1932

Abstract

A recent ecological study demonstrated a significant association between an increased risk of nonalcoholic liver disease mortality and freshwater cyanobacterial blooms. Moreover, previous epidemiology studies highlighted a relationship between cyanotoxins in drinking water with liver cancer and damage and colorectal cancer. These associations identified cyanobacterial blooms as a global public health and environmental problem, affecting freshwater bodies that are important sources for drinking water, agriculture, and aquafarms. Furthermore, as a result of climate change, it is expected that our freshwater environments will become more favorable for producing harmful blooms that produce various cyanotoxins. Food is an important source of cyanotoxin exposure to humans, but it has been less addressed. This paper synthesizes information from the studies that have investigated cyanotoxins in freshwater and food on a global scale. We also review and summarize the health effects and exposure routes of cyanotoxins and candidates for cyanotoxin treatment methods that can be applied to food.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-030216-030116
2017-02-28
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/food/8/1/annurev-food-030216-030116.html?itemId=/content/journals/10.1146/annurev-food-030216-030116&mimeType=html&fmt=ahah

Literature Cited

  1. Aaronson S, Berner T, Dubinsky Z. 1980. Microalgae as a Source of Chemicals and Natural Products Rome, Italy: FAO [Google Scholar]
  2. Acero JL, Rodriguez E, Meriluoto J. 2005. Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins. Water Res 39:81628–38 [Google Scholar]
  3. Al-Sammak MA, Hoagland KD, Cassada D, Snow DD. 2014. Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants. Toxins 6:2488–508 [Google Scholar]
  4. Anderson DM, Glibert PM, Burkholder JM. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:4704–26 [Google Scholar]
  5. Aráoz R, Molgó J, Marsac N. 2010. Neurotoxic cyanobacterial toxins. Toxicon 56:5813–28 [Google Scholar]
  6. Babica P, Bláha L, Maršálek B. 2006. Exploring the natural role of microcystins: a review of effects on photoautotrophic organisms. J. Phycol. 42:19–20 [Google Scholar]
  7. Backer LC, Landsberg JH, Miller M, Keel K, Taylor TK. 2013. Canine cyanotoxin poisonings in the United States (1920s–2012): review of suspected and confirmed cases from three data sources. Toxins 5:91597–628 [Google Scholar]
  8. Batista T, de Sousa G, Suput JS, Rahmani R, Šuput D. 2003. Microcystin-LR causes the collapse of actin filaments in primary human hepatocytes. Aquat. Toxicol. 65:185–91 [Google Scholar]
  9. Bazin E, Mourot A, Humpage AR, Fessard V. 2010. Genotoxicity of a freshwater cyanotoxin, cylindrospermopsin, in two human cell lines: Caco‐2 and HepaRG. Environ. Mol. Mutagen. 51:3251–59 [Google Scholar]
  10. Beattie KA, Ressler J, Wiegand C, Krause E, Codd GA. et al. 2003. Comparative effects and metabolism of two microcystins and nodularin in the brine shrimp Artemia salina. Aquat. Toxicol. 62:3219–26 [Google Scholar]
  11. Best JH, Pflugmacher S, Wiegand C, Eddy FB, Metcalf JS, Codd GA. 2002. Effects of enteric bacterial and cyanobacterial lipopolysaccharides, and of microcystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio). Aquat. Toxicol. 60:3223–31 [Google Scholar]
  12. Bourne DG, Jones GJ, Blakeley RL, Jones A, Negri AP, Riddles P. 1996. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl. Environ. Microbiol. 62:114086–94 [Google Scholar]
  13. Bourne DG, Riddles P, Jones GJ, Smith W, Blakeley RL. 2001. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environ. Toxicol. 16:6523–34 [Google Scholar]
  14. Brand LE, Pablo J, Compton A, Hammerschlag N, Mash DC. 2010. Cyanobacterial blooms and the occurrence of the neurotoxin, beta-N-methylamino-l-alanine (BMAA), in South Florida aquatic food webs. Harmful Algae 9:6620–35 [Google Scholar]
  15. Burch MD. 2008. Effective doses, guidelines & regulations. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs KH Hudnell 831–53 New York: Springer [Google Scholar]
