1932

Abstract

Harnessing CO and CO-derived C1–C2 compounds for microbial food production can mitigate greenhouse gas emissions and boost sustainability within the food sector. These innovative technologies support carbon neutrality by generating nutrient-rich edible microbial biomass and biocompounds using autotrophic and heterotrophic microbes. However, qualifying microbial food viability and future impacts in the food sector remains challenging due to their diversity, technical complexity, socioeconomic forces, and incipient markets. This review provides an overview of microbial food systems and then delves into the technical interplay among feedstocks, microbes, carbon fixation platforms, bioreactor operations, and downstream processes. The review further explores developing markets for microbial food products, the industrial landscape, economic drivers, and emerging trends in next-generation food products. The analysis suggests a transformative shift in the food industry is underway, yet significant challenges persist, such as securing cost-effective feedstocks, improving downstream processing efficiency, and gaining consumer acceptance. These challenges require innovative solutions and collaborative efforts to ensure the future commercial success of microbial foods—doing so will create myriad opportunities to transform and decarbonize our food system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-111523-121717
2025-04-28
2025-06-18
Loading full text...

Full text loading...

/deliver/fulltext/food/16/1/annurev-food-111523-121717.html?itemId=/content/journals/10.1146/annurev-food-111523-121717&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott MSR, Harvey AP, Perez GV, Theodorou MK. 2013.. Biological processing in oscillatory baffled reactors: operation, advantages and potential. . Interface Focus 3:(1):20120036
    [Crossref] [Google Scholar]
  2. Abdulqader G, Barsanti L, Tredici MR. 2000.. Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu. . J. Appl. Phycol. 12:(3):49398
    [Crossref] [Google Scholar]
  3. Abu Yazid N, Barrena R, Komilis D, Sánchez A. 2017.. Solid-state fermentation as a novel paradigm for organic waste valorization: a review. . Sustainability 9:(2):224
    [Crossref] [Google Scholar]
  4. Adlercreutz P. 2013.. Immobilisation and application of lipases in organic media. . Chem. Soc. Rev. 42:(15):640636
    [Crossref] [Google Scholar]
  5. Alaviuhkola T, Korhonen I, Partanen J, Lampila M. 1975.. Pekilo protein in the nutrition of growing-finishing pigs. . Acta Agric. Scand. 25:(4):3015
    [Crossref] [Google Scholar]
  6. Andreani G, Sogari G, Marti A, Froldi F, Dagevos H, Martini D. 2023.. Plant-based meat alternatives: technological, nutritional, environmental, market, and social challenges and opportunities. . Nutrients 15:(2):452
    [Crossref] [Google Scholar]
  7. Angenent LT, Usack JG, Sun T, Fink C, Molitor B, et al. 2022.. Upgrading anaerobic digestion within the energy economy: the methane platform. . In Resource Recovery from Water, ed. I Pikaar, J Guest, R Ganigué, P Jensen, K Rabaey , et al., pp. 14158. London:: IWA Publ.
    [Google Scholar]
  8. Angenent LT, Usack JG, Xu J, Hafenbradl D, Posmanik R, Tester JW. 2018.. Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion. . Bioresour. Technol. 247::108594
    [Crossref] [Google Scholar]
  9. Areniello M, Matassa S, Esposito G, Lens PNL. 2023.. Biowaste upcycling into second-generation microbial protein through mixed-culture fermentation. . Trends Biotechnol. 41:(2):197213
    [Crossref] [Google Scholar]
  10. Aro N, Ercili-Cura D, Andberg M, Silventoinen P, Lille M, et al. 2023.. Production of bovine beta-lactoglobulin and hen egg ovalbumin by Trichoderma reesei using precision fermentation technology and testing of their techno-functional properties. . Food Res. Int. 163::112131
    [Crossref] [Google Scholar]
