1932

Abstract

Pesticides protect crops against pests, and green pesticides are referred to as effective, safe, and eco-friendly pesticides that are sustainably synthesized and manufactured (i.e., green chemistry production). Owing to their high efficacy, safety, and ecological compatibility, green pesticides have become a main direction of global pesticide research and development (R&D). Green pesticides attract attention because of their close association with the quality and safety of agricultural produce. In this review, we briefly define green pesticides and outline their significance, current registration, commercialization, and applications in China, the European Union, and the United States. Subsequently, we engage in an in-depth analysis of the impact of newly launched green pesticides on the environment and ecosystems. Finally, we focus on the potential risks of dietary exposure to green pesticides and the possible hazards of chronic toxicity and carcinogenicity. The status of and perspective on green pesticides can hopefully inspire green pesticide R&D and applications to ensure agricultural production and safeguard human and ecological health.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034519
2024-06-28
2025-02-15
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034519.html?itemId=/content/journals/10.1146/annurev-food-072023-034519&mimeType=html&fmt=ahah

Literature Cited

  1. Ahammed ST, Hingmire S, Patil R, Patil A, Sharma AK, et al. 2023.. Dissipation kinetics and evaluation of processing factor for fluopyram + tebuconazole residues in/on grape and during raisin preparation. . J. Food Compos. Anal. 120::105292
    [Crossref] [Google Scholar]
  2. Asami T, Nakagawa Y. 2018.. Preface to the special issue: brief review of plant hormones and their utilization in agriculture. . J. Pestic. Sci. 43:(3):15458
    [Crossref] [Google Scholar]
  3. Ataei P, Gholamrezai S, Movahedi R, Aliabadi V. 2021.. An analysis of farmers’ intention to use green pesticides: the application of the extended theory of planned behavior and health belief model. . J. Rural Stud. 81::37484
    [Crossref] [Google Scholar]
  4. Bian C, Luo J, Gao M, Shi X, Li Y, et al. 2021.. Pydiflumetofen in paddy field environments: its dissipation dynamics and dietary risk. . Microchem. J. 170::106709
    [Crossref] [Google Scholar]
  5. Brookins CA. 2022.. EU delays reduction in pesticide use due to food production fears. . Europa Site. https://www.europasite.net/eu-delays-reduction-in-pesticide-use-due-to-food-production-fears/
    [Google Scholar]
  6. Butte W, Fox K, Zauke GP. 1991.. Kinetics of bioaccumulation and clearance of isomeric hexachlorocyclohexanes. . Sci. Total Environ. 109–110::37782
    [Crossref] [Google Scholar]
  7. Cámara MA, Cermeño S, Martínez G, Oliva J. 2020.. Removal residues of pesticides in apricot, peach and orange processed and dietary exposure assessment. . Food Chem. 325::126936
    [Crossref] [Google Scholar]
  8. Cao AC. 2023.. FAO released a ranking of pesticide usage in various countries around the world, with China ranking third. . Agrochemical Information Net. http://jsppa.com.cn/news/jingji/8741.html
    [Google Scholar]
  9. Carles L, Gardon H, Joseph L, Sanchís J, Farré M, et al. 2019.. Meta-analysis of glyphosate contamination in surface waters and dissipation by biofilms. . Environ. Int. 124::28493
    [Crossref] [Google Scholar]
  10. Chen G, Liu F, Zhang X, Dong J, Qiao Y, et al. 2022.. Dissipation rates, residue distribution and dietary risk assessment of isoprothiolane and tebuconazole in paddy field using UPLC-MS/MS. . Int. J. Environ. Anal. Chem. 102:(17):520012
    [Crossref] [Google Scholar]
  11. Chen L, Zhang S. 2010.. Dissipation and residues of boscalid in strawberries and soils. . Bull. Environ. Contam. Toxicol. 84::3014
