1932

Abstract

Because the feeding of our body through the oral route can be associated with many drawbacks due to the degradation of natural molecules during transit in the gastrointestinal tract, a transdermal delivery strategy, usually employed in the pharmaceutical field, can present an effective alternative for delivery of bioactives and nutrients from foods. In this review, the chance to feed the body with nutritive and bioactive molecules from food through transdermal administration is discussed. Various nanotechnological devices employed for topical and transdermal delivery of bioactive compounds are described. In addition, mechanisms underlying their potential use in the delivery of nutritive molecules, as well as their capability to efficaciously reach the dermis and promote systemic distribution, are detailed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034528
2024-06-28
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034528.html?itemId=/content/journals/10.1146/annurev-food-072023-034528&mimeType=html&fmt=ahah

Literature Cited

  1. Abdelkader H, Alani AWG, Alany RG. 2014.. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. . Drug Deliv. 21:(2):87100
    [Crossref] [Google Scholar]
  2. Adnan M, Afzal O, Altamimi ASA, Alamri MA, Haider T, Faheem Haider M. 2023.. Development and optimization of transethosomal gel of apigenin for topical delivery: in-vitro, ex-vivo and cell line assessment. . Int. J. Pharm. 631::122506
    [Crossref] [Google Scholar]
  3. Aguirre-Cruz G, León-López A, Cruz-Gómez V, Jiménez-Alvarado R, Aguirre-Álvarez G. 2020.. Collagen hydrolysates for skin protection: oral administration and topical formulation. . Antioxidants 9:(2):181
    [Crossref] [Google Scholar]
  4. Akombaetwa N, Ilangala AB, Thom L, Memvanga PB, Witika BA, Buya AB. 2023.. Current advances in lipid nanosystems intended for topical and transdermal drug delivery applications. . Pharmaceutics 15:(2):656
    [Crossref] [Google Scholar]
  5. Anantaworasakul P, Chaiyana W, Michniak-Kohn BB, Rungseevijitprapa W, Ampasavate C. 2020.. Enhanced transdermal delivery of concentrated capsaicin from chili extract-loaded lipid nanoparticles with reduced skin irritation. . Pharmaceutics 12:(5):463
    [Crossref] [Google Scholar]
  6. Andreozzi P, Funari SS, La Mesa C, Mariani P, Ortore MG, et al. 2010.. Multi- to unilamellar transitions in catanionic vesicles. . J. Phys. Chem. B 114:(24):805660
    [Crossref] [Google Scholar]
  7. Anita C, Munira M, Mural Q, Shaily L. 2021.. Topical nanocarriers for management of rheumatoid arthritis: a review. . Biomed. Pharmacother. 141::111880
    [Crossref] [Google Scholar]
  8. Araviiskaia E, Berardesca E, Bieber T, Gontijo G, Sanchez Viera M, et al. 2019.. The impact of airborne pollution on skin. . J. Eur. Acad. Dermatol. Venereol. 33:(8):1496505
    [Crossref] [Google Scholar]
  9. Avadhani KS, Manikkath J, Tiwari M, Chandrasekhar M, Godavarthi A, et al. 2017.. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. . Drug Deliv. 24:(1):6174
    [Crossref] [Google Scholar]
  10. Avcil M, Akman G, Klokkers J, Jeong D, Çelik A. 2020.. Efficacy of bioactive peptides loaded on hyaluronic acid microneedle patches: a monocentric clinical study. . J. Cosmet. Dermatol. 19:(2):32837
    [Crossref] [Google Scholar]
  11. Avcil M, Çelik A. 2021.. Microneedles in drug delivery: progress and challenges. . Micromachines 12:(11):1321
    [Crossref] [Google Scholar]
  12. Blanpain C, Fuchs E. 2006.. Epidermal stem cells of the skin. . Annu. Rev. Cell Dev. Biol. 22::33973
    [Crossref] [Google Scholar]
