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Abstract

People differ in their requirements for and responses to nutrients and bioac-
tive molecules in the diet. Many inputs contribute to metabolic heterogene-
ity (including variations in genetics, epigenetics, microbiome, lifestyle, diet
intake, and environmental exposure). Precision nutrition is not about devel-
oping unique prescriptions for individual people but rather about stratifying
people into different subgroups of the population on the basis of biomarkers
of the above-listed sources of metabolic variation and then using this strat-
ification to better estimate the different subgroups’ dietary requirements,
thereby enabling better dietary recommendations and interventions. The
hope is that we will be able to subcategorize people into ever-smaller groups
that can be targeted in terms of recommendations, but we will never achieve
this at the individual level, thus, the choice of precision nutrition rather than
personalized nutrition to designate this new field.This review focusesmainly
on genetically related sources of metabolic heterogeneity and identifies chal-
lenges that need to be overcome to achieve a full understanding of the com-
plex interactions between the many sources of metabolic heterogeneity that
make people differ from one another in their requirements for and responses
to foods. It also discusses the commercial applications of precision nutrition.
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INTRODUCTION

New science and better technology are changing how nutrition science is translated intomore pre-
cise applications for improving the diets of both people and animals. Nutrients and food-derived
bioactive molecules must be absorbed and metabolized before their final uses as sources of energy,
catalysts for reactions, ligands for signaling receptors, or structural components of cells. Some
metabolic pathways of interest are not mammalian but rather are pathways of metabolism in the
symbiotic microbiota of the gastrointestinal tract. For many, if not all, steps of metabolism, there
is considerable interindividual variation. This metabolic heterogeneity can result in differences
in how people (or animals) respond to nutrients or bioactive molecules. If scientists could un-
derstand the sources of this nutrition-relevant metabolic heterogeneity, they could predict these
variations, use this information to develop better estimates of an individual’s dietary requirements,
and develop better dietary recommendations and interventions. This is the basis for a new disci-
pline called precision nutrition, sometimes referred to as personalized nutrition (de Toro-Martin
et al. 2017). Large groups of people, usually of similar ancestry, share common underlying causes
of metabolic heterogeneity (genetic, epigenetic, microbiota, and environmental differences). It is
possible to stratify people so that policy and products can be targeted to reasonably sized subpop-
ulations, making it economically viable to develop policy or food-based interventions that address
metabolic inefficiencies present in large subgroups of people. For example, gluten-free foods are
already available for people with genetic variants that result in gluten intolerance; lactose-free
foods are available for people with deficient expression of lactase.

Precision nutrition methods could considerably reduce the unexplained variance in responses
between people that so often plagues nutrition research. These noisy data can make it hard to
conclude a nutrition intervention is effective. The lumping together of individuals who respond
to treatment with those who do not respond generates underestimation of effect size and high
variances. Precision nutrition enables scientists to better understand why there are responders and
nonresponders to dietary interventions and to appropriately design studies powered to account for
metabolic heterogeneity (Figure 1).

Precision nutrition is science based and is similar in concept to precision medicine/
pharmacology, which is already widely implemented, for example, the US Food and Drug Ad-
ministration requires labeling that recommends genetic testing to determine whether a person is
a fast or slow metabolizer of the drug Warfarin (30–35% of patients carry CYP2C9 gene variants
and need a lower initial dose), and this genetic testing is reimbursable in the United States (Cent.
Medicare Medicaid Serv. 2009, Ji et al. 2016, Shukla et al. 2018). The metabolic pathways for most
drugs evolved not because people (or animals) used these drugs but because the pathways had to
manage the metabolism of foods to which humans (animals) and their symbiotic microbiota were
exposed.

We know enough to begin implementing precision nutrition, and current applications of pre-
cision nutrition have been successful, creating a foundation for the development of even better
versions of precision nutrition when new tools, data, and understanding become available. Just as
is true for precision medicine, there will be a process of continuous quality improvement that re-
sults eventually in the best understanding of the complex interactions that contribute to metabolic
heterogeneity; thus, undoubtedly, precision nutrition will be continuously refined over time.Many
inputs contribute to metabolic heterogeneity (including variations in genetics, epigenetics, symbi-
otic microbiota, lifestyle, diet intake, and environmental exposures). Not enough is known about
their specific effects on dietary requirements and responses to diet. Also, there are evolving com-
putational tools and mathematical models needed to integrate across the many sources of variance
so that we can fully predict the effects of metabolic heterogeneity in an individual. The systems
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Figure 1

Precision nutrition enables scientists to better understand why there are responders and nonresponders to
dietary interventions. Because of genetic, epigenetic, microbiota, and environmental differences, metabolic
heterogeneity can result in differences in how people (or animals) respond to nutrients or bioactive
molecules. When heterogeneous people are lumped together in studies of dietary interventions, large
interindividual variance makes it difficult to detect significant effects. Large groups of people, usually of
similar ancestry, share common underlying causes of metabolic heterogeneity. Using appropriate biomarkers,
including genetic data, researchers can stratify people so that responders and nonresponders can be
predicted for an intervention, and the resulting data analyzed separately, thereby reducing interindividual
variability and enhancing the capacity to detect significant differences between groups.

biology model approach has been recently discussed in detail (Bauer & Thiele 2018, van Ommen
et al. 2017). Methods for measuring all these inputs are not at the same stage of sophistication;
therefore, inputs that can be easily measured tend to be prominent components of the first mathe-
matical models developed for use in precision nutrition.Whereas scientists were recently report-
ing the effects of individual gene variants, they are now modeling the effects of complex patterns
of gene variants and adding changes in microbial composition and microbial gene expression to
these models (Bashiardes et al. 2018).

This review focuses mainly on genetically related sources of heterogeneity and identifies chal-
lenges that need to be overcome to achieve a full understanding of the complex interactions be-
tween the many sources of metabolic heterogeneity that make people differ from one another in
their requirements for and responses to foods.

