1932

Abstract

Driven by a general demand for clean labels on food and cosmetic products, these industries are currently searching for efficient natural antioxidants to replace synthetic antioxidants. Seaweed contains several compounds with antioxidative properties (phlorotannins, pigments, tocopherols, and polysaccharides). It is possible to extract these compounds via different extraction techniques, which are discussed in this review. Among the abovementioned compounds, phlorotannins are probably the most important in terms of the antioxidative potential of seaweed extracts. We review how the different antioxidative compounds can be characterized. We discuss the current knowledge of the relationship between phlorotannin's structure and antioxidant properties in in vitro studies as well as in food systems. Concerning food systems, most studies on the antioxidative effect of seaweed extracts have been performed with extracts prepared from , despite the fact that this species is less available than other species, such as , which also has high phlorotannin content.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Source, Extraction, Characterization, and Applications of Novel Antioxidants from Seaweed
Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-032818-121401
2019-03-25
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/food/10/1/annurev-food-032818-121401.html?itemId=/content/journals/10.1146/annurev-food-032818-121401&mimeType=html&fmt=ahah

Literature Cited

  1. Abdel-Fattah AF, Hussein MM 1973. Isolation of water insoluble laminaran-like polysaccharide from Sargassum linifolium. Qual. Plant. Mater. Veg 22:181–87
    [Google Scholar]
  2. Agregán R, Munekata PE, Dominguez R, Carballo J, Franco D, Lorenzo JM 2017. Proximate composition, phenolic content and in vitro antioxidant activity of aqueous extracts of the seaweeds Ascophyllum nodosum, Bifurcaria bifurcata and Fucus vesiculosus. Effect of addition of the extracts on the oxidative stability of canola oil under accelerated storage conditions. Food Res Int 99:986–94
    [Google Scholar]
  3. Ale MT, Mikkelsen JD, Meyer AS 2011. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs 9:2106–30
    [Google Scholar]
  4. Alemán M, Bou R, Guardiola F, Durand E, Villeneuve P, Jacobsen C, Sørensen ADM 2015. Antioxidative effect of lipophilized caffeaic acid in fish oil enriched mayonnaise and milk. Food Chem 167:236–44
    [Google Scholar]
  5. Anastyuk SD, Shevchenko NM, Nazarenko EL, Dmitrenok PS, Zvyagintseva TN 2009. Structural analysis of a fucoidan from the brown alga Fucus evanescens by MALDI-TOF and tandem ESI mass spectrometry. Carbohydr. Res. 344:779–87
    [Google Scholar]
  6. Anastyuk SD, Shevchenko NM, Nazarenko EL, Imbs TI, Gorbach VI et al. 2010. Structural analysis of a highly sulfated fucan from the brown alga Laminaria cichorioides by tandem MALDI and ESI mass spectrometry. Carbohydr. Res. 345:2206–12
    [Google Scholar]
  7. Apostolidis E, Lee CM 2010. In vitro potential of Ascophyllum nodosum phenolic antioxidant mediated α-glucosidase and α-amylase inhibition. J. Food Sci. 75:97–102
    [Google Scholar]
  8. Audibert L, Fauchon M, Blanc N, Hauchard D, Ar Gall E 2010. Phenolic compounds in the brown seaweed Ascophyllum nodosum: distribution and radical scavenging activities. Phytochem. Anal. 21:399–405
    [Google Scholar]
  9. Baardseth E 1958. A method of estimating the physode content in brown algae Rep. No. 20, Nor. Inst. Seaweed Res., Trondheim, Nor. 6 pp. Reprint
    [Google Scholar]
  10. Babakhani A, Farvin KHS, Jacobsen C 2016. Antioxidative effect of seaweed extracts in chilled storage of minced Atlantic mackerel (Scomber scombrus): effect on lipid and protein oxidation. Food Bioprocess Technol 9:352–64
    [Google Scholar]
  11. Barrett J, Anderson JM 1977. Thylakoid membrane fragments with different chlorophyll A, chlorophyll C and fucoxanthin compositions isolated from the brown seaweed Ecklonia radiata. Plant Sci. Lett 9:275–83
    [Google Scholar]
  12. Bartsch I, Wienke C, Bischof K, Buchholz CM, Buck BH et al. 2008. The genus Laminaria sensu lato: recent insights and developments. Eur. J. Phycol. 43:1–86