    [Crossref] [Google Scholar]
  12. Chen W, Cao P, Liu Y, Yu A, Wang D, et al. 2022.. Structural basis for directional chitin biosynthesis. . Nature 610::4028
    [Crossref] [Google Scholar]
  13. Chen W, Jin M, Bu J, Burnet JE, Qi S, et al. 2011.. Organochlorine pesticides in the surface water and sediments from the Peacock River Drainage Basin in Xinjiang, China: a study of an arid zone in Central Asia. . Environ. Monit. Assess. 177:(1–4):121
    [Crossref] [Google Scholar]
  14. Chen X, He S, Gao Y, Ma Y, Hu J, et al. 2019.. Dissipation behavior, residue distribution and dietary risk assessment of field-incurred boscalid and pyraclostrobin in grape and grape field soil via MWCNTs-based QuEChERS using an RRLC-QqQ-MS/MS technique. . Food Chem. 274::29197
    [Crossref] [Google Scholar]
  15. Cheng C, Hu J. 2022.. Residue levels of chlorantraniliprole and clothianidin in rice and sugar cane and chronic dietary risk assessment for different populations. . Microchem. J. 183::107936
    [Crossref] [Google Scholar]
  16. Coscollà C, Munoz A, Borrás E, Vera T, Ródenas M, et al. 2014.. Particle size distributions of currently used pesticides in ambient air of an agricultural Mediterranean area. . Atmos. Environ. 95::2935
    [Crossref] [Google Scholar]
  17. de Andrade JC, Galvan D, Kato LS, Conte-Junior CA. 2023.. Consumption of fruits and vegetables contaminated with pesticide residues in Brazil: a systematic review with health risk assessment. . Chemosphere 322::138244
    [Crossref] [Google Scholar]
  18. Devi R, Singh RP, Sachan AK. 2019.. Dissipation kinetics of hexaconazole and lambda-cyhalothrin residue in soil and potato plant. . Potato Res. 62::41122
    [Crossref] [Google Scholar]
  19. Dong C, Hu J. 2023.. Residue levels and dietary risk evaluation of prothioconazole-desthio and kresoxim-methyl in cucumbers after field application in twelve regions in China. . Food Addit. Contam. Part A 40:(4):56675
    [Crossref] [Google Scholar]
  20. Dong X, Tong Z, Chu Y, Sun M, Wang M, et al. 2019.. Dissipation of prothioconazole and its metabolite prothioconazole-desthio in rice fields and risk assessment of its dietary intake. . J. Agric. Food Chem. 67:(23):645865
    [Crossref] [Google Scholar]
  21. Eddleston M. 2020.. Poisoning by pesticides. . Medicine 48:(3):21417
    [Crossref] [Google Scholar]
  22. Edwards CA. 1990.. Sustainable Agricultural Systems. Boca Raton, FL:: CRC Press. , 1st ed..
    [Google Scholar]
  23. EPA (Environ. Prot. Agency). 2021.. 2021 human health benchmarks pesticides. . EPA. www.epa.gov/sdwa/2021-human-health-benchmarks-pesticides
    [Google Scholar]
  24. EPA (Environ. Prot. Agency). 2023.. Pesticides. EPA, updated May 31. https://www.epa.gov/pesticides
    [Google Scholar]
  25. Eur. Comm. 2023.. Pesticides. Food Saf. Database, updated May 8. https://ec.europa.eu/food/plant/pesticides_en
    [Google Scholar]
  26. Fang N. 2021.. [ Residual characteristics of flupyradifurone in Panax ginseng and its environmental behavior]. PhD Diss. , Jilin Agric. Univ., Changchun, China: ( In Chinese )
    [Google Scholar]
  27. FAO. 2023.. Food and agriculture data. FAOSTAT, updated May 22. https://www.fao.org/faostat/
    [Google Scholar]
  28. FAO/WHO. 2023.. NSP—list of pesticides evaluated by JMPS and JMPR. . Food and Agriculture Organization of the United Nations. www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/lpe/lpe-denl
    [Google Scholar]
  29. Feng Y, Qi X, Wang X, Liang L, Zuo B. 2022a.. Residue dissipation and dietary risk assessment of trifloxystrobin, trifloxystrobin acid, and tebuconazole in wheat under field conditions. . Int. J. Environ. Anal. Chem. 102:(7):1598612
    [Crossref] [Google Scholar]