GENETIC VARIATION AS A SOURCE OF NUTRITION-RELEVANT
METABOLIC HETEROGENEITY

Metabolic heterogeneity can derive from variants in genes that code for mRNA that is then trans-
lated into proteins as well as from variants in noncoding regions of genes. People have more than
five million variations in their genetic code [any individual person has at least 50,000 of these sin-
gle nucleotide polymorphisms (SNPs)] (Overbeek et al. 2005, Sabeti et al. 2007); they also have
gene copy number variations (Reiter et al. 2016, Sharma et al. 2016) and tandem repeat (stretches
of DNA that are highly variable in length) variations (Bilgin Sonay et al. 2015). These gene vari-
ants are inherited from ancient ancestors and therefore differ among people depending on their
heritage (Overbeek et al. 2005, Sabeti et al. 2007). Animals have similar genetic variation (Kiddy
1979). These gene variants can perturb the expression and function of enzymes, transporters, or
receptors and their ligands by changing the expression of the gene or the rate of translation of
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mRNA into protein via modification of amino acid residues that affect the half-life of the pro-
tein(s) and/or alteration of the protein’s structure, thereby changing how an enzyme binds to its
substrate and products. These are called functional gene variants.

There are many examples of functional gene variants that affect the metabolism of dietary
components.Cytochrome P450–1A2 is responsible for approximately 95%of caffeinemetabolism
(Rasmussen et al. 2002) and a functional SNP in the gene coding for this cytochrome (CYP1A2
rs762551) decreases the amount of the cytochrome, resulting in slower caffeine metabolism
(Sachse et al. 1999), which explains much of the interindividual variability in caffeine concen-
trations after the same caffeine dose. Similarly, functional SNPs in the gene coding for the aryl-
hydrocarbon receptor for caffeine (AHR rs6968865 and rs4410790) can cause interindividual vari-
ability in the brain’s response to caffeine ingestion ( Josse et al. 2012).

There is a solid understanding of how functional SNPs alter the dietary requirements for the
nutrient choline (Zeisel 2006). In the United States, intake of choline is significantly lower than
recommended (Wallace & Fulgoni 2016), probably because the foods that are higher in choline
(e.g., eggs, fatty meats) often are avoided due to dietary restriction of cholesterol intake (Zeisel
et al. 2003). Choline can be derived from endogenous synthesis in the liver (see later discussion as
to gender specificity) or from the diet. Choline is then transported by a carrier into cells, where it
is either phosphorylated, acetylated, or oxidized. The phosphorylated forms of choline are used to
make membrane phospholipids, the oxidized form (betaine) is used as a methyl donor, and acetyl-
choline is a neurotransmitter (Zeisel 2006). The methyl-donation function of choline intersects
with the pathways for folate, vitamin B12, and vitamin B6 metabolism (Zeisel 2006) (Figure 2).
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Figure 2

Polymorphic genes that influence choline requirements in people. Choline can be derived from endogenous synthesis in the liver by
methylating phosphatidylethanolamine; it can also be obtained from the diet. Choline is then transported by a carrier into cells, where
it is either phosphorylated, acetylated, or oxidized. The phosphorylated forms of choline are used to make membrane phospholipids,
the oxidized form (betaine) is used as a methyl donor, and acetylcholine is a neurotransmitter. The methyl-donation function of choline
intersects with the pathways for folate metabolism. Genes (red) with common polymorphisms influence how much choline a person
needs to maintain optimal liver and muscle function.
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Choline intake in the pregnant female is critical for normal fetal development (Boeke et al.
2013; Caudill et al. 2018; Shaw et al. 2004, 2006; Wang et al. 2016; Zeisel & Blusztajn 1994).
Adults eating diets low in choline develop fatty liver and/or muscle breakdown that resolves when
choline is restored to their diets (Fischer et al. 2007).Choline is an essential part of the diet formen
and postmenopausal women,butmany premenopausal women canmake a source of choline (phos-
phatidylcholine) in their livers and for this reason need to eat less choline in their diet (Fischer
et al. 2007). The capacity to make choline (in the form of phosphatidylcholine) is dependent on
expression of the gene PEMT, and estrogen concentrations present in premenopausal and preg-
nant women are high enough that they can induce expression of this gene, with maximal induction
achieved at estrogen concentrations obtained in the second trimester of pregnancy, when women
have an increased demand for choline to build their baby (Resseguie et al. 2007). Men and post-
menopausal women do not have enough estrogen to fully induce the gene’s expression. A very
common SNP in PEMT (rs12325817-C) reduces PEMT ’s inducibility by estrogen, and women
with this SNP have an increased dietary choline requirement; they are 25 times more likely to
develop liver or muscle damage when eating a low-choline diet (Fischer et al. 2010, Resseguie
et al. 2011). This polymorphism is much more common in women of European ancestry than in
those of African ancestry (da Costa et al. 2006, Fischer et al. 2007, Silver et al. 2015). Other SNPs
in genes related to one-carbon metabolism also alter the dietary requirement for choline in both
men and women (da Costa et al. 2006, 2014; Ganz et al. 2017; Kohlmeier et al. 2005). For example,
premenopausal women with the very common 5,10-methylenetetrahydrofolate dehydrogenase 1
polymorphism (MTHFD1 rs2236225-A) were 15 times more likely than noncarriers to develop
signs of choline deficiency when fed a low-choline diet (Kohlmeier et al. 2005).This is because this
polymorphism decreases the availability of 5-methyltetrahydrofolate, an important methyl donor,
thereby increasing the use of choline for methyl donation (Kohlmeier et al. 2005). Some common
SNPs determine which organ fails first in people fed diets low in choline; people with polymor-
phisms in the gene encoding for the choline transporter, SLC44A1 (rs7873937-G; rs2771040-
G; rs6479313-G; rs16924529-A; rs3199966-C) as well as in the genes encoding for the kinases
that phosphorylate choline once inside the cell, CHKB (rs1557502-A) and CHKA (rs2512612-T,
rs6591331-T), were much more likely to develop muscle damage (da Costa et al. 2014).Men with
polymorphisms in the gene that converts choline to betaine, CHDH (rs12676-A), have defective
mitochondrial function in their sperm ( Johnson et al. 2012).