    [Google Scholar]
  13. Berteau O, Mulloy B 2003. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. GlycoBiol 13:29R–40R
    [Google Scholar]
  14. Bixler HJ, Porse H 2011. A decade of change in the seaweed hydrocolloids industry. J. Appl. Phycol. 23:321–35
    [Google Scholar]
  15. Bligh EG, Dyer WJ 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–17
    [Google Scholar]
  16. Boulom S, Robertson J, Hamid N, Maa O, Lu J 2014. Seasonal changes in lipid, fatty acid, α-tocopherol and phytosterol contents of seaweed, Undaria pinnatifida, in the Marlborough Sounds, New Zealand. Food Chem 161:261–69
    [Google Scholar]
  17. Bradley DG, Min DB 1992. Singlet oxygen oxidation in foods. Crit. Rev. Food Sci. Nutr. 31:211–36
    [Google Scholar]
  18. Buettner GR 1993. The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300:535–43
    [Google Scholar]
  19. Burtin P 2003. Nutritional value of seaweeds. Electron. J. Environ. Agric. Food Chem. 2:498–503
    [Google Scholar]
  20. Burton GW, Ingold KU 1984. β-carotene: an unusual type of lipid antioxidant. Science 224:569–73
    [Google Scholar]
  21. Carocho M, Ferreira ICFR 2013. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 51:15–25
    [Google Scholar]
  22. Chaiyasit W, Elias RJ, McClements DJ, Decker EA 2007. Role of physical structures in bulk oils on lipid oxidation. Crit. Rev. Food Sci. Nutr. 47:299–317
    [Google Scholar]
  23. Chakraborty K, Maneesh A, Makkar F 2017. Antioxidant activity of brown seaweeds. J. Aquat. Food Prod. Technol. 26:406–19
    [Google Scholar]
  24. Chan PT, Matanjun P 2017. Chemical composition and physicochemical properties of tropical red seaweed. Gracilaria changii. Food Chem. 221:302–10
    [Google Scholar]
  25. Cho S-H, Kang S-E, Cho J-Y, Kim A-R, Park S-M et al. 2007. The antioxidant properties of brown seaweed (Sargassum siliquastrum) extracts. J. Med. Food 10:479–85
    [Google Scholar]
  26. Choe E, Min DB 2009. Mechanisms of antioxidants in the oxidation of foods. Compr. Rev. Food Sci. Food Saf. 8:345–58
    [Google Scholar]
  27. Conde E, Moure A, Domínguez H 2015. Supercritical CO2 extraction of fatty acids, phenolics and fucoxanthin from freeze-dried Sargassum muticum. J. Appl. Phycol 27:957–64
    [Google Scholar]
  28. Cousens R 1982. The effect of exposure to wave action on the morphology and pigmentation of Ascophyllum nodosum (L.) Le Jolis in South-Eastern Canada. Bot. Mar. 25:191–96
    [Google Scholar]
  29. Das PR, Eun J-B 2018. A comparative study of ultra-sonication and agitation extraction techniques on bioactive metabolites of green tea extract. Food Chem 253:22–29
    [Google Scholar]
  30. Decker EA 1998. Strategies for manipulating the prooxidative/antioxidative balance of foods to maximize oxidative stability. Trends Food Sci. Technol. 9:241–48
    [Google Scholar]
  31. Decker EA 2002. Antioxidant mechanisms. Food Lipids: Chemistry, Nutrition, and Biotechnology CC Akoh, DB Min 397–422 New York: Marcel Dekker
    [Google Scholar]
  32. Decker EA, McClements DJ, Bourlieu-Lacanal C, Durand E, Figueroa-Espinoza MC et al. 2017. Hurdles in predicting antioxidant efficacy in oil-in-water emulsions. Trends Food Sci. Technol. 67:183–94
    [Google Scholar]
  33. Dembitsky VM, Maoka T 2007. Allenic and cumulenic lipids. Prog. Lipid Res. 46:328–75
    [Google Scholar]
  34. Farvin KHS, Jacobsen C 2013. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem 138:1670–81
    [Google Scholar]
  35. Ferreres F, Lopes G, Gil-Izquierdo A, Andrade PB, Sousa C et al. 2012. Phlorotannin extracts from fucales characterized by HPLC-DAD-ESI-MSn: approaches to hyaluronidase inhibitory capacity and antioxidant properties. Mar. Drugs 10:2766–81
    [Google Scholar]
  36. Fiori L, Manfrini M, Castello D 2014. Supercritical CO2 fractionation of omega-3 lipids from fish by-products: plant and process design, modeling, economic feasibility. Food Bioprod. Process. 92:120–32
    [Google Scholar]
  37. Firestone D, Am. Oil Chem. Soc. (AOCS). 2009. Official Methods and Recommended Practices of the AOCS Urbana, IL: Am. Oil Chem. Soc, 5th ed..