  30. Feng Y, Zhang A, Bian Y, Liang L, Zuo B. 2022b.. Determination, residue analysis, dietary risk assessment, and processing of flupyradifurone and its metabolites in pepper under field conditions using LC-MS/MS. . Biomed. Chromatogr. 36::e5312
    [Crossref] [Google Scholar]
  31. Feng Y, Zhang A, Pan J, Zuo B, Liang L. 2022c.. Residue dissipation and dietary risk assessment of fluopyram and its metabolite (M25) in melon. . Int. J. Environ. Anal. Chem. 102:(19):763346
    [Crossref] [Google Scholar]
  32. Gao Q, Hu J, Shi L, Zhang Z, Liang Y. 2022.. Dynamics and residues of difenoconazole and chlorothalonil in leafy vegetables grown in open-field and greenhouse. . J. Food Compos. Anal. 110::104544
    [Crossref] [Google Scholar]
  33. Gao R, Dong J, Zhang W, Chen W. 2007.. Dietary risk assessment of spinosad in China. . Regul. Toxicol. Pharm. 49:(1):3142
    [Crossref] [Google Scholar]
  34. Garaj VV, Zeljezic D. 2002.. Assessment of genome damage in a population of Croatian workers employed in pesticide production by chromosomal aberration analysis, micronucleus assay and Comet assay. . J. Appl. Toxicol. 22:(4):24955
    [Crossref] [Google Scholar]
  35. Gilliom RJ. 2007.. Pesticides in US streams and groundwater. . Environ. Sci. Technol. 41::340814
    [Crossref] [Google Scholar]
  36. Guicherit R, Bakker DJ, Voogt P, Berg F, Dijk HFG, et al. 1999.. Environmental risk assessment for pesticides in the atmosphere; the results of an international workshop. . Water Air Soil Pollut. 115::519
    [Crossref] [Google Scholar]
  37. Guo M, Sun H, Wang X, Yu J, Luo F, et al. 2023.. Residue behavior and risk assessment of afidopyropen and its metabolite M440I007 in tea. . Food Chem. 404::134413
    [Crossref] [Google Scholar]
  38. Guo W, Chen Y, Jiao H, Hu D, Lu P. 2021.. Dissipation, residues analysis and risk assessment of metconazole in grapes under field conditions using gas chromatography-tandem mass spectrometry. . Qual. Assur. Saf. Crop Foods 13::8497
    [Crossref] [Google Scholar]
  39. Guo Y, Zhao M, Chen X, Wang X, Zhang J. 2021.. [ Degradation dynamics and residues analysis of triflumezopyrim in paddy. ]. Jiangsu Agric. Sci. 49:(2):7175 (In Chinese)
    [Google Scholar]
  40. Hao GF, Jiang W, Ye YN, Wu FX, Zhu XL, et al. 2016.. ACFIS: a web server for fragment-based drug discovery. . Nucleic Acids Res. 44:(W1):W55056
    [Crossref] [Google Scholar]
  41. Hou X, Qiao T, Zhao Y, Liu D. 2019.. Dissipation and safety evaluation of afidopyropen and its metabolite residues in supervised cotton field. . Ecotoxicol. Environ. Saf. 180::22733
    [Crossref] [Google Scholar]
  42. Hurst MR, Sheahan DA. 2003.. The potential for estrogenic effects of pesticides in headwater streams in the UK. . Sci. Total Environ. 301:(1–3):8796
    [Crossref] [Google Scholar]
  43. ICAMA P.R. China. 2023.. CN pesticides data center. China Pesticide Information Network, updated March 31. http://www.chinapesticide.org.cn/zwb/dataCenter
    [Google Scholar]
  44. Jayashree R, Vasudevan N. 2007.. Organochlorine pesticide residues in ground water of Thiruvallur district, India. . Environ. Monit. Assess. 128::20915
    [Crossref] [Google Scholar]
  45. JMPR (Joint FAO/WHO Meet. Pestic. Residue). 2002.. Further guidance on derivation of the ARfD. Pesticide residues in food—2002. . FAO Plant Prod. Prot. Pap. 172::48
    [Google Scholar]
  46. Kandasamy R, London D, Stam L, von Deyn W, Zhao X, et al. 2017.. Afidopyropen: new and potent modulator of insect transient receptor potential channels. . Insect Biochem. Mol. Biol. 84::3239
    [Crossref] [Google Scholar]
  47. Karunamoorthi K. 2012.. Medicinal and aromatic plants: a major source of green pesticides/risk-reduced pesticides. . Med. Aromat. Plants 1:(8). https://doi.org/10.4172/2167-0412.1000e137