  13. Cáceres L, Paz ML, Garcés M, Calabró V, Magnani ND, et al. 2020.. NADPH oxidase and mitochondria are relevant sources of superoxide anion in the oxinflammatory response of macrophages exposed to airborne particulate matter. . Ecotoxicol. Environ. Saf. 205::111186
    [Crossref] [Google Scholar]
  14. Caddeo C, Lucchesi D, Fernàndez-Busquets X, Valenti D, Penno G, et al. 2021.. Efficacy of a resveratrol nanoformulation based on a commercially available liposomal platform. . Int. J. Pharm. 608::121086
    [Crossref] [Google Scholar]
  15. Cappellozza E, Zanzoni S, Malatesta M, Calderan L. 2021.. Integrated microscopy and metabolomics to test an innovative fluid dynamic system for skin explants in vitro. . Microsc. Microanal. 27:(4):92334
    [Crossref] [Google Scholar]
  16. Carter P, Narasimhan B, Wang Q. 2019.. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. . Int. J. Pharm. 555::4962
    [Crossref] [Google Scholar]
  17. Chacko IA, Ghate VM, Dsouza L, Lewis SA. 2020.. Lipid vesicles: a versatile drug delivery platform for dermal and transdermal applications. . Colloids Surf. B 195::111262
    [Crossref] [Google Scholar]
  18. Chaiyana W, Anuchapreeda S, Somwongin S, Marsup P, Lee K-H, et al. 2020.. Dermal delivery enhancement of natural anti-ageing compounds from Ocimum sanctum Linn. extract by nanostructured lipid carriers. . Pharmaceutics 12:(4):309
    [Crossref] [Google Scholar]
  19. Chandra P, Rathore AS, Kay KL, Everhart JL, Curtis P, et al. 2019.. Contribution of berry polyphenols to the human metabolome. . Molecules 24:(23):4220
    [Crossref] [Google Scholar]
  20. Chen R-P, Chavda VP, Patel AB, Chen Z-S. 2022.. Phytochemical delivery through transferosome (phytosome): an advanced transdermal drug delivery for complementary medicines. . Front. Pharmacol. 13::850862
    [Crossref] [Google Scholar]
  21. Choromanska A, Saczko J, Kulbacka J. 2020.. Caffeic acid phenethyl ester assisted by reversible electroporation—in vitro study on human melanoma cells. . Pharmaceutics 12:(5):478
    [Crossref] [Google Scholar]
  22. Coates M, Lee MJ, Norton D, MacLeod AS. 2019.. The skin and intestinal microbiota and their specific innate immune systems. . Front. Immunol. 10::2950
    [Crossref] [Google Scholar]
  23. Cross CE, Valacchi G, Schock B, Wilson M, Weber S, et al. 2002.. Environmental oxidant pollutant effects on biologic systems: a focus on micronutrient antioxidant-oxidant interactions. . Am. J. Respir. Crit. Care Med. 166:(12 Pt. 2):S4450
    [Crossref] [Google Scholar]
  24. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, et al. 2018.. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. . Pharmaceutics 10:(2):57
    [Crossref] [Google Scholar]
  25. Deep Kaur C, Gupta A, Saraf S. 2018.. Effect of flavanoidal rich novel vesicular cream on the cellular components of skin against UV irradiation. . J. Cancer Diagn. https://doi.org/10.4172/2476-2253.10000113
    [Google Scholar]
  26. Dragicevic N, Atkinson JP, Maibach HI. 2015.. Chemical penetration enhancers: classification and mode of action. . In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum, ed. N Dragicevic, HI Maibach , pp. 1127. Berlin:: Springer
    [Google Scholar]
  27. El-Zaafarany GM, Abdel-Aziz RTA, Montaser MHA, Nasr M. 2021.. Coenzyme Q10 phospholipidic vesicular formulations for treatment of androgenic alopecia: ex vivo permeation and clinical appraisal. . Expert Opin. Drug Deliv. 18:(10):151322
    [Crossref] [Google Scholar]
  28. El-Zaafarany GM, Nasr M. 2021.. Insightful exploring of advanced nanocarriers for the topical/transdermal treatment of skin diseases. . Pharm. Dev. Technol. 26:(10):113657
    [Crossref] [Google Scholar]