  11. Assenberg R, Wan PT, Geisse S, Mayr LM. 2013.. Advances in recombinant protein expression for use in pharmaceutical research. . Curr. Opin. Struct. Biol. 23:(3):393402
    [Crossref] [Google Scholar]
  12. Atelge MR, Krisa D, Kumar G, Eskicioglu C, Nguyen DD, et al. 2020.. Biogas production from organic waste: recent progress and perspectives. . Waste Biomass Valorization 11:(3):101940
    [Crossref] [Google Scholar]
  13. [Google Scholar]
  14. Bains P, Psarras P, Wilcox J. 2017.. CO2 capture from the industry sector. . Prog. Energy Combust. Sci. 63::14672
    [Crossref] [Google Scholar]
  15. Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV. 2014.. Cost effective technologies and renewable substrates for biosurfactants’ production. . Front. Microbiol. 5::697
    [Crossref] [Google Scholar]
  16. Béligon V, Christophe G, Fontanille P, Larroche C. 2016.. Microbial lipids as potential source to food supplements. . Curr. Opin. Food Sci. 7::3542
    [Crossref] [Google Scholar]
  17. Berg IA. 2011.. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. . Appl. Environ. Microbiol. 77:(6):192536
    [Crossref] [Google Scholar]
  18. Bohanec M, Boshkoska BM, Prins TW, Kok EJ. 2017.. SIGMO: a decision support system for identification of genetically modified food or feed products. . Food Control 71::16877
    [Crossref] [Google Scholar]
  19. Brar SK, Dhillon GS, Soccol CR. 2013.. Biotransformation of Waste Biomass into High Value Biochemicals. New York:: Springer
    [Google Scholar]
  20. Burkert. 2024.. Fermentation: basic principles, processes and gas control. . Burkert. https://www.burkert.com/en/service-support/knowledge-center/glossary/Fermentation-Basic-principles-processes-and-gas-control
    [Google Scholar]
  21. Buzby JC, Hyman J. 2012.. Total and per capita value of food loss in the United States. . Food Policy 37:(5):56170
    [Crossref] [Google Scholar]
  22. Callegari A, Bolognesi S, Cecconet D, Capodaglio AG. 2020.. Production technologies, current role, and future prospects of biofuels feedstocks: a state-of-the-art review. . Crit. Rev. Environ. Sci. Technol. 50:(4):384436
    [Crossref] [Google Scholar]
  23. Champagnat A, Vernet C, Laine B, Filosa J. 1963.. Biosynthesis of protein-vitamin concentrates from petroleum. . Nature 197::1314
    [Crossref] [Google Scholar]
  24. Choi KR, Jung SY, Lee SY. 2024.. From sustainable feedstocks to microbial foods. . Nat. Microbiol. 9::116775
    [Crossref] [Google Scholar]
  25. Ciani M, Lippolis A, Fava F, Rodolfi L, Niccolai A, Tredici MR. 2021.. Microbes: food for the future. . Foods 10:(5):971
    [Crossref] [Google Scholar]
  26. da Costa Lopes AM, Lins RMG, Rebelo RA, Łukasik RM. 2018.. Biorefinery approach for lignocellulosic biomass valorisation with an acidic ionic liquid. . Green Chem. 20:(17):404357
    [Crossref] [Google Scholar]
  27. Dalena F, Senatore A, Tursi A, Basile A. 2017.. Bioenergy production from second- and third-generation feedstocks. . In Bioenergy Systems for the Future, ed. F Dalena, A Basile, C Rossi , pp. 55999. Sawston, UK:: Woodhead Publ.
    [Google Scholar]
  28. Davis SJ, Alexander K, Moreno-Cruz J, Hong C, Shaner M, et al. 2023.. Food without agriculture. . Nat. Sustain. 7:(1):9095
    [Crossref] [Google Scholar]
  29. de Mello AFM, de Souza Vandenberghe LP, Herrmann LW, Letti LAJ, Burgos WJM, et al. 2024.. Strategies and engineering aspects on the scale-up of bioreactors for different bioprocesses. . Syst. Microbiol. Biomanuf. 4:(2):36585
    [Crossref] [Google Scholar]
  30. Dubey A, Arora A. 2022.. Advancements in carbon capture technologies: a review. . J. Clean. Prod. 373::133932
    [Crossref] [Google Scholar]
  31. Edwards DG, Cummings JH. 2010.. The protein quality of mycoprotein. . Proc. Nutr. Soc. 69:(OCE4):E331
    [Crossref] [Google Scholar]
  32. Erickson LE. 2019.. Bioreactors. . In Comprehensive Biotechnology, ed. M Moo-Young , pp. 68389. Oxford, UK:: Pergamon. , 3rd ed..