    [Crossref] [Google Scholar]
  48. Kaushik E, Dubey JK, Patyal SK, Katna S, Chauhan A, et al. 2019.. Persistence of tetraniliprole and reduction in its residues by various culinary practices in tomato in India. . Environ. Sci. Pollut. Res. 26:(2):22426471
    [Google Scholar]
  49. Kong W, Gao W, Fan Y. 2018.. [ Effects of pleocidin and spinetoram on the development of zebrafish embryos. ]. J. Trop. Biol. 903::26773 ( In Chinese )
    [Google Scholar]
  50. Kong Z, Dong F, Xu J, Liu X, Zhang C. 2012.. Determination of difenoconazole residue in tomato during home canning by UPLC-MS/MS. . Food Control 23::54246
    [Crossref] [Google Scholar]
  51. Li H, Zhong Q, Luo F, Wang X, Zhou L, et al. 2021.. Residue degradation and metabolism of spinetoram in tea: a growing, processing and brewing risk assessment. . Food Control 125::107955
    [Crossref] [Google Scholar]
  52. Li J, Wang Y, Xue J, Wang P, Shi S. 2018.. Dietary exposure risk assessment of flonicamid and its effect on constituents after application in Lonicerae japonicae flos. . Chem. Pharm. Bull. 66:(6):60811
    [Crossref] [Google Scholar]
  53. Li K, Chen W, Xiang W, Chen T, Zhang M, et al. 2022.. Determination, residue analysis and risk assessment of thiacloprid and spirotetramat in cowpeas under field conditions. . Sci. Rep. 12:(1):3470
    [Crossref] [Google Scholar]
  54. Li R, Jin J. 2013.. Modeling of temporal patterns and sources of atmospherically transported and deposited pesticides in ecosystems of concern: a case study of toxaphene in the Great Lakes. . J. Geophys. Res. Atmos. 118:(20):1186374
    [Crossref] [Google Scholar]
  55. Li X, Li Z, Zhang H, Tan J, Sun G. 2017.. [ Evaluation of toxicity effects of pyraclostrobin via multiple stage zebrafish assays. ]. Asian J. Ecotoxicol. 124::23441 ( In Chinese )
    [Google Scholar]
  56. Li Z, Shao X, Lee PW, Qian X. 2023.. Green pesticide R&D in China. . J. Agric. Food Chem. 71:(14):541718
    [Crossref] [Google Scholar]
  57. Liang H, Li L, Li W, Wu Y, Liu F. 2012.. The decline and residues of hexaconazole in tomato and soil. . Environ. Monit. Assess. 184::157379
    [Crossref] [Google Scholar]
  58. Liang Y, Chen X, Hu J. 2021.. Terminal residue and dietary intake risk assessment of prothioconazole-desthio and fluoxastrobin in wheat field ecosystem. . J. Sci. Food Agric. 101:(12):49006
    [Crossref] [Google Scholar]
  59. Liang Y, Wu W, Cheng X, Hu J. 2020.. Residues, fate and risk assessment of spirotetramat and its four metabolites in pineapple under field conditions. . Int. J. Environ. Anal. Chem. 100:(8):90011
    [Crossref] [Google Scholar]
  60. Lin H, Dong B, Hu J. 2017.. Residue and intake risk assessment of prothioconazole and its metabolite prothioconazole-desthio in wheat field. . Environ. Monit. Assess. 189:(5):236
    [Crossref] [Google Scholar]
  61. Lin H, Liu L, Zhang Y, Shao H, Li H, et al. 2020.. Residue behavior and dietary risk assessment of spinetoram (XDE-175-J/L) and its two metabolites in cauliflower using QuEChERS method coupled with UPLC-MS/MS. . Ecotoxicol. Environ. Saf. 202::110942
    [Crossref] [Google Scholar]
  62. Lin S, Yang L, Zheng Q, Wang Y, Cheng D, et al. 2022.. Dissipation and distribution of pyraclostrobin in bananas at different temperature and a risk assessment of dietary intake. . Int. J. Environ. Anal. Chem. 102:(17):5798810
    [Crossref] [Google Scholar]
  63. Liu C, Bai L, Cao P, Li S, Huang S, et al. 2022.. Novel plant growth regulator guvermectin from plant growth-promoting rhizobacteria boosts biomass and grain yield in rice. . J. Agric. Food Chem. 70:(51):1622940
    [Crossref] [Google Scholar]
  64. Liu X, Zhu Y, Dong F, Xu J, Zheng Y. 2014.. Dissipation and residue of flonicamid in cucumber, apple and soil under field conditions. . Int. J. Environ. Anal. Chem. 94:(7):65260
