovacs Z. 2020.. Emerging trends of advanced sensor based instruments for meat, poultry and fish quality—a review. . Crit. Rev. Food Sci. Nutr. 60:(20):344360
    [Crossref] [Google Scholar]
  132. [Google Scholar]
  133. Zhou H, Wang X, Au W, Kang H, Chen C. 2022.. Intelligent robots for fruit harvesting: recent developments and future challenges. . Precis. Agric. 23:(5):1856907
    [Crossref] [Google Scholar]
  134. Zhu L, Spachos P, Pensini E, Plataniotis KN. 2021.. Deep learning and machine vision for food processing: a survey. . Curr. Res. Food Sci. 4::23349
    [Crossref] [Google Scholar]
  135. Zhu M, Huang D, Hu XJ, Tong WH, Han BL, et al. 2020.. Application of hyperspectral technology in detection of agricultural products and food: a review. . Food Sci. Nutr. 8:(10):520614
    [Crossref] [Google Scholar]
  136. Zimpel T, Riekert M, Klein A, Hoffmann C. 2021.. Machine learning for predicting animal welfare risks in pig farming. . Landtechnik 76::2435
    [Google Scholar]
/content/journals/10.1146/annurev-food-012422-024649
Loading
/content/journals/10.1146/annurev-food-012422-024649
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error