  16. Cagide E, Becher PG, Louzao MC, Espiña B, Vieytes MR. et al. 2014. Hapalindoles from the Cyanobacterium fischerella: potential sodium channel modulators. Chem. Res. Toxicol. 27:101696–706 [Google Scholar]
  17. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C. et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:71761–72 [Google Scholar]
  18. Carmichael W. 2001. Health effects of toxin-producing cyanobacteria: “The CyanoHABs.” Human and ecological risk assessment. Hum. Ecol. Risk Assess. Int. J. 7:51393–407 [Google Scholar]
  19. Carmichael W, Boyer GL. 2016. Health impacts from cyanobacteria harmful algae blooms: implications for the North American Great Lakes. Harmful Algae 54:194–212 [Google Scholar]
  20. Chen J, Dai J, Zhang H, Wang C, Zhou G. et al. 2010. Bioaccumulation of microcystin and its oxidative stress in the apple (Malus pumila). Ecotoxicology 19:4796–803 [Google Scholar]
  21. Chen J, Song L, Dai J, Gan N, Liu Z. 2004. Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 43:4393–400 [Google Scholar]
  22. Chen J, Xie P. 2005. Seasonal dynamics of the hepatotoxic microcystins in various organs of four freshwater bivalves from the large eutrophic lake Taihu of subtropical China and the risk to human consumption. Environ. Toxicol. 20:6572–84 [Google Scholar]
  23. Chen L, Chen J, Zhang X, Xie P. 2016. A review of reproductive toxicity of microcystins. J. Hazard. Mater. 301:381–99 [Google Scholar]
  24. Chen W, Jia Y, Li E, Zhao S, Zhou Q. et al. 2012. Soil-based treatments of mechanically collected cyanobacterial blooms from Lake Taihu: efficiencies and potential risks. Environ. Sci. Technol. 46:2413370–376 [Google Scholar]
  25. Cheung MY, Liang S, Lee J. 2013. Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health. J. Microbiol. 51:11–10 [Google Scholar]
  26. Chiswell RK, Shaw GR, Eaglesham G, Smith MJ, Norris RL. et al. 1999. Stability of cylindrospermopsin, the toxin from the cyanobacterium, Cylindrospermopsis raciborskii: effect of pH, temperature, and sunlight on decomposition. Environ. Toxicol. 14:1155–61 [Google Scholar]
  27. Chorus I, Bartram J. 1999. Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring and Management Abingdon, UK: Spon Press [Google Scholar]
  28. City Toledo. 2014. Preliminary Study from City of Toledo on Water Crisis. https://www.toledoblade.com/attachment/2014/08/04/72-page-preliminary-study-from-the-City-of-Toledo-on-water-crisis
  29. City Toledo. 2015. Algal Toxin Tap Level Reports. http://toledo.oh.gov/services/public-utilities/water-treatment/microcystin-tap-level-reports/
  30. Codd GA, Metcalf JS, Beattie KA. 1999. Retention of Microcystis aeruginosa and microcystin by salad lettuce (Lactuca sativa) after spray irrigation with water containing cyanobacteria. Toxicon 37:81181–85 [Google Scholar]
  31. Corbel S, Bouaïcha N, Mougin C. 2014a. Dynamics of the toxic cyanobacterial microcystin-leucine-arginine peptide in agricultural soil. Environ. Chem. Lett. 12:4535–41 [Google Scholar]
  32. Corbel S, Mougin C, Bouaïcha N. 2014b. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 96:1–15 [Google Scholar]
  33. Costa IAS, Azevedo SMF, Senna PAC, Bernardo RR, Costa SM, Chellappa NT. 2006. Occurrence of toxin-producing cyanobacteria blooms in a Brazilian semiarid reservoir. Braz. J. Biol. 66:1B211–19 [Google Scholar]
  34. Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G. et al. 2005. Diverse taxa of cyanobacteria produce β-N-methylamino-l-alanine, a neurotoxic amino acid. PNAS 102:145074–78 [Google Scholar]
  35. Creely SJ, McTernan PG, Kusminski CM, Da Silva NF, Khanolkar M. et al. 2007. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292:3E740–47 [Google Scholar]
  36. Crush JR, Briggs LR, Sprosen JM, Nichols SN. 2008. Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce. Environ. Toxicol. 23:2246–52 [Google Scholar]
  37. Davis TW, Berry DL, Boyer GL, Gobler CJ. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:5715–25 [Google Scholar]
  38. de Magalhães VF, Soares RM, Azevedo SM. 2001. Microcystin contamination in fish from the Jacarepaguá Lagoon (Rio de Janeiro, Brazil): ecological implication and human health risk. Toxicon 39:71077–85 [Google Scholar]