    [Crossref] [Google Scholar]
  65. Liu Y, Sun H, Wang S. 2013.. Dissipation and residue of spinosad in zucchini under field conditions. . Bull. Environ. Contam. Toxicol. 91:(2):25659
    [Crossref] [Google Scholar]
  66. Liu Y, Zhang Y, Liu S, Y, Lin R, et al. 2018.. Distribution and degradation kinetics of cyhalodiamide in Chinese rice field environment. . Chin. J. Chem. Eng. 26:(10):218591
    [Crossref] [Google Scholar]
  67. Luo Y, Wu X, Hu X, Yao X, Liu X, et al. 2022.. [ Research progress on pyraclostrobin degradation, metabolism, and toxicology. ]. J. Agric. Resour. Environ. 394::65163 ( In Chinese )
    [Google Scholar]
  68. Luo Z, Kong X, Lei Q, Zhu X, Jin C. 2022.. [ Acute toxicity of fludinamide to three aquatic organisms. ]. J. Anhui Agric. Sci. 5017::12427 ( In Chinese )
    [Google Scholar]
  69. Lv L, Wu S, Wang Q, Zhao X, Xu M. 2022.. [ Primary risk assessment of several fungicides to typical vineyard terrestrial organisms. ]. Acta Agric. Zhejiangensis 34:(11):251221 ( In Chinese )
    [Google Scholar]
  70. Malhat F, Abdallah O. 2019.. Residue distribution and risk assessment of two macrocyclic lactone insecticides in green onion using micro-liquid-liquid extraction (MLLE) technique coupled with liquid chromatography tandem mass spectrometry. . Environ. Monit. Assess. 191:(9):584
    [Crossref] [Google Scholar]
  71. Malhat F, Saber ES, Shokr SAE, Ahmed MT, Amin AE. 2019.. Consumer safety evaluation of pyraclostrobin residues in strawberry using liquid chromatography tandem mass spectrometry (LC-MS/MS): an Egyptian profile. . Regul. Toxicol. Pharm. 108::104450
    [Crossref] [Google Scholar]
  72. MARA (Minist. Agric. Rural Aff.). 2012.. Guideline on establishment of the acceptable daily intake of pesticide. . MARA. http://www.moa.gov.cn/nybgb/2012/djiuq/201805/t20180516_6142326.htm
    [Google Scholar]
  73. MARA (Minist. Agric. Rural Aff.). 2015.. Guidelines for risk assessment of pesticide residues in food. . MARA. http://www.moa.gov.cn/nybgb/2015/shiyiqi/201712/t20171219_6104099.htm
    [Google Scholar]
  74. Matadha NY, Mohapatra S, Siddamallaiah L. 2021.. Distribution of fluopyram and tebuconazole in pomegranate tissues and their risk assessment. . Food Chem. 358::129909
    [Crossref] [Google Scholar]
  75. Meng Z, Wang Z, Chen X, Song Y, Teng M, et al. 2022.. Bioaccumulation and toxicity effects of flubendiamide in zebrafish (Danio rerio). . Environ. Sci. Pollut. Res. 2918::269009
    [Crossref] [Google Scholar]
  76. Mishra AK, Chandiraseharan VK, Jose N, Sudarsanam TD. 2016.. Chlorantraniliprole: an unusual insecticide poisoning in humans. . Indian J. Crit. Care Med. 20:(12):74244
    [Crossref] [Google Scholar]
  77. Mohapatra S, Siddamallaiah L, Buddidathi R, Matadha NY. 2018.. Dissipation kinetics and risk assessment of fluopyram and tebuconazole in mango (Mangifera indica). . Int. J. Environ. Anal. Chem. 98:(3):22946
    [Crossref] [Google Scholar]
  78. Moreno GR, Leon VM. 2017.. Presence and distribution of current-use pesticides in surface marine sediments from a Mediterranean coastal lagoon (SE Spain). . Environ. Sci. Pollut. Res. Int. 24:(9):803348
    [Crossref] [Google Scholar]
  79. Niu J, Hu J. 2018.. Dissipation behaviour and dietary risk assessment of boscalid, triflumizole and its metabolite (FM-6-1) in open-field cucumber based on QuEChERS using HPLC-MS/MS technique: determination of boscalid, triflumizole and FM-6-1 in cucumber. . J. Sci. Food Agric. 98:(12):45018
    [Crossref] [Google Scholar]
  80. Niu L, Xu C, Yao Y, Liu K, Yang F, et al. 2013.. Status, influences and risk assessment of hexachlorocyclohexanes in agricultural soils across China. . Environ. Sci. Technol. 47:(21):1214047