    [Google Scholar]
  38. Flórez-Fernández N, López-García M, González-Muñoz MJ, Vilariño JML, Domínguez H 2017. Ultrasound-assisted extraction of fucoidan from Sargassum muticum. J. Appl. Phycol 29:1553–61
    [Google Scholar]
  39. Food Agric. Organ. 2018. FAO Yearbook of Fishery and Aquaculture Statistics. Food and Agriculture Organization of the United Nations http://www.fao.org/fishery/statistics/yearbook/en
    [Google Scholar]
  40. Frankel EN 1984. Lipid oxidation: mechanisms, products and biological significance. J. Am. Oil Chem. Soc. 61:1908–17
    [Google Scholar]
  41. Frankel EN 1996. Antioxidants in lipid foods and their impact on food quality. Food Chem 57:51–55
    [Google Scholar]
  42. Frankel EN 2005. Lipid Oxidation Dundee, Scotl: Oily Press
    [Google Scholar]
  43. Freile-Pelegrín Y, Robledo D 1997. Effects of season on the agar content and chemical characteristics of Gracilaria cornea from Yucatan, Mexico. Bot. Mar. 40:285–90
    [Google Scholar]
  44. Fung A, Hamid N, Lu J 2013. Fucoxanthin content and antioxidant properties of Undaria pinnatifida. Food Chem 136:1055–62
    [Google Scholar]
  45. Gao T, Zhang M, Fang Z, Zhong Q 2017. Optimization of microwave-assisted extraction of flavonoids from young barley leaves. Int. Agrophys. 31:45–52
    [Google Scholar]
  46. Gorham J, Lewey SA 1984. Seasonal changes in the chemical composition of Sargassum muticum. Mar. Biol 80:103–7
    [Google Scholar]
  47. Halliwell B 1996. Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic. Res. 25:57–74
    [Google Scholar]
  48. Haugan JA, Liaaen-Jensen S 1994. Algal carotenoids. 54. Carotenoids of brown-algae (Phaeophyceae). Biochem. Syst. Ecol. 22:31–41
    [Google Scholar]
  49. Heffernan N, Brunton NP, FitzGerald RJ, Smyth TJ 2015. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Mar. Drugs 13:509–28
    [Google Scholar]
  50. Heffernan N, Smyth TJ, FitzGerald RJ, Soler-Vila A, Brunton N 2014. Antioxidant activity and phenolic content of pressurised liquid and solid-liquid extracts from four Irish origin macroalgae. Int. J. Food Sci. Technol. 49:1765–72
    [Google Scholar]
  51. Hermund DB 2016. Extraction, characterization and application of antioxidants from the Nordic brown alga PhD Thesis, Natl. Food Inst., Tech. Univ. Den., Lyngby, Den.