Functional gene variants do not occur only in one-carbon metabolism; many SNPs exert
readily apparent effects on metabolism. Vitamin D, like choline, can be derived from endogenous
biosynthesis or from the diet (Miller 2017), and interacting and complex metabolic pathways
are encoded by many genes involved in vitamin D metabolism (Figure 3). Vitamin D is formed
from 7-deoxycholesterol in a reaction catalyzed by delta-7-sterol reductase (encoded by DHCR7)
(Wang et al. 2010). Whether derived from food or endogenous synthesis, vitamin D needs to
be activated by conversion to 25-hydroxy-vitamin D (25-OH-vitamin D) and then to 1,25-OH-
vitamin D. The various forms of vitamin D are carried in the blood bound to vitamin D–binding
protein (encoded by GC) and transported between the skin, liver, kidney, and other target organs.
A P450 cytochrome C (CYP2R1; with some contributions from mitochondrial CYP27B1 and
CYP27A1) encodes the 25-hydrolyase activity (Miller 2017). The resulting 25-OH-vitamin D in
the kidney filtrate must then combine with cubulin (encoded by CUBN) to allow it to be taken
up into the renal tubule epithelia where another monooxygenase (encoded by CYP27B1) forms
1,25-OH2-vitamin D. This activated vitamin D then binds to its receptor (encoded by VDR),
a nuclear zinc finger protein. A complex containing a dimer of VDR-1,25-OH2-vitamin D and
retinoic acid receptor–retinoic vitamin D (the retinoic acid receptor is encoded by RARA) then
binds to multiple binding elements on genes (including genes that regulate mineralization of bone
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Figure 3

Polymorphic genes that influence vitamin D requirements in people. There are interacting and complex
metabolic pathways encoded by many genes involved in vitamin D metabolism (red). Common
polymorphisms in these genes modify the dietary requirements for vitamin D. Vitamin D is formed from
7-deoxycholesterol in the skin, which depends on UV light exposure; thus, genetic variation in skin color
matters. Whether derived from food or endogenous synthesis, vitamin D needs to be activated by conversion
to 25-hydroxy-vitamin D (25-OH-vitamin D) and then to 1,25-OH-vitamin D. The various forms of vitamin
D are carried in the blood bound to vitamin D–binding protein and transported between the skin, liver,
kidney, and other target organs. 25-OH-vitamin D must combine with cubulin to allow it to be taken up into
the renal tubule epithelia where activated 1,25-OH2-vitamin D is formed. This then binds to its receptor
VDR. A complex containing a dimer of VDR-1,25-OH2-vitamin D and retinoic acid receptor–retinoic
vitamin D (the retinoic acid receptor is encoded by RARA) then binds to multiple binding elements on
genes, affecting their expression. 1,25-OH2-vitamin D is inactivated by 23- and 24-hydroxylation.

and calcium and phosphate metabolism, as well as 200 other genes), affecting their expression
(Kohlmeier 2013). The major pathways by which vitamin D is inactivated are the vitamin’s 23-
and 24-hydroxylation by mitochondrial CYP24A1 (Miller 2017). People have genetic variants at
several of these metabolic steps that affect their requirement for and responses to vitamin D.

We know that skin color has important effects on vitamin D synthesis in the skin (Kohlmeier
2013). Polymorphisms in the melanocortin 1 receptor (MC1R) gene modulate skin pigmenta-
tion; the low-function variants (MC1R rs1805007 and rs1805008) in European populations were
likely inherited fromNeanderthal ancestors.Multiple other variants result in light skin color (Liu
et al. 2011). The concentration of the vitamin D precursor 7-deoxycholesterol is increased in
the skin of people with a low-function variant of delta-7-sterol reductase (DHCR7 rs7944926);
this results in enhanced vitamin D synthesis (Wang et al. 2010). CYP2R1 has a common genetic
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variant (rs10741657) that lowers the formation of 25-OH-vitamin D (Elkum et al. 2014, Nissen
et al. 2015, Wang et al. 2010). Polymorphisms near CYP2R1 (rs2209314, rs2762939) also affect
25-OH-vitamin D concentrations (Barry et al. 2014). Polymorphisms in the gene encoding vi-
tamin D–binding protein (GC rs7041, rs4588) increase 25-OH-vitamin D levels in blood after
a vitamin D supplement (Ahn et al. 2010, Jolliffe et al. 2016), as do polymorphisms rs10766197
near CYP2R1, rs6013897 near CYP24A1, and rs7968585 near VDR (Barry et al. 2014,Wang et al.
2010). Common genetic variations alter the vitamin D receptor (VDR; Apal rs17879735, Bsml
rs1544410, Taql rs731236, FokI rs2228570, and rs10735810). Bsml rs1544410 lowers risk of hip
fractures; women with the Bsm-I CC genotype had greater improvement in bone mineral density
after treatment with vitamin D3 than did those with the TT genotype (Palomba et al. 2005). Fok-I
is a functional polymorphism that results in different translation initiation sites on VDR that lead
to a less effective protein (Colin et al. 2000). People with the combination ofDHCR7 rs12785878,
CYP2R1 rs10741657, and GC rs2282679 have a more than twofold increased risk of vitamin D
insufficiency (Elkum et al. 2014, Wang et al. 2010). The CYP24A1 polymorphism (rs6013897),
which alters the rate of inactivation of vitamin D, is associated with higher concentrations of vi-
tamin D in the blood (Barry et al. 2014).