  39. Dietrich D, Hoeger S. 2005. Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): a reasonable or misguided approach. Toxicol. Appl. Pharmacol. 203:3273–89 [Google Scholar]
  40. Edwards C, Lawton LA. 2009. Bioremediation of cyanotoxins. Adv. Appl. Microbiol. 67:109–29 [Google Scholar]
  41. Environ. Prot. Agency. 2015a. Health effects support document for the cyanobacterial toxin microcystins EPA Office Water Rep. EPA-820R15102, Environ. Prot. Agency, Washington, DC. https://www.epa.gov/sites/production/files/2015-06/documents/microcystins-support-report-2015.pdf [Google Scholar]
  42. Environ. Prot. Agency. 2015b. Drinking water health advisory for the cyanobacterial microcystin toxins EPA Office Water Rep. EPA-820R15100, Environ. Prot. Agency, Washington, DC. https://www.epa.gov/sites/production/files/2015-06/documents/microcystins-report-2015.pdf [Google Scholar]
  43. Environ. Prot. Agency. 2015c. Drinking water health advisory for the cyanobacterial toxin cylindrospermopsin EPA Office Water Rep. EPA-820R15101, Environ. Prot. Agency, Washington, DC. https://www.epa.gov/sites/production/files/2015-06/documents/cylindrospermopsin-report-2015.pdf [Google Scholar]
  44. Environ. Prot. Agency. 2015d. Health effects support document for the cyanobacterial toxin anatoxin-a EPA Office Water Rep. EPA-820R15104, Environ. Prot. Agency, Washington, DC. https://www.epa.gov/sites/production/files/2015-06/documents/anatoxin-a-report-2015.pdf [Google Scholar]
  45. Falconer IR. 1993. Mechanism of toxicity of cyclic peptide toxins from blue-green algae. Algal Toxins Seafood Drinking Water IR Falconer 177–186 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  46. Falconer IR. 2008. Health effects associated with controlled exposures to cyanobacterial toxins. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs HK Hudnell 607–12 New York: Springer [Google Scholar]
  47. Fire SE, Pruden J, Couture D, Wang Z, Bottein MYD. et al. 2012. Saxitoxin exposure in an endangered fish: association of a shortnose sturgeon mortality event with a harmful algal bloom. Mar. Ecol. Prog. Ser. 460:145–53 [Google Scholar]
  48. Fischer WJ, Altheimer S, Cattori V, Meier PJ, Dietrich DR, Hagenbuch B. 2005. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol. Appl. Pharmacol. 203:3257–63 [Google Scholar]
  49. Fischer WJ, Garthwaite I, Miles CO, Ross KM, Aggen JB. et al. 2001. Congener-independent immunoassay for microcystins and nodularins. Environ. Sci. Technol. 35:244849–56 [Google Scholar]
  50. Fitzgerald DJ, Cunliffe DA, Burch MD. 1999. Development of health alerts for cyanobacteria and related toxins in drinking water in South Australia. Environ. Toxicol. 14:1203–9 [Google Scholar]
  51. Froscio SM, Humpage AR, Burcham PC, Falconer IR. 2003. Cylindrospermopsin‐induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environ. Toxicol. 18:4243–51 [Google Scholar]
  52. Fujiki H, Suganuma M, Suguri H, Yoshizawa S, Takagi K. et al. 1990. New tumor promoters from marine natural products. ACS Symp. Ser. 418:232–240 [Google Scholar]
  53. Gantar M, Svirčev Z. 2008. Microalgae and cyanobacteria: food for thought. J. Phycol. 44:2260–68 [Google Scholar]
  54. Gilroy DJ, Kauffman KW, Hall RA, Huang X, Chu FS. 2000. Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements. Environ. Health Perspect. 108:5435 [Google Scholar]
  55. Graham JL, Loftin KA, Meyer MT, Ziegler AC. 2010. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environ. Sci. Technol. 44:197361–68 [Google Scholar]
  56. Grobbelaar JU. 2003. Quality control and assurance: crucial for the sustainability of the applied phycology industry. J. Appl. Phycol. 15:2–3209–15 [Google Scholar]
  57. Gugger M, Lenoir S, Berger C, Ledreux A, Druart JC. et al. 2005. First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxin-a associated with dog neurotoxicosis. Toxicon 45:7919–28 [Google Scholar]
  58. Gupta N, Pant SC, Vijayaraghavan R, Rao PL. 2003. Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology 188:2285–96 [Google Scholar]