  29. Esposito E, Calderan L, Galvan A, Cappellozza E, Drechsler M, et al. 2022.. Ex vivo evaluation of ethosomes and transethosomes applied on human skin: a comparative study. . Int. J. Mol. Sci. 23:(23):15112
    [Crossref] [Google Scholar]
  30. Esposito E, Drechsler M, Nastruzzi C, Cortesi R. 2016.. Cubic phases, cubosomes and ethosomes for cutaneous application. . Curr. Pharm. Des. 22:(35):538299
    [Crossref] [Google Scholar]
  31. Évora etal | 2021
    Évora AS, Adams MJ, Johnson SA, Zhang Z. 2021.. Corneocytes: relationship between structural and biomechanical properties. . Skin Pharmacol. Physiol. 34:(3):14661
    [Crossref] [Google Scholar]
  32. Fang C-L, Aljuffali IA, Li Y-C, Fang J-Y. 2014.. Delivery and targeting of nanoparticles into hair follicles. . Ther. Deliv. 5:(9):9911006
    [Crossref] [Google Scholar]
  33. Farris PK, Valacchi G. 2022.. Ultraviolet light protection: Is it really enough?. Antioxidants 11:(8):1484
    [Crossref] [Google Scholar]
  34. Ferrara F, Benedusi M, Cervellati F, Sguizzato M, Montesi L, et al. 2022a.. Dimethyl fumarate-loaded transethosomes: a formulative study and preliminary ex vivo and in vivo evaluation. . Int. J. Mol. Sci. 23:(15):8756
    [Crossref] [Google Scholar]
  35. Ferrara F, Benedusi M, Sguizzato M, Cortesi R, Baldisserotto A, et al. 2022b.. Ethosomes and transethosomes as cutaneous delivery systems for quercetin: a preliminary study on melanoma cells. . Pharmaceutics 14:(5):1038
    [Crossref] [Google Scholar]
  36. Ferrara F, Cordone V, Pecorelli A, Benedusi M, Pambianchi E, et al. 2022c.. Ubiquitination as a key regulatory mechanism for O3-induced cutaneous redox inflammasome activation. . Redox Biol. 56::102440
    [Crossref] [Google Scholar]
  37. Ferrara F, Pambianchi E, Woodby B, Messano N, Therrien J-P, et al. 2021.. Evaluating the effect of ozone in UV induced skin damage. . Toxicol. Lett. 338::4050
    [Crossref] [Google Scholar]
  38. Ferrara F, Woodby B, Pecorelli A, Schiavone ML, Pambianchi E, et al. 2020.. Additive effect of combined pollutants to UV induced skin OxInflammation damage. Evaluating the protective topical application of a cosmeceutical mixture formulation. . Redox Biol. 34::101481
    [Crossref] [Google Scholar]
  39. Fuchs E. 2016.. Epithelial skin biology: three decades of developmental biology, a hundred questions answered and a thousand new ones to address. . Curr. Top. Dev. Biol. 116::35774
    [Crossref] [Google Scholar]
  40. Fuks KB, Woodby B, Valacchi G. 2019.. Skin damage by tropospheric ozone. . Hautarzt. https://doi.org/10.1007/s00105-018-4319-y
    [Google Scholar]
  41. Gallo RL. 2017.. Human skin is the largest epithelial surface for interaction with microbes. . J. Investig. Dermatol. 137:(6):121314
    [Crossref] [Google Scholar]
  42. Garg U, Jain K. 2022.. Dermal and transdermal drug delivery through vesicles and particles: preparation and applications. . Adv. Pharm. Bull. 12:(1):4557
    [Google Scholar]
  43. Godin B, Touitou E. 2003.. Ethosomes: new prospects in transdermal delivery. . Crit. Rev. Ther. Drug Carr. Syst. 20:(1):63102
    [Crossref] [Google Scholar]
  44. Gonzales KAU, Fuchs E. 2017.. Skin and its regenerative powers: an alliance between stem cells and their niche. . Dev. Cell 43:(4):387401
    [Crossref] [Google Scholar]
  45. Hallan SS, Sguizzato M, Drechsler M, Mariani P, Montesi L, et al. 2021.. The potential of caffeic acid lipid nanoparticulate systems for skin application: in vitro assays to assess delivery and antioxidant effect. . Nanomaterials 11:(1):171
    [Crossref] [Google Scholar]
  46. Hallan SS, Sguizzato M, Mariani P, Cortesi R, Huang N, et al. 2020.. Design and characterization of ethosomes for transdermal delivery of caffeic acid. . Pharmaceutics 12:(8):740
    [Crossref] [Google Scholar]
