1932

Abstract

Foodborne illnesses are a significant global public health challenge, with an estimated 600 million cases annually. Conventional food microbiology methods tend to be laborious and time consuming, pose difficulties in real-time utilization, and can display subpar accuracy or typing capabilities. With the recent advancements in third-generation sequencing and microbial omics, nanopore sequencing technology and its long-read sequencing capabilities have emerged as a promising platform. In recent years, nanopore sequencing technology has been benchmarked for its amplicon sequencing, whole-genome and transcriptome analysis, meta-analysis, and other advanced omics approaches. This review comprehensively covers nanopore sequencing technology's current advances in food safety applications, including outbreak investigation, pathogen surveillance, and antimicrobial resistance profiling. Despite significant progress, ongoing research and development are crucial to overcoming challenges in sequencing chemistry, accuracy, bioinformatics, and real-time adaptive sampling to fully realize nanopore sequencing technology's potential in food safety and food microbiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034549
2025-01-13
2025-02-07
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-food-072023-034549
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error