  59. Gupta S. 1998. Cyanobacterial toxins: microcystin-LR. Guidelines Drinking Water Qual Geneva, Switz: WHO, 2nd ed.. [Google Scholar]
  60. Guzmán-Guillén R, Prieto AI, Moreno I, Soria ME, Cameán AM. 2011. Effects of thermal treatments during cooking, microwave oven and boiling, on the unconjugated microcystin concentration in muscle of fish Oreochromis niloticus. Food Chem. Toxicol. 49:92060–67 [Google Scholar]
  61. Hallegraeff GM. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99 [Google Scholar]
  62. Hardy FJ, Johnson A, Hamel K, Preece E. 2015. Cyanotoxin bioaccumulation in freshwater fish, Washington State, USA. Environ. Monit. Assess. 187:111–15 [Google Scholar]
  63. He X, Armah A, Dionysiou DD. 2013. Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254nm activation of hydrogen peroxide, persulfate and peroxymonosulfate. J. Photochem. Photobiol. A. 251:160–66 [Google Scholar]
  64. He X, Zhang G, de la Cruz AA, O'Shea KE, Dionysiou DD. 2014. Degradation mechanism of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals in homogeneous UV/H2O2 process. Environ. Sci. Technol. 48:84495–504 [Google Scholar]
  65. Health Canada. 2002. Guidelines for Canadian Drinking Water Quality: Supporting Documentation Cyanobacterial Toxins-Microcystin-LR http://healthycanadians.gc.ca/publications/healthy-living-vie-saine/water-cyanobacteria-cyanobacterie-eau/index-eng.php [Google Scholar]
  66. Hereman TC, Bittencourt‐Oliveira MC. 2012. Bioaccumulation of microcystins in lettuce. J. Phycol. 48:61535–37 [Google Scholar]
  67. Hilborn ED, Roberts VA, Backer L, DeConno E, Egan JS. et al. 2014. Algal bloom–associated disease outbreaks among users of freshwater lakes—United States, 2009–2010. Morb. Mortal. Wkly. Rep. 63:111–15 [Google Scholar]
  68. Hitzfeld BC, Höger SJ, Dietrich DR. 2000. Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ. Health Perspect. 108:Suppl. 1113 [Google Scholar]
  69. Ho L, Onstad G, Von Gunten U, Rinck-Pfeiffer S, Craig K, Newcombe G. 2006. Differences in the chlorine reactivity of four microcystin analogues. Water Res 40:61200–9 [Google Scholar]
  70. Ho L, Sawade E, Newcombe G. 2012. Biological treatment options for cyanobacteria metabolite removal: a review. Water Res 46:51536–48 [Google Scholar]
  71. Holland A, Kinnear S. 2013. Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and/or physiological aide. Mar. Drugs 11:72239–58 [Google Scholar]
  72. Hu C, Rea C, Yu Z, Lee J. 2016. Relative importance of Microcystis abundance and diversity in determining microcystin dynamics in Lake Erie coastal wetland and downstream beach water. J. Appl. Microbiol. 120:1138–51 [Google Scholar]
  73. Humpage AR, Hardy SJ, Moore EJ, Froscio SM, Falconer IR. 2000. Microcystins (cyanobacterial toxins) in drinking water enhance the growth of aberrant crypt foci in the mouse colon. J. Toxicol. Environ. Health Part A 61:3155–65 [Google Scholar]
  74. Ibelings BW, Chorus I. 2007. Accumulation of cyanobacterial toxins in freshwater “seafood” and its consequences for public health: a review. Environ. Pollut. 150:1177–92 [Google Scholar]
  75. Imanishi S, Kato H, Mizuno M, Tsuji K, Harada KI. 2005. Bacterial degradation of microcystins and nodularin. Chem. Res. Toxicol. 18:3591–98 [Google Scholar]
  76. Jensen GS, Ginsberg DI, Drapeau C. 2001. Blue-green algae as an immuno-enhancer and biomodulator. J. Am. Med. Assoc 324–30 [Google Scholar]
  77. Jungblut AD, Neilan BA. 2006. Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Arch. Microbiol. 185:2107–14 [Google Scholar]
  78. Jungo E, Visser PM, Stroom J, Mur LR. 2001. Artificial mixing to reduce growth of the blue-green alga Microcystis in Lake Nieuwe Meer, Amsterdam: an evaluation of 7 years of experience. Water Sci. Technol. Water Supply 1:117–23 [Google Scholar]
  79. Karjalainen M, Pääkkönen JP, Peltonen H, V Sipiä, Valtonen T, Viitasalo M. 2008. Nodularin concentrations in Baltic Sea zooplankton and fish during a cyanobacterial bloom. Mar. Biol. 155:5483–91 [Google Scholar]
  80. Keleti G, Sykora JL. 1982. Production and properties of cyanobacterial endotoxins. Appl. Environ. Microbiol. 43:1104–9 [Google Scholar]