    [Google Scholar]
  52. Hermund DB, Karadag A, Andersen U, Jónsdóttir R, Kristinsson H et al. 2016. Oxidative stability of granola bars enriched with multilayered fish oil emulsion in the presence of novel brown seaweed based antioxidants. J. Agric. Food Chem. 64:8359–68
    [Google Scholar]
  53. Hermund DB, Plaza M, Turner C, Jónsdóttir R, Kristinsson HG et al. 2018. Structure dependent antioxidant capacity of phlorotannins from Icelandic Fucus vesiculosus by UHPLC-DAD-ECD-QTOFMS. Food Chem 240:904–9
    [Google Scholar]
  54. Hermund DB, Yeşiltaş B, Honold P, Jónsdóttir R, Kristinsson HG, Jacobsen C 2015. Characterisation and antioxidant evaluation of Icelandic F. vesiculosus extracts in vitro and in fish oil-enriched milk and mayonnaise. J. Funct. Food 19:828–41
    [Google Scholar]
  55. Holdt SL, Kraan S 2011. Bioactive compounds in seaweed: functional food applications and legislation. J. Appl. Phycol. 23:543–97
    [Google Scholar]
  56. Honold PJ, Jacobsen C, Jónsdóttir R, Kristinsson HG, Hermund DB 2016. Potential seaweed-based food ingredients to inhibit lipid oxidation in fish-oil-enriched mayonnaise. Eur. Food Res. Technol. 242:571–84
    [Google Scholar]
  57. Hu T, Liu D, Chen Y, Wu J, Wang S 2010. Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. Int. J. Biol. Macromol. 46:193–98
    [Google Scholar]
  58. Ikawa M, Schaper TD, Dollard CA, Sasner JJ 2003. Utilization of Folin-Ciocalteu phenol reagent for the detection of certain nitrogen compounds. J. Agric. Food Chem. 51:1811–15
    [Google Scholar]
  59. Jacobsen C, Let MB, Nielsen NS, Meyer AS 2008. Antioxidant strategies for preventing oxidative flavour deterioration of foods enriched with n-3 polyunsaturated lipids: a comparative evaluation. Trends Food Sci. Technol. 19:76–93
    [Google Scholar]
  60. Je J-Y, Park PJ, Kim EK, Park JS, Yoon HD et al. 2009. Antioxidant activity of enzymatic extracts from the brown seaweed Undaria pinnatifida by electron spin resonance spectroscopy. LWT Food Sci. Technol. 42:874–78
    [Google Scholar]
  61. Jégou C, Kervarec N, Cérantola S, Bihannic I, Stiger-Pouvreau V 2015. NMR use to quantify phlorotannins: the case of Cystoseira tamariscifolia, a phloroglucinol-producing brown macroalgae in Brittany (France). Talanta 135:1–6
    [Google Scholar]
  62. Jensen A 1966. Carotenoids of Norwegian brown seaweeds and of seaweed meals Rep. 31, Nor. Inst. Seaweed Res., TAPIR, Trondheim, Nor 138
    [Google Scholar]
  63. Jensen A 1969.a Tocopherol content of seaweed and seaweed meal. 2. Individual, diurnal and seasonal variations in some Fucaceae. J. Sci. Food Agric. 20:454–58
    [Google Scholar]
  64. Jensen A 1969.b Tocopherol content of seaweed and seaweed meal. 3. Influence of processing and storage on content of tocopherols, carotenoids and ascorbic acid in seaweed meal. J. Sci. Food Agric. 20:622–26
    [Google Scholar]
  65. Jónsdóttir R, Geirsdóttir M, Hamaguchi PY, Jamnik P, Kristinsson HG, Undeland I 2016. The ability of in vitro antioxidant assays to predict the efficiency of a cod protein hydrolysate and brown seaweed extract to prevent oxidation in marine food model systems. J. Sci. Food Agric. 96:2125–35
    [Google Scholar]
  66. Kadam S, Tiwari B, O'Donnell C 2015. Extraction, structure and biofunctional activities of laminarin from brown algae. Int. J. Food Sci. Technol. 50:24–31
    [Google Scholar]
  67. Karadağ A, Hermund DB, Søgaard Jensen LH, Andersen U, Jónsdóttir R et al. 2017. Oxidative stability and microstructure of 5% fish-oil-enriched granola bars added natural antioxidants derived from brown alga Fucus vesiculosus. Eur. J. Lipid Sci. Technol 119:1500578
    [Google Scholar]
  68. Khalil HPSA, Lai TK, Tye YY, Chong EWN, Yap SW et al. 2018. A review of extractions of seaweed hydrocolloids: properties and applications. eXPRESS Polym. Lett. 12:296–317
    [Google Scholar]
  69. Kindleysides S, Quek S-Y, Miller MR 2012. Inhibition of fish oil oxidation and the radical scavenging activity of New Zealand seaweed extracts. Food Chem 133:1624–31
    [Google Scholar]