Lipid metabolism is also affected by genetic polymorphisms (Figure 4). People with the CC
genotype of Apolipoprotein A2 (APOA2 rs5082) have increased adiposity [body weight, body mass
index (BMI), and waist circumference] and increased consumption of fatty foods compared to
individuals who are homozygous normal or heterozygous for this gene variant (Corella et al. 2009,
2011). This SNP also perturbs dietary modulation of plasma ghrelin, a regulator of food intake
(Smith et al. 2012).When an individual habitually consumes a diet low in saturated fat, theAPOA2
rs5082 SNP has no effect, but when a diet high in saturated fat is consumed, the people with the
CC genotype for the SNP have higher BMI, whereas the people with TT and TC genotypes
do not (Corella et al. 2011). In another example, increasing eicosapentaenoic acid (EPA) in the
diet has a different effect on high-density lipoprotein (HDL) cholesterol depending on whether
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Lipoproteins
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Figure 4

Polymorphic genes that influence lipid metabolism in people. Lipid metabolism is also affected by common
genetic polymorphisms. People with common Apolipoprotein A2 (APOA2) variants have increased body
weight, body mass index, and waist circumference and consume higher amounts of fatty foods. When a
person eats a diet low in saturated fat, the APOA2 polymorphism has no effect, but when a person eats a diet
high in saturated fat, the effects on phenotype are revealed. Increasing eicosapentaenoic acid (EPA) in the
diet has a different effect on high-density lipoprotein (HDL) cholesterol depending on whether individuals
have a specific single nucleotide polymorphism in the ATP-binding cassette subfamily A member 1 (ABCA1).
Plasma HDL cholesterol is higher in people with the CC genotype for ABCA1 rs2246293 than in people
with the GG genotype after EPA feeding.
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individuals have a specific SNP in the ATP-binding cassette subfamily Amember 1 (ABCA1) gene.
This gene encodes for a cholesterol efflux transporter. The expression of ABCA1 is decreased by
DNA methylation at the site of ABCA1 rs2246293. DNA methylation of the gene is decreased
and plasma HDL cholesterol is higher in people with the CC genotype for ABCA1 rs2246293
than in people with the GG genotype, in whom EPA can increase DNA methylation of ABCA1,
suppressing this gene’s expression and thereby lowering concentrations of HDL (Ma et al. 2016).

Data on genetic variation can be combined with data on other sources of heterogeneity to
predict individual glycemic response to a meal (Zeevi et al. 2015). Using subcutaneous glucose
sensors in people, researchers detected high interindividual variability of postprandial glycemic
response. These data were combined with data on food intake, physical activity, medical histories,
anthropometricmeasures, andmicrobiota profiling, and an algorithm to predict glycemic response
to a meal was developed. The predictive performance of the algorithm was then examined in a
blinded randomized controlled trial with new participants in which the algorithm predicted with
70–80% accuracy the glycemic response to a test meal.

Another study observed that carrying a particular set of alleles in several genes influenced
the response to a dietary intervention (Abdullah et al. 2018, Vazquez-Vidal et al. 2019). Af-
ter normolipidemic people ate three servings per day of dairy foods for four weeks, carriers of
ATP-binding cassette subfamily G member 5 (ABCG5) rs6720173-GG, who also carried cy-
tochrome P450 family 7 subfamily A member (CYP7A1) rs3808607-G, had greater increases in
total cholesterol and LDL-C concentrations compared to C-allele carriers of ABCG5 rs6720173-
Cwho also carried 7-dehydrocholesterol reductase (DHCR7) rs760241-TT. In addition, carriers of
ABCG5 rs6720173-C with CYP7A1 rs3808607-TT and DHCR7 rs760241-GG had reductions in
LDL-C concentrations compared to those who carried ABCG5 rs6720173-GG, CYP7A1
rs3808607-G and DHCR7 rs760241-A.

In all the above examples, polymorphisms in known pathways related to the metabolism of
the nutrient were related to altered function. However, polymorphisms in unexpected pathways
can sometimes modify the effects of nutrients. Although there was a lack of an overall effect of
vitamin E on cardiovascular disease (CVD) or cancer in the Women’s Genome Health Study (a
10-year trial using aspirin and vitamin E with 10-year follow-up), a subgroup of people with a
polymorphism in catechol-O-methyltransferase (COMT) rs4680-AA halved their risk of develop-
ing CVD (Hall et al. 2014) and reduced their risk of developing cancer by 14% (Hall et al. 2019)
when treated with vitamin E compared with people without this variant who were unresponsive
to vitamin E. The mechanism linking COMT to vitamin E metabolism is unknown but may be
due to the regeneration of a vitamin E radical via the donation of a hydrogen from vitamin C;
COMT variants that alter vitamin C concentrations have been reported (Shin et al. 2014).

Obviously, building a catalog of metabolically functional SNPs is going to be challenging, but
at this time such variants number in the hundreds (de Toro-Martin et al. 2017), and thousands are
likely to be contributors to metabolic heterogeneity.

Diet Challenges Can Reveal the Effects of Genetic Variation

When studying genetic variation as a source of metabolic heterogeneity, it is important to realize
that genetically caused metabolic inefficiencies can be revealed by diets that challenge the capacity
of pathways altered by the effects of SNPs. When the capacity to make or use an essential nutri-
ent is diminished, diets that contain excess precursor to push through the metabolic bottleneck
or provide the metabolites that are decreased by the bottleneck can overcome the effect of the
SNPs. For example, premenopausal women with the PEMT rs12325817 variant have impaired
endogenous synthesis of choline but can overcome this problem by eating more choline in their
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diet. Alternatively, some gene variants can be revealed when people eat too much of a nutrient.
For example, in the choline–fatty liver study discussed below, SNPs cause diminished capacity
for fat export from the liver, but this was problematic only when fat production in the liver was
high because of high-calorie intake (high BMI) making the capacity for fat export rate limiting
(Corbin et al. 2013). It was only when people ate diets high in calories that hepatic lipogenesis
exceeded the rate at which fat could be exported by the liver, and this resulted in fat accumulation
within the liver. Thus, measuring genotype is not sufficient to identify individuals who will suffer
an adverse outcome; diet intake information needs to be integrated with genotype to predict such
risk.

Genome-wide association studies (GWASs) have identified remarkably few gene variants as-
sociated with metabolic heterogeneity because most GWASs are based on data sets that do not
include diet intake. A recent study found many gene variants that contributed to a polygenic risk
score for obesity, and that most of the gene variants that contributed to these risk scores were
not previously identified using standard GWAS approaches (Khera et al. 2019). It is hard to find
genetic studies that also collected data on dietary intake; without such information, there is no un-
derstanding of diet–gene interactions that can inform precision nutrition. An example of a helpful
diet–gene study is theNational Health andNutrition Examination Survey (NHANES) conducted
by the US Centers for Disease Control and Prevention; it now collects phenotypic, genetic, and
dietary data (Wallace & Fulgoni 2016).