  81. Kellmann R, Mills T, Neilan BA. 2006. Functional modeling and phylogenetic distribution of putative cylindrospermopsin biosynthesis enzymes. J. Mol. Evol. 62:3267–80 [Google Scholar]
  82. Kumar N, Garg A. 2014. Structural optimization and docking studies of anatoxin-a: a potent neurotoxin. Afr. J. Biotechnol. 13:303092 [Google Scholar]
  83. Lankoff A, Kolataj A. 2001. Influence of microcystin-YR and nodularin on the activity of some proteolytic enzymes in mouse liver. Toxicon 39:2419–23 [Google Scholar]
  84. Lawton LA, Robertson PK, Cornish BJ, Jaspars M. 1999. Detoxification of microcystins (cyanobacterial hepatotoxins) using TiO2 photocatalytic oxidation. Environ. Sci. Technol. 33:5771–75 [Google Scholar]
  85. Lee S, Jiang X, Manubolu M, Ludsin S, Martin J, Lee J. 2016. Health warning: microcystin accumulates in vegetables and their soils when irrigated with microcystin-contaminated water. Submitted
  86. Lefebvre KA, Bill BD, Erickson A, Baugh KA, O'Rourke L. et al. 2008. Characterization of intracellular and extracellular saxitoxin levels in both field and cultured Alexandrium spp. samples from Sequim Bay, Washington. Mar. Drugs 6:2103–16 [Google Scholar]
  87. Li X, Xu L, Zhou W, Zhao Q, Wang Y. 2016. Chronic exposure to microcystin-LR affected mitochondrial DNA maintenance and caused pathological changes of lung tissue in mice. Environ. Pollut. 210:48–56 [Google Scholar]
  88. Liras V, Lindberg M, Nyström P, Annadotter H, Lawton LA, Graf B. 1998. Can ingested cyanobacteria be harmful to the signal crayfish (Pacifastacus leniusculus). Freshwater Biol 39:2233–42 [Google Scholar]
  89. Liu S, Hu X, Jiang W, Ma L, Cai M. et al. 2016. Degradation of microcystins from Microcystis aeruginosa by 185-nm UV irradiation. Water Air Soil Pollut 227:41–5 [Google Scholar]
  90. Liu X, Chen Z, Zhou N, Shen J, Ye M. 2010. Degradation and detoxification of microcystin-LR in drinking water by sequential use of UV and ozone. J. Environ. Sci. 22:121897–902 [Google Scholar]
  91. Llewellyn LE, Negri AP, Doyle J, Baker PD, Beltran EC, Neilan BA. 2001. Radioreceptor assays for sensitive detection and quantitation of saxitoxin and its analogues from strains of the freshwater cyanobacterium, Anabaena circinalis. Environ. Sci. Technol. 35:71445–51 [Google Scholar]
  92. Lopez CB, Jewett EB, Dortch Q, Walton BT, Hudnell HK. 2008. Scientific Assessment of Freshwater Harmful Algal Blooms. Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology. Washington, DC: Joint Subcomm. Ocean Sci. Technol https://www.whitehouse.gov/sites/default/files/microsites/ostp/frshh2o0708.pdf [Google Scholar]
  93. Lürling M, Faassen EJ, van Eenennaam JS. 2011. Effects of the cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) on the survival, mobility and reproduction of Daphnia magna. J. Plankton Res. 33:2333–42 [Google Scholar]
  94. Magalhães VF, Marinho MM, Domingos P, Oliveira AC, Costa SM. et al. 2003. Microcystins (cyanobacteria hepatotoxins) bioaccumulation in fish and crustaceans from Sepetiba Bay (Brasil, RJ). Toxicon 42:3289–95 [Google Scholar]
  95. Manage PM, Edwards C, Singh BK, Lawton LA. 2009. Isolation and identification of novel microcystin-degrading bacteria. Appl. Environ. Microbiol. 75:216924–28 [Google Scholar]
  96. Masaki T, Chiba S, Tatsukawa H, Yasuda T, Noguchi H. et al. 2004. Adiponectin protects LPS‐induced liver injury through modulation of TNF‐α in KK‐Ay obese mice. Hepatology 40:1177–84 [Google Scholar]
  97. Matthiensen A, Beattie KA, Yunes JS, Kaya K, Codd GA. 2000. [d-Leu 1]Microcystin-LR, from the cyanobacterium Microcystis RST 9501 and from a Microcystis bloom in the Patos Lagoon estuary, Brazil. Phytochemistry 55:5383–87 [Google Scholar]
  98. Mayer AM, Clifford J, Aldulescu M, Frenkel J, Holland MA. et al. 2011. Cyanobacterial Microcystis aeruginosa lipopolysaccharide elicits release of superoxide anion, thromboxane B2, cytokines, chemokines, and matrix metalloproteinase-9 by rat microglia. Toxicol. Sci. 121:63–72 [Google Scholar]
  99. Metcalf JS, Barakate A, Codd GA. 2004. Inhibition of plant protein synthesis by the cyanobacterial hepatotoxin, cylindrospermopsin. FEMS Microbiol. Lett. 235:1125–29 [Google Scholar]