  70. Koch M, Glombitza KW, Eckhardt G 1980. Antibiotics from algae. 24. Phlorotannins of phaeophycea Laminaria ochroleuca. Phytochemistry 19:1821–23
    [Google Scholar]
  71. Koivikko R, Loponen J, Honkanen T, Jormalainen V 2005. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J. Chem. Ecol. 31:195–205
    [Google Scholar]
  72. Koivikko R, Loponen J, Pihlaja K, Jormalainen V 2007. High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem. Anal 18:326–32
    [Google Scholar]
  73. Lann KL, Ferret C, VanMee E, Spagnol C, Lhuillery M et al. 2012. Total phenolic, size-fractionated phenolics and fucoxanthin content of tropical Sargassaceae (Fucales, Phaeophyceae) from the South Pacific Ocean: spatial and specific variability. Phycol. Res. 60:37–50
    [Google Scholar]
  74. Lee M-S, Shin T, Utsuki T, Choi J-S, Byun D-S, Kim H-R 2012. Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and hepatoprotective properties in tacrine-treated HepG2 cells. J. Agric. Food Chem. 60:5340–49
    [Google Scholar]
  75. Le Tutour B, Benslimane F, Gouleau MP, Gouygou JP, Saadan B, Quemeneur F 1998. Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum.. J. Appl. Phycol. 10:121–29
    [Google Scholar]
  76. Leyton A, Pezoa-Conte R, Barriga A, Buschmann AH, Mäki-Arvela P et al. 2016. Identification and efficient extraction method of phlorotannins from the brown seaweed Macrocystis pyrifera using an orthogonal experimental design. Algal Res 16:201–8
    [Google Scholar]
  77. Li Y, Fu X, Duan D, Liu X, Xu J, Gao X 2017. Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme (Harvey) Setchell. Mar. Drugs 15:49–64
    [Google Scholar]
  78. Li Y, Qian ZJ, Ryu B, Lee SH, Kim MM, Kim SK 2009. Chemical components and its antioxidant properties in vitro: an edible marine brown alga. Ecklonia cava. Bioorg. Med. Chem. 17:1963–73
    [Google Scholar]
  79. Lobban CS, Harrison PJ 1994. Seaweed Ecology and Physiology Cambridge, UK: Cambridge Univ. Press384
    [Google Scholar]
  80. Lüder UH, Clayton MN 2004. Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory—the first microscopic study. Planta 218:928–37
    [Google Scholar]
  81. MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR 2007. Nutritional value of edible seaweeds. Nutr. Rev. 65:535–43
    [Google Scholar]
  82. Magnusson M, Yuen AKL, Zhang R, Wright JT, Taylor RB et al. 2017. A comparative assessment of microwave assisted (MAE) and conventional solid-liquid (SLE) techniques for the extraction of phloroglucinol from brown seaweed. Algal Res 23:28–36
    [Google Scholar]
  83. Mancini-Filho J, Vidal-Novoa A, Silva AMO 2013. Antioxidant properties of algal components and fractions. Functional Ingredients from Algae for Foods and Nutraceuticals H Dominguez 255–86 Woodhead Publ. Ser. Food Sci., Technol. Nutr Cambridge, UK: Woodhead
    [Google Scholar]
  84. Marinho GS, Sørensen A-DM, Safafar H, Pedersen AH, Holdt SL 2018. Antioxidant content and activity of seaweed Saccharina latissima: a seasonal perspective. J. Appl. Phycol. In press. https://doi.org/10.1007/s10811-018-1650-8
    [Crossref] [Google Scholar]
  85. Matanjun P, Mohamed S, Mustapha NM, Muhammad K 2009. Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J. Appl. Phycol 21:75–80
    [Google Scholar]
  86. Matanjun P, Mohamed S, Mustapha NM, Muhammad K, Ming CH 2008. Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. J. Appl. Phycol. 20:367–73
    [Google Scholar]
  87. McClements DJ, Decker EA 2000. Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems. J. Food Sci. 65:1270–82
    [Google Scholar]
  88. McClements DJ, Decker EA 2018. Interfacial antioxidants: a review of natural and synthetic emulsifiers and coemulsifiers that can inhibit lipid oxidation. J. Agric. Food Chem. 66:20–35
    [Google Scholar]
  89. McHugh JD 1991. Worldwide distribution of commercial resources of seaweeds including Gelidium. Hydrobiologia 221:19–29
    [Google Scholar]
  90. Moroney NC, O'Grady MN, Lordan S, Stanton C, Kerry JP 2015. Seaweed polysaccharides (Laminarin and Fucoidan) as functional ingredients in pork meat: an evaluation of anti-oxidative potential, thermal stability and bioaccessibility. Mar. Drugs 13:2447–64