    [Google Scholar]
  33. Fackler N, Heijstra BD, Rasor BJ, Brown H, Martin J, et al. 2021.. Stepping on the gas to a circular economy: accelerating development of carbon-negative chemical production from gas fermentation. . Annu. Rev. Chem. Biomol. Eng. 12::43970
    [Crossref] [Google Scholar]
  34. Farrar WV. 1966.. Tecuitlatl; a glimpse of Aztec food technology. . Nature 211:(5047):34142
    [Crossref] [Google Scholar]
  35. Fernández-Arias P, Antón-Sancho Á, Lampropoulos G, Vergara D. 2024.. Emerging trends and challenges in pink hydrogen research. . Energies 17:(10):2291
    [Crossref] [Google Scholar]
  36. Finnigan T, Needham L, Abbott C. 2017.. Mycoprotein: a healthy new protein with a low environmental impact. . In Sustainable Protein Sources, ed. SR Nadathur, JPD Wanasundara, L Scanlin , pp. 30525. San Diego:: Academic
    [Google Scholar]
  37. Foster JF, Litchfield JH. 1964.. A continuous culture apparatus for the microbial utilization of hydrogen produced by electrolysis of water in closed-cycle space systems. . Biotechnol. Bioeng. 6:(4):44156
    [Crossref] [Google Scholar]
  38. Furey B, Slingerland K, Bauter MR, Dunn C, Goodman RE, Koo S. 2022.. Safety evaluation of Fy Protein™ (nutritional fungi protein), a macroingredient for human consumption. . Food Chem. Toxicol. 166::113005
    [Crossref] [Google Scholar]
  39. Gaddy JL, Arora DK, Ko C-W, Phillips JR, Basu R, et al. 2007.. Methods for increasing the production of ethanol from microbial fermentation. US Patent Appl. 10/311,655
    [Google Scholar]
  40. Gao W, Liang S, Wang R, Jiang Q, Zhang Y, et al. 2020.. Industrial carbon dioxide capture and utilization: state of the art and future challenges. . Chem. Soc. Rev. 49:(23):8584686
    [Crossref] [Google Scholar]
  41. Garay LA, Boundy-Mills KL, German JB. 2014.. Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. . J. Agric. Food Chem. 62:(13):270927
    [Crossref] [Google Scholar]
  42. Ghazani SM, Marangoni AG. 2022.. Microbial lipids for foods. . Trends Food Sci. Technol. 119::593607
    [Crossref] [Google Scholar]
  43. Giec A, Skupin J. 1988.. Single cell protein as food and feed. . Food Nahr. 32:(3):21929
    [Crossref] [Google Scholar]
  44. Gildemyn S, Molitor B, Usack JG, Nguyen M, Rabaey K, Angenent LT. 2017.. Upgrading syngas fermentation effluent using Clostridium kluyveri in a continuous fermentation. . Biotechnol. Biofuels. 10:(1):83
    [Crossref] [Google Scholar]
  45. González-Gloria KD, Rodríguez-Jasso RM, Saxena R, Sindhu R, Ali SS, et al. 2022.. Bubble column bioreactor design and evaluation for bioethanol production using simultaneous saccharification and fermentation strategy from hydrothermally pretreated lignocellulosic biomass. . Biochem. Eng. J. 187::108645
    [Crossref] [Google Scholar]
  46. Good Food Inst. 2023.. Fermentation: meat, seafood, eggs, and dairy. . Rep., Good Food Inst., Washington, DC:. https://gfi.org/wp-content/uploads/2024/04/State-of-the-Industry-report_Fermentation_2023.pdf
    [Google Scholar]
  47. Good Food Inst. 2024.. Producing animal-like fats through microbial fermentation. . Good Food Institute. https://gfi.org/solutions/animal-like-fats-through-fermentation/
    [Google Scholar]
  48. Graham AE, Ledesma-Amaro R. 2023.. The microbial food revolution. . Nat. Commun. 14:(1):2231
    [Crossref] [Google Scholar]
  49. Harirchi S, Wainaina S, Sar T, Nojoumi SA, Parchami M, et al. 2022.. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. . Bioengineered 13:(3):652157
    [Crossref] [Google Scholar]
  50. Harrison RG, Todd P, Rudge SR, Petrides DP. 2015.. Bioseparations Science and Engineering. New York:: Oxford Univ. Press
    [Google Scholar]
  51. Henchion M, Hayes M, Mullen A, Fenelon M, Tiwari B. 2017.. Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. . Foods 6:(7):53
    [Crossref] [Google Scholar]