    [Crossref] [Google Scholar]
  81. Ouyang X, Wu C, Wang C, Zhou Q, Sun T, et al. 2017.. [ Acute toxicity and safety evaluation of trifloxystrobin to environmental organisms. ]. Asian J. Ecotoxicol. 12:(4):32736 ( In Chinese )
    [Google Scholar]
  82. Paramasivam M, Selvi C, Chandrasekaran S. 2014.. Persistence and dissipation of flubendiamide and its risk assessment on gherkin (Cucumis anguria L.). . Environ. Monit. Assess. 186::488187
    [Crossref] [Google Scholar]
  83. Park J, Ahn YO, Nam JW, Hong MK, Song N, et al. 2018.. Biochemical and physiological mode of action of tiafenacil, a new protoporphyrinogen IX oxidase-inhibiting herbicide. . Pestic. Biochem. Physiol. 152::3844
    [Crossref] [Google Scholar]
  84. Pasteris RJ, Hanagan MA, Bisaha JJ, Finkelstein BL, Hoffman LE, et al. 2016.. Discovery of oxathiapiprolin, a new oomycete fungicide that targets an oxysterol binding protein. . Bioorg. Med. Chem. 24:(3):35461
    [Crossref] [Google Scholar]
  85. Patel S, Sangeeta S. 2019.. Pesticides as the drivers of neuropsychotic diseases, cancers, and teratogenicity among agro-workers as well as general public. . Environ. Sci. Pollut. Res. 26:(1):91100
    [Crossref] [Google Scholar]
  86. Qian X, Lee PW, Cao S. 2010.. China: forward to the green pesticides via a basic research program. . J. Agric. Food Chem. 58:(5):261323
    [Crossref] [Google Scholar]
  87. Qian X, Zheng Z, Chen Y, Zhang S, Guan J, et al. 2019.. [ Residues and dissipation dynamics of spirotetramat and its metabolites in pear and soil. ]. Chin. J. Pestic. Sci. 21:(3):33844 (In Chinese)
    [Google Scholar]
  88. Qin M, Ren ZJ, Zhang S, Wang FL, Zhao Q, et al. 2021.. Looking at the development of “pesticide reduction” from the “zero growth action of pesticides. .” China Plant Prot. 41:(11):8994 ( In Chinese )
    [Google Scholar]
  89. Rashidi MA, Mouden OE, Chakir A, Roth E, Salghi R. 2011.. The heterogeneous photo-oxidation of difenoconazole in the atmosphere. . Atmos. Environ. 45:(33):59976003
    [Crossref] [Google Scholar]
  90. Reganold JP, Papendick RI, Parr JF. 1990.. Sustainable agriculture. . Sci. Am. 262:(6):11221
    [Crossref] [Google Scholar]
  91. Sahoo SK, Sharma RK, Battu RS, Singh B. 2009.. Dissipation kinetics of flubendiamide on chili and soil. . Bull. Environ. Contam. Toxicol. 83:(3):38487
    [Crossref] [Google Scholar]
  92. Satyanarayan S, Ramakant, Satyanarayan A. 2005.. Bioaccumulation studies of organochlorinated pesticides in tissues of Cyprinus carpio. . J. Environ. Sci. Health B 40:(3):397412
    [Crossref] [Google Scholar]
  93. Schummer C, Mothiron E, Appenzeller BMR, Rizet AL, Wenning R, et al. 2010.. Temporal variations of concentrations of currently used pesticides in the atmosphere of Strasbourg, France. . Environ. Pollut. 158:(2):57684
    [Crossref] [Google Scholar]
  94. Shao X, Du S, Li Z, Qian X. 2020.. Research and development of green pesticides in China. . World Pestic. 42:(2):1623 ( In Chinese )
    [Google Scholar]
  95. Sharma N, Mandal K, Kumar R, Kumar B, Singh B. 2014.. Persistence of chlorantraniliprole granule formulation in sugarcane field soil. . Environ. Monit. Assess. 186::228995
    [Crossref] [Google Scholar]
  96. Sharma N, Mandal K, Sharma S. 2022.. Dissipation and risk assessment of fluopyram and trifloxystrobin on onion by GC-MS/MS. . Environ. Sci. Pollut. Res. 29:(53):8061223
    [Crossref] [Google Scholar]
  97. Shukla G, Kumar A, Bhanti M, Joseph PE, Taneja A. 2006.. Organochlorine pesticide contamination of ground water in the city of Hyderabad. . Environ. Int. 32::24447
    [Crossref] [Google Scholar]
  98. Socorro J, Durand A, Temime-Roussel B, Gligorovski S, Wortham H, et al. 2016.. The persistence of pesticides in atmospheric particulate phase: an emerging air quality issue. . Sci. Rep. 6::334456