    [Google Scholar]
  91. Nakamura T, Nagayama K, Uchida K, Tanaka R 1996. Antioxidant activity of phlorotannins isolated from brown alga Eisenia bicyclis. Fish. Sci 62:923–26
    [Google Scholar]
  92. Narayani SS, Saravanan S, Bharathiaraja S, Mahendran S 2016. Extraction, partially purification and study on antioxidant property of fucoxanthin from Sargassum cinereum J. Agardh. J. Chem. Pharm. Res. 8:610–16
    [Google Scholar]
  93. Naseri A, Holdt SL, Jacobsen C 2019. Nutritional value added compounds in industrial red seaweed used in carrageenan production.. J. Aquat. Food Prod. Technol. Submitted
    [Google Scholar]
  94. Nielsen NS, Petersen A, Meyer AS, Timm-Heinrich M, Jacobsen C 2004. Effect of lactoferrin, phytic acid, and EDTA on oxidation in two food emulsions enriched with long-chain polyunsaturated fatty acids. J. Agric. Food Chem. 52:7690–99
    [Google Scholar]
  95. Nomura T, Kikuchi M, Kubodera A, Kawakami Y 1997. Proton-donative antioxidant activity of fucoxanthin with 1,1-diphenyl-2-picrylhydrazyl (DPPH). Biochem. Mol. Biol. Int. J. 42:361–70
    [Google Scholar]
  96. Noviendri D, Jaswir I, Salleh MH, Taher M, Miyashita K, Ramli N 2011. Fucoxanthin extraction and fatty acid analysis of Sargassum binderi and S. duplicatum. J. Med. Plants Res 5:2405–12
    [Google Scholar]
  97. Okolie CL, Mason B, Mohan A, Pitts N, Udenigwe CC 2019. The comparative influence of novel extraction technologies on in vitro prebiotic-inducing chemical properties of fucoidan extracts from Ascophyllum nodosum.. Food Hydrocoll 90:462–71
    [Google Scholar]
  98. Oroian M, Escriche I 2015. Antioxidants: characterization, natural sources, extraction and analysis. Food Res. Int. 74:10–36
    [Google Scholar]
  99. Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernández J et al. 2006. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem 99:98–104
    [Google Scholar]
  100. O'Sullivan AM, O'Grady MN, O'Callaghan YC, Smyth TJ, O'Brien NM, Kerry JP 2016. Seaweed extracts as potential functional ingredients in yogurt. Innov. Food Sci. Emerg. Technol. 37:293–99
    [Google Scholar]
  101. O'Sullivan L, Murphy B, McLoughlin P, Duggan P, Lawlor P et al. 2010. Prebiotics from marine macroalgae for human and animal health applications. Mar. Drugs 8:2038–64
    [Google Scholar]
  102. Palanisamy S, Vinosha M, Marudhupandi T, Rajasekar P, Prabhu NM 2017. Isolation of fucoidan from Sargassum polycystum brown algae: structural characterization, in vitro antioxidant and anticancer activity. Int. J. Biol. Macromol. 102:405–12
    [Google Scholar]
  103. Palmer MV, Ting SST 1995. Applications for supercritical fluid technology in food processing. Food Chem 52:345–52
    [Google Scholar]
  104. Parys S, Rosenbaum A, Kehraus S, Reher G, Glombitza K-W, König GM 2007. Evaluation of quantitative methods for determination of polyphenols in algal extracts. J. Nat. Prod. 70:1865–70
    [Google Scholar]
  105. Plaza M, Abrahamsson V, Turner C 2013. Extraction and neoformation of antioxidant compounds by pressurized hot water extraction from apple byproducts. J. Agric. Food Chem. 61:5500–10
    [Google Scholar]
  106. Plaza M, Amigo-Benavent M, del Castillo MD, Ibánez E, Herrero M 2010. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res. Int. 43:2341–48
    [Google Scholar]
  107. Pokorný J 1991. Natural antioxidants for food use. Trends Food Sci. Technol. 2:223–27
    [Google Scholar]
  108. Poyato C, Thomsen BR, Hermund DB, Ansorena D, Astiasarán I et al. 2017. Antioxidant effect of water and acetone extracts of Fucus vesiculosus on oxidative stability of skin care emulsions. Eur. J. Lipid Sci. Technol. 119:1600072
    [Google Scholar]
  109. Ragan MA 1985. Physodes and the phenolic compounds of brown algae 4. The high molecular weight polyphloroglucinols of the marine brown alga Fucus vesiculosus L.: degradative analysis. Can. J. Chem. 63:294–303
    [Google Scholar]
  110. Ragan MA, Glombitza KW 1986. Phlorotannins, brown algal polyphenols. Progress in Phycological Research FE Round, DJ Chapman 129–241 Bristol, UK: Biopress Ltd.