Patterns of Genetic Variation Rather Than Single Polymorphisms Are Important

Many published papers study the effects of genetic variation on metabolic heterogeneity by con-
sidering the effects of individual gene variants, but it would be better if a pattern of variants
that affected multiple points in a pathway or in related pathways were the basis for predicting
metabolic heterogeneity because the sum of all the effects of the multiple polymorphisms best
predicts metabolic function. To accomplish this approach, the field needs to develop appropriate
data and better computational models and tools. An algorithm-based approach was used to iden-
tify SNPs that, when considered as an integrated grouping, predicted which people were at higher
risk for developing fatty liver when they ate more calories (had higher BMI). When pathways in
one-carbon metabolism, including choline metabolism pathways, are perturbed, the capacity of
the liver to export accumulated fat is diminished (da Costa et al. 2006; Fischer et al. 2007; Yao &
Vance 1988, 1989). People who are inefficient at exporting fat from the liver are prone to develop
fatty liver. Multiple pathways contribute to altered capacity to export fat from the liver, including
pathways that transport choline into the liver, transport phosphatidylcholine out of the liver into
bile, phosphorylate choline, oxidize choline to make metabolites that can donate methyl groups,
and synthesize phosphatidylcholine de novo (the PEMT pathway) (Corbin et al. 2013).Gene vari-
ants in each of these pathways are relatively common, and a model that integrates the effects of
SNPs across these different pathways accurately predicted which people developed fatty liver as
their BMI increased and was much better than using single polymorphisms alone (Corbin et al.
2013).

Because an individual’s genetic code stays constant, the power of such gene-variant-based pre-
dictions is that they are measurable at any time in life. Excellent molecular tools are available
for assessing gene sequence variants. For this reason, nutrigenetics/nutrigenomics has advanced
more rapidly in making contributions to precision nutrition. However, genetic variation is only
one contributor to metabolic heterogeneity, and although mathematical models based on gene
variation alone are an excellent start, they do not provide the best estimates of an individual’s
dietary requirements.
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EPIGENETIC DIFFERENCES AS A SOURCE OF METABOLIC
HETEROGENEITY

Cells in different tissues have highly diverse functions despite sharing a common genetic code.
This is because gene expression is regulated by epigenetic mechanisms that are mediated by non-
coding RNAs and by marks placed on genes or histone tails. The writing and erasing of epigenetic
marks are guided by a complex set of interactions in which DNA modifications, histone tail mod-
ifications, and other epigenetic marks influence each other and function in a synergistic fashion
( Jeltsch & Jurkowska 2014, Strahl & Allis 2000). Food intake can significantly modify epigenetic
marks (reviewed in Ideraabdullah & Zeisel 2018).

DNA methylation (formation of 5-methylcytosine primarily at CG dinucleotides) is the best
understood epigenetic mark (Szyf 2005). DNA methylation at each site is determined by the
local activity of DNA methyltransferases (writers) and DNA demethylases (erasers) ( Jeltsch &
Jurkowska 2014). DNA methylation usually suppresses a gene’s expression, but exceptions oc-
cur ( Jones 2012). DNA methylation is erased at most sites during early embryogenesis and
then replaced with new marks. It is during fetal development and early postnatal life that genes
are most likely to undergo changes in DNA methylation, and these marks are then sustained
throughout life ( Jones 2012). S-adenosylmethionine is the methyl donor for DNA methyltrans-
ferases, and it is formed by pathways that metabolize a number of nutrients [methionine, 5-
methyltetrahydrofolate, betaine (from choline), vitamin B12, and vitamin B6]; for this reason,
DNA methylation is modulated by dietary intake (Dolinoy et al. 2006; Dominguez-Salas et al.
2014; Ideraabdullah & Zeisel 2018; Mehedint et al. 2010; Waterland et al. 2006, 2007; Wolff et al.
1998). Diets high in methyl-group donors increase DNA methylation of specific genes (Zhang
2015) and can result in a permanent change in phenotype [e.g., coat color in the Agouti mouse
(Waterland 2006) or twisted tails in Axin fused mice (Waterland et al. 2006)]. In people, seasonal
variation in methyl-group content of diets is associated with different patterns of DNA methy-
lation, raising the possibility that babies born at different times of the year may be epigeneti-
cally different (Dominguez-Salas et al. 2014). Other dietary variations, including intake of the fat
docosahexaenoic acid (DHA) (Ideraabdullah & Zeisel 2018), protein restriction (Lillycrop et al.
2005), and ingestion of some bioactives (e.g., epigallocatechin-3-gallate, genistein, polyphenols),
can modify DNA methylation. A review of methods for assessing DNA methylation is available
(Shen & Waterland 2007).

Histone proteins H2A, H2B, H3, and H4 make up the nucleosome around which DNA is
coiled (Lai & Pugh 2017). These histones contribute to the structure of chromatin (open/active
versus closed/inactive) and this structure changes depending on posttranslational histone mod-
ifications to the amino-terminal tails of these proteins (Strahl & Allis 2000). These modifi-
cations include methylation, acetylation, biotinylation, propionylation, succinylation, citrullina-
tion, butyrylation, glutathionylation,malonylation, formylation, crotonylation, ADP-ribosylation,
GlcNAcylation, phosphorylation, hydroxylation, and oxidation (Zhao & Garcia 2015). Many of
these histonemodifications depend on products of nutrient metabolism and therefore are sensitive
to dietary intake (Ideraabdullah & Zeisel 2018). For example, histone methylation is modulated
by intake of dietary methyl donors (Davison et al. 2009, Jiang et al. 2012, Mehedint et al. 2010),
and histone demethylases are dependent on α-ketoglutarate and iron derived from the diet and
nutrient metabolism (Inoue et al. 2015, Kaelin & McKnight 2013, Leung et al. 2016). Multiple
components of the diet and of microbial metabolism of the diet (such as butyrate) inhibit histone
deacetylases (Rajendran et al. 2011).