    [Crossref] [Google Scholar]
  99. Su T, Lin J, Lin-Tan DT, Tseng H, Yen T. 2011.. Human poisoning with spinosad and flonicamid insecticides. . Hum. Exp. Toxicol. 30:(11):187881
    [Crossref] [Google Scholar]
  100. Sun J, Feng N, Tang C, Qin D. 2012.. Determination of cyantraniliprole and its major metabolite residues in pakchoi and soil using ultra-performance liquid chromatography-tandem mass spectrometry. . Bull. Environ. Contam. Toxicol. 89::84552
    [Crossref] [Google Scholar]
  101. Tang H, Ma L, Huang J, Li Y, Liu Z. 2021.. Residue behavior and dietary risk assessment of six pesticides in pak choi using QuEChERS method coupled with UPLC-MS/MS. . Ecotoxicol. Environ. Saf. 213::112022
    [Crossref] [Google Scholar]
  102. Umetsu N, Shirai Y. 2020.. Development of novel pesticides in the 21st century. . J. Pestic. Sci. 45:(2):5474
    [Crossref] [Google Scholar]
  103. Velten S, Leventon J, Jager N, Newig J. 2015.. What is sustainable agriculture? A systematic review. . Sustainability 7:(6):783365
    [Crossref] [Google Scholar]
  104. Wang J, Chow W, Chang J, Wong JW. 2017.. Development and validation of a qualitative method for target screening of 448 pesticide residues in fruits and vegetables using UHPLC/ESI Q-Orbitrap based on data-independent acquisition and compound database. . J. Agric. Food Chem. 65:(2):47393
    [Crossref] [Google Scholar]
  105. Wang M, Wang Z, Ran L, Han H, Wang Y, et al. 2003.. [ Study on food contaminants monitoring in China during 2000–2001. ]. J. Hygiene Res. 32:(4):32226 ( In Chinese )
    [Google Scholar]
  106. Wang W, Sun Q, Li Y, Wen G, Fan J, et al. 2018.. Simultaneous determination of fluoxastrobin and tebuconazole in cucumber and soil based on solid-phase extraction and LC-MS/MS method. . Food Anal. Method. 11:(3):75058
    [Crossref] [Google Scholar]
  107. Wang Y, Chen C, Yang G, Wang X, Wang Q, et al. 2022.. Combined lethal toxicity, biochemical responses, and gene expression variations induced by tebuconazole, bifenthrin and their mixture in zebrafish (Danio rerio). . Ecotox. Environ. Safe. 230:(15):113116
    [Crossref] [Google Scholar]
  108. Wang Y, Xue J, Jin H, Ma S. 2017.. Dissipation of flonicamid in honeysuckle and its transfer during brewing process. . Chem. Pharm. Bull. 65:(5):49297
    [Crossref] [Google Scholar]
  109. WHO (World Health Organ.). 1989.. Environmental health criteria 83, DDT and its derivatives- environmental aspects. Rep. , WHO, Geneva:. https://apps.who.int/iris/bitstream/handle/10665/40018/9241542837-eng.pdf?sequence=1&isAllowed=y
    [Google Scholar]
  110. WHO (World Health Organ.). 2021.. WHO human health risk assessment toolkit: chemical hazards. Rep. , WHO, Geneva:. https://www.who.int/publications/i/item/9789240035720
    [Google Scholar]
  111. Wu C, Luo Y, Gui T, Huang Y. 2014.. Concentrations and potential health hazards of organochlorine pesticides in shallow groundwater of Taihu Lake region, China. . Environ. Sci. Technol. 470471: 1047–55
    [Google Scholar]
  112. Wu J, Song BA. 2020.. Current situation and thinking for the innovation of green pesticide. . Bull. NSFC 34:(4):48694
    [Google Scholar]
  113. Xie G, Zhou W, Jin M, Yu A, Rao L, et al. 2020.. Residues analysis and dissipation dynamics of broflanilide in rice and its related environmental samples. . Int. J. Anal. Chem. 2020:(11):8845387
    [Google Scholar]
  114. Xie J, Zheng Y, Liu X, Dong F, Xu J, et al. 2019.. Human health safety studies of a new insecticide: dissipation kinetics and dietary risk assessment of afidopyropen and one of its metabolites in cucumber and nectarine. . Regul. Toxicol. Pharmacol. 103::15057
    [Crossref] [Google Scholar]