    [Google Scholar]
  111. Ramus J, Lemons F, Zimmerman C 1977. Adaptation of light-harvesting pigments to downwelling light and the consequent photosynthetic performance of the eulittoral rockweeds Ascophyllum nodosum and Fucus vesiculosus. Mar. Biol 42:4293–303
    [Google Scholar]
  112. Reische DW, Lillard DA, Eitenmiller RR 1998. Antioxidants. Food Lipids: Chemistry, Nutrition, and Biotechnology CC Akoh, DB Min 423–48 New York: Marcel Dekker
    [Google Scholar]
  113. Renhoran M, Noviendri D, Setyaningsih I, Uju U 2017. Extraction and purification of fucoxanthin from Sargassum sp. as anti-acne. J. Pengolah. Has. Perikan. Indones. 20:370–79
    [Google Scholar]
  114. Rioux LE, Turgeon SL, Beaulieu M 2007. Characterization of polysaccharides extracted from brown seaweeds. Carbohydr. Polym. 69:530–37
    [Google Scholar]
  115. Roh M-K, Uddin MS, Chun B-S 2008. Extraction of fucoxanthin and polyphenol from Undaria pinnatifida using supercritical carbon dioxide with co-solvent. Biotechnol. Bioproc. Eng. 13:724–29
    [Google Scholar]
  116. Rupérez P, Ahrazem O, Leal JA 2002. Potential antioxidant capacity of sulphated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem 50:840–45
    [Google Scholar]
  117. Rupérez P, Saura-Calixto F 2001. Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur. Food Res. Technol. 212:349–54
    [Google Scholar]
  118. Safafar H, van Wagenen J, Møller P, Jacobsen C 2015. Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar. Drugs 13:7339–56
    [Google Scholar]
  119. Saravana PS, Tilahun A, Gerenew C, Tri VD, Kim NH et al. 2018. Subcritical water extraction of fucoidan from Saccharina japonica: optimization, characterization and biological studies. J. Appl. Phycol. 30:579–90
    [Google Scholar]
  120. Seifried HE, Anderson DE, Fisher EI, Milner JA 2007. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 18:567–79
    [Google Scholar]
  121. Shannon E, Abu-Ghannam N 2018. Enzymatic extraction of fucoxanthin from brown seaweeds. Int. J. Food Sci. Technol. 53:2195–204
    [Google Scholar]
  122. Shibata T, Ishimaru K, Kawaguchi S, Yoshikawa H, Hama Y 2008. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J. Appl. Phycol. 20:705–11
    [Google Scholar]
  123. Singleton VL, Orthofer R, Lamuela-Raventós. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology L Packer 152–78 San Diego, CA: Elsevier
    [Google Scholar]
  124. Sokolova RV, Ermakova SP, Awada SM, Zvyagintseva TN, Kanaan HM 2011. Composition, structural, characteristic, and antitumor properties of polysaccharides from the brown algae Dictyopteris polypodioides and Sargassum sp. Chem. Nat. Comp. 47:329–34
    [Google Scholar]
  125. Sørensen A-DM, Haahr A-M, Becker EM, Skibsted LH, Bergenståhl B et al. 2008. Interactions between iron, phenolic compounds, emulsifiers, and pH in omega-3 enriched oil-in-water emulsions. J. Agric. Food Chem. 56:1740–50
    [Google Scholar]
  126. Sørensen A-DM, Villeneuve P, Jacobsen C 2017. Alkyl caffeates as antioxidants in o/w emulsions: impact of emulsifier and endogenous tocopherols. Eur. J. Lipid Sci. Technol. 119:1600276
    [Google Scholar]
  127. Steevensz AJ, Mackinnon SL, Hankinson R, Craft C, Connan S et al. 2012. Profiling phlorotannins in brown macroalgae by liquid chromatography-high resolution mass spectrometry. Phytochem. Anal. 23:547–53
    [Google Scholar]