  47. Harshita, Barkat MA, Das SS, Pottoo FH, Beg S, Rahman Z. 2020.. Lipid-based nanosystem as intelligent carriers for versatile drug delivery applications. . Curr. Pharm. Des. 26:(11):116780
    [Crossref] [Google Scholar]
  48. Hassan AS, Hofni A, Abourehab MAS, Abdel-Rahman IAM. 2023.. Ginger extract-loaded transethosomes for effective transdermal permeation and anti-inflammation in rat model. . Int. J. Nanomed. 18::125980
    [Crossref] [Google Scholar]
  49. Herkenne C, Alberti I, Naik A, Kalia YN, Mathy F-X, et al. 2008.. In vivo methods for the assessment of topical drug bioavailability. . Pharm. Res. 25:(1):87103
    [Crossref] [Google Scholar]
  50. Hodzic A, Zoumpoulakis P, Pabst G, Mavromoustakos T, Rappolt M. 2012.. Losartan's affinity to fluid bilayers modulates lipid-cholesterol interactions. . Phys. Chem. Chem. Phys. 14:(14):478088
    [Crossref] [Google Scholar]
  51. Hou K, Wu Z-X, Chen X-Y, Wang J-Q, Zhang D, et al. 2022.. Microbiota in health and diseases. . Signal Transduct. Target Ther. 7::135
    [Crossref] [Google Scholar]
  52. Ibrahim AAE, Bagherani N, Smoller BR, Reyes-Baron C, Bagherani N. 2020.. Functions of the skin. . In Atlas of Dermatology, Dermatopathology and Venereology, ed. B Smoller, N Bagherani , pp. 111. Cham, Switz:.: Springer
    [Google Scholar]
  53. Ivarsson J, Pecorelli A, Lila MA, Valacchi G. 2023.. Blueberry supplementation and skin health. . Antioxidants 12:(6):1261
    [Crossref] [Google Scholar]
  54. Jain S, Vaidya A, Gupta PK, Rosenholm JM, Bansal KK. 2021.. Antiarthritic activities of herbal isolates: a comprehensive review. . Coatings 11:(11):1329
    [Crossref] [Google Scholar]
  55. Jeong WY, Kwon M, Choi HE, Kim KS. 2021.. Recent advances in transdermal drug delivery systems: a review. . Biomater. Res. 25:(1):24
    [Crossref] [Google Scholar]
  56. Jiang T, Xie Y, Dong J, Yang X, Qu S, et al. 2022.. The dexamethasone acetate cubosomes as a potential transdermal delivery system for treating skin inflammation. . J. Drug Deliv. Sci. Technol. 75::103567
    [Crossref] [Google Scholar]
  57. Kar M, Chourasiya Y, Maheshwari R, Tekade RK. 2019.. Current developments in excipient science: implication of quantitative selection of each excipient in product development. . In Basic Fundamentals of Drug Delivery, ed. RK Tekade , pp. 2983. Cambridge, MA:: Academic Press
    [Google Scholar]
  58. Kousha T, Valacchi G. 2015.. The air quality health index and emergency department visits for urticaria in Windsor, Canada. . J. Toxicol. Environ. Health A 78:(8):52433
    [Crossref] [Google Scholar]
  59. Kováčik A, Kopečná M, Vávrová K. 2020.. Permeation enhancers in transdermal drug delivery: benefits and limitations. . Expert Opin. Drug Deliv. 17:(2):14555
    [Crossref] [Google Scholar]
  60. Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T. 2017.. The skin aging exposome. . J. Dermatol. Sci. 85:(3):15261
    [Crossref] [Google Scholar]
  61. Lefèvre-Utile A, Braun C, Haftek M, Aubin F. 2021.. Five functional aspects of the epidermal barrier. . Int. J. Mol. Sci. 22:(21):11676
    [Crossref] [Google Scholar]
  62. Liang XW, Xu ZP, Grice J, Zvyagin AV, Roberts MS, Liu X. 2013.. Penetration of nanoparticles into human skin. . Curr. Pharm. Des. 19:(35):635366
    [Crossref] [Google Scholar]
  63. Liu L, Zhao W, Ma Q, Gao Y, Wang W, et al. 2023.. Functional nano-systems for transdermal drug delivery and skin therapy. . Nanoscale Adv. 5:(6):152758
    [Crossref] [Google Scholar]
  64. Lombardo D, Kiselev MA. 2022.. Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. . Pharmaceutics 14:(3):543
    [Crossref] [Google Scholar]