  100. Miao HF, Qin F, Tao GJ, Tao WY, Ruan WQ. 2010. Detoxification and degradation of microcystin-LR and-RR by ozonation. Chemosphere 79:4355–61 [Google Scholar]
  101. Minist. Health. 2008. Drinking-Water Standard for New Zealand 2005 (Revised 2008) Wellington, N.Z: Minist. Health http://www.health.govt.nz/publication/drinking-water-standards-new-zealand-2005-revised-2008 [Google Scholar]
  102. Mohamed ZA, Al Shehri AM. 2009. Microcystins in groundwater wells and their accumulation in vegetable plants irrigated with contaminated waters in Saudi Arabia. J. Hazard. Mater. 172:1310–5 [Google Scholar]
  103. Molica RJ, Oliveira EJ, Carvalho PV, Costa AN, Cunha MC. et al. 2005. Occurrence of saxitoxins and an anatoxin-a(s)-like anticholinesterase in a Brazilian drinking water supply. Harmful Algae 4:4743–53 [Google Scholar]
  104. Mondo K, Glover WB, Murch SJ, Liu G, Cai Y. et al. 2014. Environmental neurotoxins β-N-methylamino-l-alanine (BMAA) and mercury in shark cartilage dietary supplements. Food Chem. Toxicol. 70:26–32 [Google Scholar]
  105. Natl. Health Med. Res. Counc. (NHMRC). 2016. Australian drinking water guidelines 6 (Version 3.2). Canberra, Aust: NHMRC https://www.nhmrc.gov.au/_files_nhmrc/file/publications/nhmrc_adwg_6_february_2016.pdf
  106. Oh HM, Lee SJ, Kim JH, Kim HS, Yoon BD. 2001. Seasonal variation and indirect monitoring of microcystin concentrations in Daechung Reservoir, Korea. Appl. Environ. Microbiol. 67:41484–89 [Google Scholar]
  107. Ohio Environmental Protection Agency (Ohio EPA). 2014. State fiscal year 2014 annual report. http://www.epa.ohio.gov/Portals/47/facts/2014ar.pdf
  108. Ördög V, Stirk WA, Lenobel R, Bancířová M, Strnad M. et al. 2004. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J. Appl. Phycol. 16:4309–14 [Google Scholar]
  109. Osswald J, Rellan S, Carvalho AP, Gago A, Vasconcelos V. 2007. Acute effects of an anatoxin-a producing cyanobacterium on juvenile fish—Cyprinus carpio L. Toxicon 49:5693–98 [Google Scholar]
  110. Ostensvik O, Skulberg OM, Underdal B, Hormazabal V. 1998. Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria: a comparative study of bacterial bioassays. J. Appl. Microbiol. 84:61117–24 [Google Scholar]
  111. Pablo J, Banack SA, Cox PA, Johnson TE, Papapetropoulos S. et al. 2009. Cyanobacterial neurotoxin BMAA in ALS and Alzheimer's disease. Acta. Neurol. Scand. 120:4216–25 [Google Scholar]
  112. Paerl HW, Fulton RS, Moisander PH, Dyble J. 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 1:76–113 [Google Scholar]
  113. Paerl HW, Huisman J. 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1:127–37 [Google Scholar]
  114. Patterson GML, Baldwin CL, Bolis CM. 1991. Antineoplastic activity of cultured blue‐green algae (cyanophyta). J. Phycol. 27:4530–36 [Google Scholar]
  115. Patterson GML, Larsen LK, Moore RE. 1994. Bioactive natural products from blue-green algae. J. Appl. Phycol. 6:2151–57 [Google Scholar]
  116. Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B. 2010. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar. Drugs 8:51650–80 [Google Scholar]
  117. Peuthert A, Chakrabarti S, Pflugmacher S. 2007. Uptake of microcystins‐LR and ‐LF (cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation). Environ. Toxicol. 22:4436–42 [Google Scholar]
  118. Pflugmacher S, Hofmann J, Hübner B. 2007. Effects on growth and physiological parameters in wheat (Triticum aestivum L.) grown in soil and irrigated with cyanobacterial toxin contaminated water. Environ. Toxicol. Chem. 26:122710–16 [Google Scholar]
  119. Phujomjai Y, Somdee A, Somdee T. 2015. Biodegradation of microcystin [Dha7] MC-LR by a novel microcystin-degrading bacterium in an internal airlift loop bioreactor. Water Sci. Technol. 73:267–74 [Google Scholar]
  120. Prieto A, Campos A, Cameán A, Vasconcelos V. 2011. Effects on growth and oxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystisaeruginosa). Ecotoxicol. Environ. Safety 74:71973–80 [Google Scholar]