  115. Xu D, Pan JL, Liu WQ, Jiang FP, Dong JX, et al. 2013.. [ Safety evaluation of spinosad SC, abamectin EC and beta-cypermethrin EW pesticides to environmental organisms. ]. Asian J. Ecotoxicol. 8:(6):897902 ( In Chinese )
    [Google Scholar]
  116. Yang JF, Wang F, Wang MY, Wang D, Zhou ZS, et al. 2023.. CIPDB: a biological structure databank for studying cation and π interactions. . Drug Discov. Today 28:(5):103546
    [Crossref] [Google Scholar]
  117. Yang Y, Yang M, Zhao T, Pan L, Jia L, et al. 2022.. Residue and risk assessment of fluopyram in carrot tissues. . Molecules 27:(17):5544
    [Crossref] [Google Scholar]
  118. Yano BL, Bond DM, Novilla MN, McFadden LG, Reasor MJ. 2002.. Spinosad insecticide: subchronic and chronic toxicity and lack of carcinogenicity in Fischer 344 rats. . Toxicol. Sci. 65:(2):28898
    [Crossref] [Google Scholar]
  119. Yao X, Qiao Z, Zhang F, Liu X, Du Q, et al. 2021.. Effects of a novel fungicide benzovindiflupyr in Eisenia fetida: evaluation through different levels of biological organization. . Environ. Pollut. 271::116336
    [Crossref] [Google Scholar]
  120. Zhang L, Cui J, He Q, Li QX. 2022.. High performance computation and artificial intelligence in pesticide discovery: status and outlook. . Front. Agric. Sci. Eng. 9:(1):150154
    [Crossref] [Google Scholar]
  121. Zhang L, Zhang Z, Chen X, Cheng Y, Li W, et al. 2023.. [ Advances in bioactivity, ecotoxicity and residual fate of diamide pesticides. ]. Chin. J. Pestic. Sci. 25:(2):295309 ( In Chinese )
    [Google Scholar]
  122. Zhang T, Xu Y, Zhou X, Liang X, Bai Y, et al. 2022.. Dissipation kinetics and safety evaluation of flonicamid in four various types of crops. . Molecules 27:(23):8615
    [Crossref] [Google Scholar]
  123. Zhang X, Zhang X, Zhang ZF, Yang PF, Li YF, et al. 2022.. Pesticides in the atmosphere and seawater in a transect study from the western Pacific to the Southern Ocean: the importance of continental discharges and air-seawater exchange. . Water Res. 217::118439
    [Crossref] [Google Scholar]
  124. Zhang Y, Wang M, Silipunyo T, Huang H, Yin Q. 2022a.. Risk assessment of triflumezopyrim and imidacloprid in rice through an evaluation of residual data. . Molecules 27:(17):5685
    [Crossref] [Google Scholar]
  125. Zhang Y, Zhou Y, Duan T, Kaium A, Li A. 2022b.. Dissipation and dietary risk assessment of carbendazim and epoxiconazole in citrus fruits in China. . J. Sci. Food Agr. 102:(4):141521
    [Crossref] [Google Scholar]
  126. Zhang Z, Jiang W, Jian Q, Song W, Zheng Z, et al. 2015.. Residues and dissipation kinetics of triazole fungicides difenoconazole and propiconazole in wheat and soil in Chinese fields. . Food Chem. 168::396403
    [Crossref] [Google Scholar]
  127. Zhao H, Zhao Y, Hu J. 2020.. Dissipation, residues and risk assessment of pyraclostrobin and picoxystrobin in cucumber under field conditions. . J. Sci. Food Agric. 100:(14):514551
    [Crossref] [Google Scholar]
  128. Zhao Z, Sun R, Su Y, Hu J, Liu X. 2021.. Fate, residues and dietary risk assessment of the fungicides epoxiconazole and pyraclostrobin in wheat in twelve different regions, China. . Ecotoxicol. Environ. Saf. 207::111236
    [Crossref] [Google Scholar]
  129. Zheng Q, Qin D, Yang L, Liu B, Lin S, et al. 2020.. Dissipation and distribution of difenoconazole in bananas and a risk assessment of dietary intake. . Environ. Sci. Pollut Res. Int. 27::1536574
    [Crossref] [Google Scholar]
  130. Zhu C, Yang J, Zhang N. 2017.. Trend analysis of pesticide use in major countries of the world. . Pestic. Sci. Admin. 38:(4):1319 ( In Chinese )
    [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034519
Loading
/content/journals/10.1146/annurev-food-072023-034519
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error