  65. McDaniel D, Farris P, Valacchi G. 2018.. Atmospheric skin aging: contributors and inhibitors. . J. Cosmet. Dermatol. 17:(2):12437
    [Crossref] [Google Scholar]
  66. McKnight G, Shah J, Hargest R. 2022.. Physiology of the skin. . Surgery 40:(1):812
    [Google Scholar]
  67. Moolakkadath T, Aqil M, Ahad A, Imam SS, Iqbal B, et al. 2018.. Development of transethosomes formulation for dermal fisetin delivery: Box-Behnken design, optimization, in vitro skin penetration, vesicles-skin interaction and dermatokinetic studies. . Artif. Cells Nanomed. Biotechnol. 46:(Suppl. 2):75565
    [Crossref] [Google Scholar]
  68. Moolakkadath T, Aqil M, Ahad A, Imam SS, Praveen A, et al. 2019.. Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed mice. . Int. J. Pharm. 560::7891
    [Crossref] [Google Scholar]
  69. Nafisi S, Maibach HI. 2018.. Skin penetration of nanoparticles. . In Emerging Nanotechnologies in Immunology, ed. R Shegokar, EB Souto , pp. 4788. Boston:: Elsevier
    [Google Scholar]
  70. Nainwal N, Jawla S, Singh R, Saharan VA. 2019.. Transdermal applications of ethosomes: a detailed review. . J. Liposome Res. 29:(2):10313
    [Crossref] [Google Scholar]
  71. Natsheh H, Vettorato E, Touitou E. 2019.. Ethosomes for dermal administration of natural active molecules. . Curr. Pharm. Des. 25:(21):233848
    [Crossref] [Google Scholar]
  72. Ng KW, Lau WM. 2015.. Skin deep: the basics of human skin structure and drug penetration. . In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Drug Manipulation Strategies and Vehicle Effects, ed. N Dragicevic, HI Maibach , pp. 311. Berlin:: Springer
    [Google Scholar]
  73. Nicoll PA, Cortese TA. 1972.. The physiology of skin. . Annu. Rev. Physiol. 34::177203
    [Crossref] [Google Scholar]
  74. Ong SGM, Chitneni M, Lee KS, Ming LC, Yuen KH. 2016.. Evaluation of extrusion technique for nanosizing liposomes. . Pharmaceutics 8:(4):36
    [Crossref] [Google Scholar]
  75. Paiva-Santos AC, Silva AL, Guerra C, Peixoto D, Pereira-Silva M, et al. 2021.. Ethosomes as nanocarriers for the development of skin delivery formulations. . Pharm. Res. 38:(6):94770
    [Crossref] [Google Scholar]
  76. Pastore MN, Kalia YN, Horstmann M, Roberts MS. 2015.. Transdermal patches: history, development and pharmacology. . Br. J. Pharmacol. 172:(9):2179209
    [Crossref] [Google Scholar]
  77. Pecorelli A, Woodby B, Prieux R, Valacchi G. 2019.. Involvement of 4-hydroxy-2-nonenal in pollution-induced skin damage. . BioFactors 45:(4):53647
    [Crossref] [Google Scholar]
  78. Pivetta TP, Simões S, Araújo MM, Carvalho T, Arruda C, Marcato PD. 2018.. Development of nanoparticles from natural lipids for topical delivery of thymol: investigation of its anti-inflammatory properties. . Colloids Surf. B 164::28190
    [Crossref] [Google Scholar]
  79. Piwowarczyk L, Kucinska M, Tomczak S, Mlynarczyk DT, Piskorz J, et al. 2022.. Liposomal nanoformulation as a carrier for curcumin and pEGCG—study on stability and anticancer potential. . Nanomaterials 12:(8):1274
    [Crossref] [Google Scholar]
  80. Proksch E, Brandner JM, Jensen J-M. 2008.. The skin: an indispensable barrier. . Exp. Dermatol. 17:(12):106372
    [Crossref] [Google Scholar]
  81. Rajan R, Jose S, Mukund VPB, Vasudevan DT. 2011.. Transferosomes: a vesicular transdermal delivery system for enhanced drug permeation. . J. Adv. Pharm. Technol. Res. 2:(3):13843
    [Crossref] [Google Scholar]
  82. Richard C, Cassel S, Blanzat M. 2021.. Vesicular systems for dermal and transdermal drug delivery. . RSC Adv. 11:(1):44251
    [Crossref] [Google Scholar]
  83. Rodríguez-Luna A, Talero E, Ávila-Román J, Romero AMF, Rabasco AM, et al. 2021.. Preparation and in vivo evaluation of rosmarinic acid-loaded transethosomes after percutaneous application on a psoriasis animal model. . AAPS PharmSciTech 22:(3):103