  128. Tanaka R, Ishimaru M, Hatate H, Sugiura Y, Matsushita T 2016. Relationship between 4-hydroxy-2-hexenal contents and commercial grade by organoleptic judgement in Japanese dried laver Porphyra spp. Food Chem 212:104–9
    [Google Scholar]
  129. Targett NM, Arnold TM 1998. Minireview: predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J. Phycol. 34:195–205
    [Google Scholar]
  130. Tierney MS, Smyth TJ, Hayes M, Soler-Vila A, Croft AK, Brunton N 2012. Influence of pressurised liquid extraction and solid-liquid extraction methods on the phenolic content and antioxidant activities of Irish macroalgae. Int. J. Food Sci. Technol. 48:860–69
    [Google Scholar]
  131. Van de Velde F, Knutsen SH, Usov AI, Rollema HS, Cerezo AS 2002. 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Technol 13:73–92
    [Google Scholar]
  132. Van Heukelem L, Thomas CS 2001. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A 910:31–49
    [Google Scholar]
  133. Vijayan AK, Somayajula SA 2014. Effect of accessory pigment composition on the absorption characteristics of dinoflagellate bloom in a coastal embayment. Oceanologia 56:107–24
    [Google Scholar]
  134. von Elbe JH, Schwartz SJ 1996. Colorants. Food Chemistry OR Fennema 651–722 New York: Marcel Dekker
    [Google Scholar]
  135. Wang J, Zhang Q, Zhang Z, Li Z 2008. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int. J. Biol. Macromol 42:127–32
    [Google Scholar]
  136. Wang P, Zhao X, Lv Y, Liu Y, Lang Y et al. 2012. Analysis of structural heterogeneity of fucoidan from Hizikia fusiforme by ES-CID-MS/MS. Carbohydr. Polym. 90:602–7
    [Google Scholar]
  137. Wang T, Jónsdóttir R, Liu HY, Gu LW, Kristinsson HG et al. 2012. Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J. Agric. Food Chem 60:5874–83
    [Google Scholar]
  138. Wang T, Jónsdóttir R, Ólafsdóttir G 2009. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116:240–48
    [Google Scholar]
  139. Wen X, Peng CL, Zhou HC, Lin ZF, Lin GZ et al. 2006. Nutritional composition and assessment of Gracilaria lemaneiformis Bory.. J. Integr. Plant Biol. 48:1047–53
    [Google Scholar]
  140. Yaich H, Garna H, Besbes S, Barthélemy J-P, Paquot M et al. 2014. Impact of extraction procedures on the chemical, rheological and textural properties of ulvan from Ulva lactuca of Tunisia coast. Food Hydrocoll 40:53–63
    [Google Scholar]
  141. Yan X, Chuda Y, Suzuki M, Nagata T 1999. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci. Biotechnol. Biochem. 63:605–7
    [Google Scholar]
  142. Yotsu-Yamashita M, Kondo S, Segawa S, Lin Y-C, Toyohara H et al. 2013. Isolation and structural determination of two novel phlorotannins from brown alga Ecklonia kurome Okamura, and their radical scavenging activities. Mar. Drugs 11:165–83
    [Google Scholar]
  143. Zakaria SM, Kamal SMM 2016. Subcritical water extraction of bioactive compounds from plants and algae: applications in pharmaceutical and food ingredients. Food Eng. Rev. 8:23–34
    [Google Scholar]
  144. Zhao Y, Zheng Y, Wang J, Ma S, Yu Y et al. 2018. Fucoidan extracted from Undaria pinnatifida: source for nutraceuticals/functional foods.. Mar. Drugs 16:9321
    [Google Scholar]
/content/journals/10.1146/annurev-food-032818-121401
Loading
/content/journals/10.1146/annurev-food-032818-121401
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error