  52. Humbird D. 2021.. Scale-up economics for cultured meat. . Biotechnol. Bioeng. 118:(8):323950
    [Crossref] [Google Scholar]
  53. Humpenöder F, Bodirsky BL, Weindl I, Lotze-Campen H, Linder T, Popp A. 2022.. Projected environmental benefits of replacing beef with microbial protein. . Nature 605:(7908):9096
    [Crossref] [Google Scholar]
  54. Int. Energy Agency. 2024.. Tracking carbon capture, utilisation and storage. . International Energy Agency. https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage#tracking
    [Google Scholar]
  55. Itakura K, Hirose T, Crea R, Riggs AD, Heyneker HL, et al. 1977.. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. . Science 198:(4321):105663
    [Crossref] [Google Scholar]
  56. Ivanovich CC, Sun T, Gordon DR, Ocko IB. 2023.. Future warming from global food consumption. . Nat. Clim. Change. 13:(3):297302
    [Crossref] [Google Scholar]
  57. Jacobson MF. 2003.. Adverse reactions linked to Quorn-brand foods. . Allergy 58:(5):45556
    [Crossref] [Google Scholar]
  58. Javourez U, O'Donohue M, Hamelin L. 2021.. Waste-to-nutrition: a review of current and emerging conversion pathways. . Biotechnol. Adv. 53::107857
    [Crossref] [Google Scholar]
  59. Jean AB, Brown RC. 2024.. Techno-economic analysis of gas fermentation for the production of single cell protein. . Environ. Sci. Technol. 58:(8):382329
    [Crossref] [Google Scholar]
  60. Johnson ME. 2013.. Mesophilic and thermophilic cultures used in traditional cheesemaking. . Microbiol. Spectr. 1:(1). https://doi.org/10.1128/microbiolspec.cm-0004-2012
    [Crossref] [Google Scholar]
  61. Jones SW, Karpol A, Friedman S, Maru BT, Tracy BP. 2020.. Recent advances in single cell protein use as a feed ingredient in aquaculture. . Curr. Opin. Biotechnol. 61::18997
    [Crossref] [Google Scholar]
  62. Kelley B. 2009.. Industrialization of mAb production technology: the bioprocessing industry at a crossroads. . mAbs 1:(5):44352
    [Crossref] [Google Scholar]
  63. Kim J, Adhikari K. 2020.. Current trends in kombucha: marketing perspectives and the need for improved sensory research. . Beverages 6:(1):15
    [Crossref] [Google Scholar]
  64. Knorr D, Augustin MA. 2023.. Preserving the food preservation legacy. . Crit. Rev. Food Sci. Nutr. 63:(28):951938
    [Crossref] [Google Scholar]
  65. Kovac J, den Bakker H, Carroll LM, Wiedmann M. 2017.. Precision food safety: a systems approach to food safety facilitated by genomics tools. . Trends Anal. Chem. 96::5261
    [Crossref] [Google Scholar]
  66. Krakat N, Demirel B, Anjum R, Dietz D. 2017.. Methods of ammonia removal in anaerobic digestion: a review. . Water Sci. Technol. 76:(8):192538
    [Crossref] [Google Scholar]
  67. Kummu M, Heino M, Taka M, Varis O, Viviroli D. 2021.. Climate change risks pushing one-third of global food production outside the safe climatic space. . One Earth 4:(5):72029
    [Crossref] [Google Scholar]
  68. Li T, Chen X, Chen J, Wu Q, Chen G-Q. 2014.. Open and continuous fermentation: products, conditions and bioprocess economy. . Biotechnol. J. 9:(12):150311
    [Crossref] [Google Scholar]
  69. Linder T. 2019.. Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. . Food Secur. 11:(2):26578
    [Crossref] [Google Scholar]
  70. Linder T. 2023.. Beyond agriculture—how microorganisms can revolutionize global food production. . ACS Food Sci. Technol. 3:(7):114452
    [Crossref] [Google Scholar]
  71. Liu Z, Shi S, Ji Y, Wang K, Tan T, Nielsen J. 2023.. Opportunities of CO2-based biorefineries for production of fuels and chemicals. . Green Carbon 1:(1):7584
    [Crossref] [Google Scholar]
  72. Llorente B, Williams TC, Goold HD, Pretorius IS, Paulsen IT. 2022.. Harnessing bioengineered microbes as a versatile platform for space nutrition. . Nat. Commun. 13:(1):6177
    [Crossref] [Google Scholar]