  121. Qiao RP, Li N, Qi XH, Wang QS, Zhuang YY. 2005. Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide. Toxicon 45:6745–52 [Google Scholar]
  122. Qin B, Zhu G, Gao G, Zhang Y, Li W. et al. 2010. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ. Manag. 45:1105–12 [Google Scholar]
  123. Rapala J, Berg KA, Lyra C, Niemi RM, Manz W. et al. 2005a. Paucibacter toxinivorans gen. nov, sp. nov, a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int. J. Syst. Evol. Microbiol. 55:41563–68 [Google Scholar]
  124. Rapala J, Lahti K, Sivonen K, Niemelä SI. 1994. Biodegradability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin‐a. Lett. Appl. Microbiol. 19:6423–28 [Google Scholar]
  125. Rapala J, Robertson A, Negri AP, Berg KA, Tuomi P. et al. 2005b. First report of saxitoxin in Finnish lakes and possible associated effects on human health. Environ. Toxicol. 20:3331–40 [Google Scholar]
  126. Rastogi RP, Sinha RP, Incharoensakdi A. 2014. The cyanotoxin-microcystins: current overview. Rev. Environ. Sci. Biotechnol. 13:2215–49 [Google Scholar]
  127. Rodríguez E, Onstad GD, Kull TP, Metcalf JS, Acero JL, von Gunten U. 2007b. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Res 41:153381–93 [Google Scholar]
  128. Rodríguez E, Sordo A, Metcalf JS, Acero JL. 2007a. Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate. Water Res 41:92048–56 [Google Scholar]
  129. Saqrane S, Ouahid Y, El Ghazali I, Oudra B, Bouarab L, del Campo FF. 2009. Physiological changes in Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins: a laboratory experimental approach. Toxicon 53:7786–96 [Google Scholar]
  130. Saqrane S, Oudra B. 2009. CyanoHAB occurrence and water irrigation cyanotoxin contamination: ecological impacts and potential health risks. Toxins 1:2113–122 [Google Scholar]
  131. Schopf JW. 1993. Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:5108640–46 [Google Scholar]
  132. Senogles P, Shaw G, Smith M. 2000. Degradation of the cyanobacterial toxin cylindrospermopsin, from Cylindrospermopsis raciborskii, by chlorination. Toxicon 38:91203–13 [Google Scholar]
  133. Senogles PJ, Scott JA, Shaw G, Stratton H. 2001. Photocatalytic degradation of the cyanotoxin cylindrospermopsin, using titanium dioxide and UV irradiation. Water Res 35:51245–55 [Google Scholar]
  134. Sitoki L, Kurmayer R, Rott E. 2012. Spatial variation of phytoplankton composition, biovolume, and resulting microcystin concentrations in the Nyanza Gulf (Lake Victoria, Kenya). Hydrobiologia 691:1109–22 [Google Scholar]
  135. Smith MJ, Shaw GR, Eaglesham GK, Ho L, Brookes JD. 2008. Elucidating the factors influencing the biodegradation of cylindrospermopsin in drinking water sources. Environ. Toxicol. 23:3413–21 [Google Scholar]
  136. Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM. et al. 1987. Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237:4814517–22 [Google Scholar]
  137. Spoof L, Berg KA, Rapala J, Lahti K, Lepistö L. et al. 2006. First observation of cylindrospermopsin in Anabaena lapponica isolated from the boreal environment (Finland). Environ. Toxicol. 21:6552–60 [Google Scholar]
  138. Thirumavalavan M, Hu YL, Lee JF. 2012. Effects of humic acid and suspended soils on adsorption and photo-degradation of microcystin-LR onto samples from Taiwan reservoirs and rivers. J. Hazard. Mater. 217:323–29 [Google Scholar]
  139. Towner RA, Sturgeon SA, Khan N, Hou H, Swartz HM. 2002. In vivo assessment of nodularin-induced hepatotoxicity in the rat using magnetic resonance techniques (MRI, MRS and EPR oximetry). Chem. Biol. Interact. 139:3231–50 [Google Scholar]
  140. Toyofuku H. 2006. Joint FAO/WHO/IOC activities to provide scientific advice on marine biotoxins (research report). Mar. Pollut. Bull. 52:121735–45 [Google Scholar]
  141. Tsuji K, Watanuki T, Kondo F, Watanabe MF, Nakazawa H. et al. 1997. Stability of microcystins from cyanobacteria—IV. Effect of chlorination on decomposition. Toxicon 35:71033–41 [Google Scholar]
  142. Tsuji K, Watanuki T, Kondo F, Watanabe MF, Suzuki S. et al. 1995. Stability of microcystins from cyanobacteria—II. Effect of UV light on decomposition and isomerization. Toxicon 33:121619–31 [Google Scholar]