Diet can also modulate expression of noncoding RNAs that regulate gene expression and/or
post-transcriptional activity (Deveson et al. 2017, Holoch & Moazed 2015). MicroRNAs (miRs)
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bind to mRNAs that contain a targeting sequence for the miR, and mark them for cleavage, degra-
dation, or translational repression depending on the gene target (Saetrom et al. 2007). The tran-
scription of perhaps 60% of miRs is regulated by DNA or histone methylation (Sengupta et al.
2016). Specific miRs regulate almost all gene products involved in metabolism. Some of the effects
of dietary choline on fetal brain development are mediated by a choline-sensitive miR (159-5p;
under adequate choline conditions, expression of this miR is kept low). In the fetal brain,miR159-
5p suppresses the formation of the epidermal growth factor receptor, which is needed for normal
brain development (Trujillo-Gonzalez et al. 2018, Wang et al. 2016).

Epigenetic marks and expression of noncoding RNAs are changeable during sensitive time
frames during early development and thereafter are usually maintained by mechanisms that as-
sure faithful copying of DNA during cell replication. It is possible that the sensitive development
windows during which epigenetic signals are modifiable are there to provide the opportunity to
retune metabolism if a baby is born into a dietary environment that is markedly different than
expected based on life in utero (Ideraabdullah & Zeisel 2018). Certain epigenetic marks remain
modifiable throughout the life span depending on a number of environmental exposures, includ-
ing nutrition; thus, the timing of sample collection is important. Epigenetic signals regulate genes
of nutrient metabolism, but nutrient metabolism modifies epigenetic signaling (Ideraabdullah
& Zeisel 2018). The methods for assessing epigenetic changes are relatively mature (Shen &
Waterland 2007, Waterland 2006); however, epigenetic marks and noncoding RNAs are usually
tissue specific, and investigators do not always have access to the target tissue. Epigenetic analy-
ses of DNA from lymphocytes likely will not show the same marks as would be detected if, for
example, liver, muscle, and brain DNA were analyzed. Perhaps it will soon be possible to use cir-
culating cell-free DNA that is released from such tissues to assess epigenetic marks within those
tissues (Oussalah et al. 2018).

MICROBIOME AS A SOURCE OF METABOLIC HETEROGENEITY

Humans exist in symbiosis withmany gutmicrobiota that evolved over time to thrive in the human
gastrointestinal tract (Qin et al. 2010). These microbiota can metabolize almost any substrate that
is presented to them (Goodman & Gordon 2010). Often, they access nutrients before they are
available to the host (competing for nutrient supply).Gutmicrobiota also produce small molecules
unique to microbial pathways of metabolism that people then absorb (Daliri et al. 2017, Hall &
Versalovic 2018, Manor et al. 2014).

Using high-throughput sequencing technologies, researchers can characterize the functional
diversity of the human gut microbiota (Bauer & Thiele 2018). The microbes within the intestine
vary between people (Eckburg et al. 2005), and this is an important source of metabolic hetero-
geneity between people. How much energy people derive from foods (Scheithauer et al. 2016)
depends on gut microbiota; for example, polysaccharide fermentation by gut bacteria generates
propionate, butyrate, and acetate, which are energy substrates (den Besten et al. 2013). Gut mi-
crobiota can increase nutrient requirements by competing with the human host; for example,
choline-consuming gut bacteria result in lower serum concentrations of choline in the human
host (Romano et al. 2017). Gut microbiota provide people and animals with essential vitamins
(e.g., vitamin K) (Ramakrishna 2013). They can also produce potentially harmful molecules such
as phenols, p-cresol, and phenylacetic acid (derived from amino acids), trimethylamine (derived
from choline and creatinine) (Zeisel & Warrier 2017), and sulfides (derived from the catabolism
of sulfur amino acids and taurine) (De Filippis et al. 2018).

The composition of the gut microbiome is influenced by environmental factors such as diet
(De Filippis et al. 2018), and host genetics has a small influence (Rothschild et al. 2018). Only
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2% of the variability in the microbiome between people is related to genetic ancestry (Rothschild
et al. 2018, Wu et al. 2011). The effects of dietary intake on gut microbiota composition can be
rapid (David et al. 2014, De Filippis et al. 2018), and the microbiome has a diurnal rhythm (Hor
et al. 2018). This makes the timing of sampling important for assessing the gut microbiome’s
contributions to metabolic heterogeneity (Manor et al. 2014), and many current studies do not
control for timing of sampling relative to meals or time of day. Methods for the study of the mi-
crobiome are under development, and new methods can functionally characterize the microbiota
in terms of metabolic activity. These include meta-transcriptomic, metabolomic, and metapro-
teomic analyses (Daliri et al. 2017, Hor et al. 2018, Jin et al. 2017, Lamichhane et al. 2018, Zmora
et al. 2016). Adding up the contributions of individual species of bacteria does not accurately
predict metabolism in the microbiome because of the metabolic interactions that occur between
microbes, as well as the interactions that occur between microbiota and the human gut (Bauer
& Thiele 2018, Manor et al. 2014). Despite this, mathematical models based on gut microbiota
data and several other easily measurable variables (e.g., blood metabolite measures, dietary habits,
anthropometrics, physical activity) have provided better estimates of heterogeneity between in-
dividuals in postprandial glycemic response to meals and of the rate of postdieting weight regain
than did models that use only host genetic and environmental data (Korem et al. 2017, Rothschild
et al. 2018, Thaiss et al. 2016, Zeevi et al. 2015).