    [Crossref] [Google Scholar]
  84. Roig-Rosello E, Rousselle P. 2020.. The human epidermal basement membrane: a shaped and cell instructive platform that aging slowly alters. . Biomolecules 10:(12):1607
    [Crossref] [Google Scholar]
  85. Ross JA, Kasum CM. 2002.. Dietary flavonoids: bioavailability, metabolic effects, and safety. . Annu. Rev. Nutr. 22::1934
    [Crossref] [Google Scholar]
  86. Ryall C, Duarah S, Chen S, Yu H, Wen J. 2022.. Advancements in skin delivery of natural bioactive products for wound management: a brief review of two decades. . Pharmaceutics 14:(5):1072
    [Crossref] [Google Scholar]
  87. Sainaga Jyothi VGS, Bulusu R, Venkata Krishna Rao B, Pranothi M, Banda S, et al. 2022.. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: an update. . Int. J. Pharm. 624::122022
    [Crossref] [Google Scholar]
  88. Sallustio V, Chiocchio I, Mandrone M, Cirrincione M, Protti M, et al. 2022.. Extraction, encapsulation into lipid vesicular systems, and biological activity of Rosa canina L. bioactive compounds for dermocosmetic use. . Molecules 27:(9):3025
    [Crossref] [Google Scholar]
  89. Sguizzato M, Esposito E, Cortesi R. 2021a.. Lipid-based nanosystems as a tool to overcome skin barrier. . Int. J. Mol. Sci. 22:(15):8319
    [Crossref] [Google Scholar]
  90. Sguizzato M, Ferrara F, Hallan SS, Baldisserotto A, Drechsler M, et al. 2021b.. Ethosomes and transethosomes for mangiferin transdermal delivery. . Antioxidants 10:(5):768
    [Crossref] [Google Scholar]
  91. Sguizzato M, Ferrara F, Mariani P, Ortore MG, Pepe A, et al. 2022.. Design of nanovesicular systems for mangiferin transdermal delivery. . Biol. Life Sci. Forum. In press
    [Google Scholar]
  92. Sguizzato M, Ferrara F, Mariani P, Pepe A, Cortesi R, et al. 2021c.. “ Plurethosome” as vesicular system for cutaneous administration of mangiferin: formulative study and 3D skin tissue evaluation. . Pharmaceutics 13:(8):1124
    [Crossref] [Google Scholar]
  93. Sguizzato M, Mariani P, Spinozzi F, Benedusi M, Cervellati F, et al. 2020.. Ethosomes for coenzyme Q10 cutaneous administration: from design to 3D skin tissue evaluation. . Antioxidants 9:(6):485
    [Crossref] [Google Scholar]
  94. Shabani Dargah M, Hadjizadeh A. 2022.. Improvement of ascorbic acid delivery into human skin via hyaluronic acid-coated niosomes. . J. Microencapsul. 39:(6):55262
    [Crossref] [Google Scholar]
  95. Shindo Y, Witt E, Han D, Epstein W, Packer L. 1994.. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. . J. Investig. Dermatol. 102:(1):12224
    [Crossref] [Google Scholar]
  96. Song J-W, Liu Y-S, Guo Y-R, Zhong W-X, Guo Y-P, Guo L. 2022.. Nano-liposomes double loaded with curcumin and tetrandrine: preparation, characterization, hepatotoxicity and anti-tumor effects. . Int. J. Mol. Sci. 23:(12):6858
    [Crossref] [Google Scholar]
  97. Souto EB, Fangueiro JF, Fernandes AR, Cano A, Sanchez-Lopez E, et al. 2022.. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. . Heliyon 8:(2):e08938
    [Crossref] [Google Scholar]
  98. Spinozzi F, Paccamiccio L, Mariani P, Amaral LQ. 2010.. Melting regime of the anionic phospholipid DMPG: new lamellar phase and porous bilayer model. . Langmuir 26:(9):648493
    [Crossref] [Google Scholar]
  99. Supe S, Takudage P. 2021.. Methods for evaluating penetration of drug into the skin: a review. . Skin Res. Technol. 27:(3):299308
    [Crossref] [Google Scholar]
  100. Szulc-Musioł B, Sarecka-Hujar B. 2021.. The use of micro- and nanocarriers for resveratrol delivery into and across the skin in different skin diseases: a literature review. . Pharmaceutics 13:(4):451