  143. Tsujimura S, Tsukada H, Nakahara H, Nakajima T, Nishino M. 2000. Seasonal variations of Microcystis populations in sediments of Lake Biwa, Japan. Hydrobiologia 434:1–3183–92 [Google Scholar]
  144. Ufelmann H, Krüger T, Luckas B, Schrenk D. 2012. Human and rat hepatocyte toxicity and protein phosphatase 1 and 2A inhibitory activity of naturally occurring desmethyl-microcystins and nodularins. Toxicology 293:159–67 [Google Scholar]
  145. Vasconcelos VM. 1995. Uptake and depuration of the heptapeptide toxin microcystin-LR in Mytilus galloprovincialis. Aquat. Toxicol. 32:2227–37 [Google Scholar]
  146. Velez P, Sierralta J, Alcayaga C, Fonseca M, Loyola H. et al. 2001. A functional assay for paralytic shellfish toxins that uses recombinant sodium channels. Toxicon 39:7929–35 [Google Scholar]
  147. Vézie C, Rapala J, Vaitomaa J, Seitsonen J, Sivonen K. 2002. Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microb. Ecol. 43:4443–54 [Google Scholar]
  148. Vlad S, Anderson WB, Peldszus S, Huck PM. 2014. Removal of the cyanotoxin anatoxin-a by drinking water treatment processes: a review. J. Water Health 12:4601–17 [Google Scholar]
  149. Wang S, Ma W, Fang Y, Jia M, Huang Y. 2014. Bismuth oxybromide promoted detoxification of cylindrospermopsin under UV and visible light illumination. Appl. Catal. B. 150:380–88 [Google Scholar]
  150. Welker M, Steinberg C. 2000. Rates of humic substance photosensitized degradation of microcystin-LR in natural waters. Environ. Sci. Technol. 34:163415–19 [Google Scholar]
  151. Westrick JA, Szlag DC, Southwell BJ, Sinclair J. 2010. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Anal. Bioanalytical Chem. 397:51705–14 [Google Scholar]
  152. World Health Organization (WHO). 2003. Guidelines for Safe Recreational Water Environments: Coastal and Fresh Waters 1 Geneva, Switz: WHO [Google Scholar]
  153. World Health Organization (WHO). 2011. Guidelines for Drinking-Water Quality Geneva, Switz: WHO, 4th ed.. [Google Scholar]
  154. Wormer L, Cirés S, Carrasco D, Quesada A. 2008. Cylindrospermopsin is not degraded by co-occurring natural bacterial communities during a 40-day study. Harmful Algae 7:2206–13 [Google Scholar]
  155. Xu Q, Chen W, Gao G. 2008. Seasonal variations in microcystin concentrations in Lake Taihu, China. Environ. Monit. Assess. 145:1–375–79 [Google Scholar]
  156. Yan S, Jia A, Merel S, Snyder SA, O'Shea KE. et al. 2016. Ozonation of cylindrospermopsin (cyanotoxin): degradation mechanisms and cytotoxicity assessments. Environ. Sci. Technol. 50:1437–46 [Google Scholar]
  157. Yang F, Zhou Y, Yin L, Zhu G, Liang G, Pu Y. 2014. Microcystin-degrading activity of an indigenous bacterial strain Stenotrophomonas acidaminiphila MC-LTH2 isolated from Lake Taihu. PLOS ONE 9:1e86216 [Google Scholar]
  158. Yokoyama A, Park HD. 2002. Mechanism and prediction for contamination of freshwater bivalves (Unionidae) with the cyanobacterial toxin microcystin in hypereutrophic Lake Suwa, Japan. Environ. Toxicol. 17:5424–33 [Google Scholar]
  159. Yu S, Zhao N, Zi X. 2001. The relationship between cyanotoxin (microcystin, MC) in pond-ditch water and primary liver cancer in China. Chin. J. Oncol. 23:296–99 [Google Scholar]
  160. Žegura B, Sedmak B, Filipič M. 2003. Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon 41:141–48 [Google Scholar]
  161. Zhang F, Lee J, Liang S, Shum CK. 2015. Cyanobacteria blooms and non-alcoholic liver disease: evidence from a county level ecological study in the United States. Environ. Health 14:41 [Google Scholar]
  162. Zhang H, Huang Q, Ke Z, Yang L, Wang X, Yu Z. 2012. Degradation of microcystin-LR in water by glow discharge plasma oxidation at the gas–solution interface and its safety evaluation. Water Res 46:196554–62 [Google Scholar]
  163. Zhang W, Rao YR. 2012. Application of a eutrophication model for assessing water quality in Lake Winnipeg. J. Great Lakes Res. 38:158–73 [Google Scholar]
/content/journals/10.1146/annurev-food-030216-030116
Loading
/content/journals/10.1146/annurev-food-030216-030116
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error