ENVIRONMENTAL EXPOSURES AS A SOURCE OF METABOLIC
HETEROGENEITY

The environmental exposure that is likely the largest modifier of metabolism in people is food
intake. It is necessary to obtain valid information about the habitual dietary intake of people so
that this can be included inmathematical models developed for precision nutrition.Unfortunately,
currentmethodology has shortcomings; 24-h diet recalls, food frequency questionnaires, and four-
day food records are commonly used but are error prone (Cade 2017,Tabacchi et al. 2014,Tasevska
et al. 2014).Twenty-four-hour diet recalls provide limited information on the day-to-day variation
in dietary intake throughout longer periods (e.g., day of the week, season) and 24-h recall data are
subject to errors because of poor memory, approximation errors in standard portion sizes, and
recall bias (Brouwer-Brolsma et al. 2017, Gibson et al. 2017). Food frequency questionnaires are
relatively easy and inexpensive to process, but it is challenging to develop a valid and reliable one
that accurately estimates intake for a wide variety of foods (Brouwer-Brolsma et al. 2017). Many
web-based applications that enable dietary self-monitoring likely suffer from the same sources
of error, and there are few evaluations of the quality and reliability of these apps with regard to
dietary assessment (Cade 2017). The web-based Automated Self-Administered 24-Hour Dietary
Assessment Tool (ASA24) developed by the US National Cancer Institute includes a multipass
web-based recall of diet intake using digitized images to estimate portion size and it addresses
some of the sources of error in diet estimation, but significant residual errors remain (Kirkpatrick
et al. 2016).

Some biomarkers can help improve estimates of the intake of calories and certain nutrients
[e.g., doubly labeled water method (Westerterp 2017), 24-hour urinary sodium (Cogswell et al.
2015)]; however, for most nutrients such biomarkers have yet to be developed. Metabolomics-
based analyses show promise for assessing dietary intake of fruits, vegetables, meat, fish, bread,
whole-grain cereals, nuts, wine, coffee, tea, cocoa, and chocolate (Guasch-Ferre et al. 2018) and
appear to differentiate people’s dietary patterns (e.g., vegetarian, omnivorous, Western, prudent,
Nordic, and Mediterranean) (Beger et al. 2016, Guasch-Ferre et al. 2018, Kinross et al. 2014,
Menni et al. 2013, Pallister et al. 2016). However, metabolic heterogeneity, which is due to the
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various sources discussed in this review, causes individuals who habitually consume the same di-
ets to differ in the small molecules appearing in blood, urine, or tissues; thus, metabotype is not
directly substitutable for dietary intake information. It is possible that appropriate computational
models can be developed that integrate information about the various sources of metabolic het-
erogeneity to provide adjusted metabolomic data that reflect dietary intake (essentially reverse-
engineering the models for precision nutrition discussed below). Other methods might be used in
conjunction with metabolomics. Stable isotope ratios (ratios of light/heavy elements) vary natu-
rally and reproducibly among foods, and the analysis of isotopomers may be useful in improving
estimates of dietary intake (O’Brien 2015). Before this approach is viable for use in precision nu-
trition, controlled feeding studies are needed to establish the dose–response relationships between
isotopomers and specific food intakes and dietary patterns (O’Brien 2015).

It is important that molecular assessment of food intake also captures the timing of food intake
(meal and snack patterns), as circadian rhythms in metabolism are entrained, in part, by meal pat-
terns (Eckel-Mahan & Sassone-Corsi 2013). Many studies use fasting samples to minimize this
source of variation, but fasting is itself a challenge that alters metabolism (Patterson et al. 2015).
The peripheral clocks regulating local metabolic rhythms are determined by feeding–fasting cy-
cles, and the local clock genes control downstream metabolic processes (Oike et al. 2014). The
circadian rhythms of metabolism are also entrained by light-sensitive mechanisms in the hypotha-
lamic suprachiasmatic nucleus (Versteeg et al. 2016). Because the effects of light are so important
in setting this metabolic cyclicity, the timing relative to day/night when biomarkers of metabolism
are collected needs to be carefully controlled. The area of molecular clocks and their interactions
with nutrition was reviewed by Oike et al. (2014). An example of the importance of these circadian
rhythms comes from the ONTIME (obesity, nutrigenetics, timing, Mediterranean) study, which
focused on the interaction between meal timing, genetics, and weight loss and found that carriers
of variants in the gene encoding periolipin1 (PLIN1) lost less weight when placed on a meal plan
that served lunch late (after 15:00) than did early lunch eaters (before 15:00) (7.21 ± 0.67 kg ver-
sus 10.63 ± 0.56 kg; p = 0.001) (Garaulet et al. 2016). Carriers of variants in PER2, CLOCK, and
CRY1 circadian genes have altered feeding behaviors in response to low-fat and low-carbohydrate
diets (Dashti et al. 2014, Garaulet et al. 2010, Gomez-Delgado et al. 2015). Another example of
a metabolically important circadian rhythm is the diurnal variation in blood glucose concentra-
tions and in glucose tolerance. Glucose tolerance is higher in the morning than in the afternoon;
both insulin sensitivity and insulin secretion are reduced in the evening compared to the daytime
( Jarrett et al. 1972).

Human and microbiota metabolisms are sensitive to environmental exposure to chemicals (or
their metabolites). Obesogenic environmental chemicals (Baillie-Hamilton 2002), which include
endocrine disrupter chemicals, are a source of human metabolic heterogeneity that arises be-
cause they modify hormonal signaling and other receptors that modify metabolism (Heindel et al.
2017). Many endocrine disrupter chemicals, including bisphenol A (BPA), which increases weight
gain and body fat after developmental exposure (Amin et al. 2019, Stojanoska et al. 2017, Yang
et al. 2016) and induces insulin resistance (Heindel et al. 2017), have been described. Phthalates
(used in the manufacture of plastics) modify peroxisome proliferator-activated receptor (PPAR)-
modulated pathways in carbohydrate and lipid metabolism because they activate PPARs (Kim &
Park 2014).

PRECISION NUTRITION IMPLEMENTATION

Applications

An obvious component of the practice of precision nutrition is genetic testing. The field is in a
transition between chip-based technology and gene-sequencing technology. Gene chips use short
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sequences of complementary DNA (oligos) as hooks that bind to the sequences being sought.Mil-
lions of oligos can be attached to a chip, and these chips can be custom designed. At present, many
of these commercially available chips detect known common polymorphisms that derive from a
diverse group of ancestries and detect many, but not all, variants relevant to nutritional hetero-
geneity. However, many companies allow the construction of custom chips that add additional
oligos. Gene sequencing, in contrast, provides information about the entire genome, identifying
not only known gene variants but also unknown variants. Gene sequencing is currently two to
three times more expensive than chip technology, but as prices fall it likely will make chip tech-
nology obsolete.Chip technology is currently used in almost all the genetic testing that is available
directly to consumers.