    [Crossref] [Google Scholar]
  101. Szyszkowicz M, Kousha T, Valacchi G. 2016.. Ambient air pollution and emergency department visits for skin conditions. . Glob. Dermatol. 3:(5):32329
    [Crossref] [Google Scholar]
  102. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. 2000.. Ethosomes: novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. . J. Control Release 65:(3):40318
    [Crossref] [Google Scholar]
  103. UN. 2019.. World urbanization prospects: the 2018 revision. Rep. , United Nations, New York:. https://population.un.org/wup/publications/Files/WUP2018-Report.pdf
    [Google Scholar]
  104. Valacchi G, Bocci V. 2000.. Studies on the biological effects of ozone: 11. Release of factors from human endothelial cells. . Mediat. Inflamm. 9:(6):27176
    [Crossref] [Google Scholar]
  105. Valacchi G, Magnani N, Woodby B, Ferreira SM, Evelson P. 2020.. Particulate matter induces tissue oxinflammation: from mechanism to damage. . Antioxid. Redox Signal. 33:(4):30826
    [Crossref] [Google Scholar]
  106. Valacchi G, Sticozzi C, Pecorelli A, Cervellati F, Cervellati C, Maioli E. 2012.. Cutaneous responses to environmental stressors. . Ann. N. Y. Acad. Sci. 1271::7581
    [Crossref] [Google Scholar]
  107. Valacchi G, Virgili F, Cervellati C, Pecorelli A. 2018.. OxInflammation: from subclinical condition to pathological biomarker. . Front. Physiol. 9::858
    [Crossref] [Google Scholar]
  108. Wang W, Zhang W, Zhao J, Li H, Wu J, et al. 2021.. Short-term exposure to ambient air pollution and increased emergency room visits for skin diseases in Beijing, China. . Toxics 9:(5):108
    [Crossref] [Google Scholar]
  109. Wang Y, Xiong L, Huang X, Ma Y, Zou L, et al. 2022.. Intermittent exposure to airborne particulate matter induces subcellular dysfunction and aortic cell damage in BALB/c mice through multi-endpoint assessment at environmentally relevant concentrations. . J. Hazard. Mater. 424::127169
    [Crossref] [Google Scholar]
  110. Wichayapreechar P, Anuchapreeda S, Phongpradist R, Rungseevijitprapa W, Ampasavate C. 2020.. Dermal targeting of Centella asiatica extract using hyaluronic acid surface modified niosomes. . J. Liposome Res. 30:(2):197207
    [Crossref] [Google Scholar]
  111. Woodby B, Penta K, Pecorelli A, Lila MA, Valacchi G. 2020.. Skin health from the inside out. . Annu. Rev. Food Sci. Technol. 11::23554
    [Crossref] [Google Scholar]
  112. Woźniak M, Nowak M, Lazebna A, Więcek K, Jabłońska I, et al. 2021.. The comparison of in vitro photosensitizing efficacy of curcumin-loaded liposomes following photodynamic therapy on melanoma MUG-Mel2, squamous cell carcinoma SCC-25, and normal keratinocyte HaCaT cells. . Pharmaceuticals 14:(4):374
    [Crossref] [Google Scholar]
  113. Wu P-S, Li Y-S, Kuo Y-C, Tsai S-JJ, Lin C-C. 2019.. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. . Molecules 24:(3):600
    [Crossref] [Google Scholar]
  114. Yu YQ, Yang X, Wu XF, Fan Y-B. 2021.. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications. . Front. Bioeng. Biotechnol. 9::646554
    [Crossref] [Google Scholar]
  115. Zhang Y, Zhang K, Guo T, Li Y, Zhu C, Feng N. 2015.. Transdermal baicalin delivery using diethylene glycol monoethyl ether-mediated cubic phase gel. . Int. J. Pharm. 479:(1):21926
    [Crossref] [Google Scholar]
  116. Zhang Z, Wo Y, Zhang Y, Wang D, He R, et al. 2012.. In vitro study of ethosome penetration in human skin and hypertrophic scar tissue. . Nanomedicine 8:(6):102633
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034528
Loading
/content/journals/10.1146/annurev-food-072023-034528
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error