Once the many gene variants in a person are identified, the functional meaning of these vari-
ants needs to be determined. Because this involves recognizing the effects of complex patterns
of gene variants, computational models are used (as discussed above). Although there are ex-
cellent algorithms for using gene variants to determine a person’s ancestry, such computational
tools are just being developed for precision nutrition. As these are refined, there will likely be
more commercially available genetic tests that offer health care providers and consumers pre-
cision nutrition–relevant information. Similar considerations about microbiome testing suggest
that once computational models are developed that convert complex patterns of data about the
microbiome (likely RNA sequencing data) into precision nutrition–relevant functional meaning,
commercially available tests will be marketed directly to the consumer.These computational tools
are already being developed (Manor et al. 2014).

Genetically guided nutrition interventions are also likely to increase in number. An excellent
example is the development of foods designed to be tolerated by children with a gene mutation
in the metabolism of phenylalanine. In this case, a problematic nutrient is removed from the diet.
However, interventions can be developed in which nutrients, their precursors, or their metabolites
are purposely added. Once multiple functional polymorphisms in a person have been identified,
they can be mapped to metabolic pathways, and treatments containing constituents that bypass or
correct metabolic flow can be administered, thereby overcoming the effects of the polymorphisms.
Although prebiotics and probiotics are commercially available, similar considerations about more
targeted microbiome-based nutrition interventions suggest that they too will soon be commer-
cially available (Manor et al. 2014).

Precision nutrition is not about developing unique prescriptions for individual people but
rather about stratifying people into different subgroups of the population on the basis of biomark-
ers and therapeutic efficacy. Thus, precision nutrition can be applied to public policy so that the
application of precision nutrition enables better targeting of diet recommendations. Rather than
just making nutrition recommendations based solely on age or gender, relevant genetic (e.g., the
microbiome) information can be used to refine them. For example, if a reasonable portion of peo-
ple have increased requirements for a nutrient because they have genetic polymorphisms, then a
targeted recommendation can be made that reflects that these people have a higher dietary refer-
ence intake.

Ethical Issues

Precision nutrition shares many ethical issues with precision medicine (Blasimme & Vayena 2016,
Minari et al. 2018, Sankar & Parker 2017). The technologies used in precision nutrition generate
targeted results that have a clinical meaning but also results whose implications are not yet well
understood.The field advances as scientists study different populations, collect a larger set of data,
use better tools to identify new associations, and create clinical meaning out of data of previously

84 Zeisel



FO11CH04_Zeisel ARjats.cls February 28, 2020 15:0

unknown importance. Such a precision nutrition learning process raises the moral and legal
possibility that the new understanding may require that people be recontacted to revise/improve
recommendations. This means that it is difficult to anticipate and explain all the potential findings
along with their associated risks and benefits, creating important issues for patient informed
consent. Are we morally and legally required to reach out and inform a mother who we now
realize is at higher risk for having a baby with a birth defect because they have a polymorphism
in a choline-producing gene? How good must the data be before we are ethically obligated to
warn or prevent adverse risk? In addition, when broad swaths of data are collected, it is possible
that risks of diseases will be uncovered as incidental findings (especially with genetic sequencing).
If we incidentally discover a patient has a genetic mutation or variant that greatly increases their
risk of breast cancer, must we tell them? The knowledge base that underlies precision nutrition
has been created using data from studies in limited populations. If samples are collected without
broad public participation, the members of groups that abstain from participation are less able
to share in the benefits of the resulting data and precision nutrition interventions. As precision
nutrition learns more about the importance of gene signatures (patterns of gene variations), will
such signatures mean the same among people of different ancestry? If not, how do we avoid
giving inappropriate recommendations?

At this time, it is unclear whether precision nutrition will have a health professional as a gate-
keeper or will be delivered directly to the consumer. The existing investments by commercial
interests and the current open-access ethos make direct-to-consumer applications most likely.
However, the huge volume of information involved and the ethical considerations discussed above
seem to make the gatekeeper model appropriate.

WHY CALL IT PRECISION NUTRITION INSTEAD
OF PERSONALIZED NUTRITION?

Precision nutrition is not about developing unique prescriptions for individual people, but rather
about stratifying people into different subgroups of the population on the basis of biomarkers
and therapeutic efficacy. It would be inappropriate to suggest that precision nutrition can offer
individually customized recommendations when it is based on data developed from larger-than-
one-person subgroups. The hope is that we will be able to subcategorize people into ever smaller
groups that can be more targeted in terms of recommendations, but we will never achieve this at
the individual level; the word personalized suggests that we will be able to achieve this, whereas
the word precision suggests that we can be more precise in our recommendations than traditional
nutrition approaches have been.

CHALLENGES

Precision nutrition applications, both in research and in commercial products, are already in use.
Because of the continuous quality improvement in the science underlying precision nutrition,
better research tools and better commercial products will follow. The greatest challenge that
limits the refinement of precision nutrition is that few data sets are available that include diet
intake, genetics, epigenetics, microbiome, environmental exposure, and metabolic phenotype data
measured at the same time. It would be even better if these study designs included a nutrition
challenge meant to reveal metabolic roadblocks (e.g., feeding subjects a high-calorie diet to reveal
those with genetic variants that make them develop fatty liver). In addition, generating this data
requires improvements in ‘omic methods for assessing metabolic function (e.g., there is a need
for better standardization of diet conditions and timing of sampling in studies making ‘omic
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measurements) (Beger et al. 2016, Kinross et al. 2014). Once these data sets are available, the
mathematical and computational modeling tools needed to improve the estimation of metabolic
differences between people can be refined and thereby enhance the precision nutrition knowledge
base. Such knowledge- and data-driven models will provide mechanistic insights for generating
hypotheses, designing interventions, and making recommendations (Wolkenhauer 2014).
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