  73. Lo SC, Ramanan RN, Tey BT, Tan WS, Show PL, et al. 2016.. A versatile and economical method for the release of recombinant proteins from Escherichia coli by 1-propanol cell disruption. . RSC Adv. 6:(67):6229197
    [Crossref] [Google Scholar]
  74. Lorenzo JM, Munekata PE, Dominguez R, Pateiro M, Saraiva JA, Franco D. 2018.. Main groups of microorganisms of relevance for food safety and stability: general aspects and overall description. . In Innovative Technologies for Food Preservation, ed. FJ Barba, AS Sant'Ana, V Orlien, M Koubaa , pp. 53107. Cambridge, MA:: Academic Press
    [Google Scholar]
  75. Lv X, Wu Y, Gong M, Deng J, Gu Y, et al. 2021.. Synthetic biology for future food: research progress and future directions. . Future Foods 3::100025
    [Crossref] [Google Scholar]
  76. Mahmud N, Valizadeh S, Oyom W, Tahergorabi R. 2024.. Exploring functional plant-based seafood: ingredients and health implications. . Trends Food Sci. Technol. 144::104346
    [Crossref] [Google Scholar]
  77. Mao C, Feng Y, Wang X, Ren G. 2015.. Review on research achievements of biogas from anaerobic digestion. . Renew. Sustain. Energy Rev. 45::54055
    [Crossref] [Google Scholar]
  78. Martens JA, Bogaerts A, De Kimpe N, Jacobs PA, Marin GB, et al. 2017.. The chemical route to a carbon dioxide neutral world. . ChemSusChem 10:(6):103955
    [Crossref] [Google Scholar]
  79. Matassa S, Boon N, Pikaar I, Verstraete W. 2016.. Microbial protein: future sustainable food supply route with low environmental footprint. . Microb. Biotechnol. 9:(5):56875
    [Crossref] [Google Scholar]
  80. Matassa S, Boon N, Verstraete W. 2015.. Resource recovery from used water: the manufacturing abilities of hydrogen-oxidizing bacteria. . Water Res. 68::46778
    [Crossref] [Google Scholar]
  81. Matelbs R, Tannenbaum S. 1968.. Single-cell protein. . Econ. Bot. 22::4250
    [Crossref] [Google Scholar]
  82. Mazzeo L, Piemonte V. 2020.. Fermentation and biochemical engineering: principles and applications. . In Studies in Surface Science and Catalysis, Vol. 179, ed. A Basile, G Centi, M De Falco, G Iaquaniello , pp. 26185. Amsterdam:: Elsevier
    [Google Scholar]
  83. Molitor B, Mishra A, Angenent LT. 2019.. Power-to-protein: converting renewable electric power and carbon dioxide into single cell protein with a two-stage bioprocess. . Energy Environ. Sci. 12:(12):351521
    [Crossref] [Google Scholar]
  84. Morach B, Witte B, Walker D, von Koeller E, Grosse-Holz F, et al. 2021.. Food for thought: the protein transformation. . Ind. Biotechnol. 17:(3):12533
    [Crossref] [Google Scholar]
  85. Mutaf T, Oncel SS. 2023.. Bubble column and airlift bioreactor systems for animal cell culture applications. . Asia-Pac. J. Chem. Eng. 18:(1):e2872
    [Crossref] [Google Scholar]
  86. Nienow AW. 2014.. Stirring and stirred-tank reactors. . Chem. Ing. Tech. 86:(12):206374
    [Crossref] [Google Scholar]
  87. Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C. 2016.. Production strategies and applications of microbial single cell oils. . Front. Microbiol. 7::1539
    [Crossref] [Google Scholar]
  88. Oven A. 2022.. How the pet food industry is fueling the climate crisis. . Plant Based News, April 6. https://plantbasednews.org/news/environment/pet-food-industry-fueling-climate-crisis/
    [Google Scholar]
  89. Owsianiak M, Pusateri V, Zamalloa C, De Gussem E, Verstraete W, et al. 2022.. Performance of second-generation microbial protein used as aquaculture feed in relation to planetary boundaries. . Resour. Conserv. Recycl. 180::106158
    [Crossref] [Google Scholar]
  90. Ozkan M. 2021.. Direct air capture of CO2: a response to meet the global climate targets. . MRS Energy Sustain. 8:(2):5156
    [Crossref] [Google Scholar]
  91. Pacheco MTB, Caballero-Córdoba GM, Sgarbieri VC. 1997.. Composition and nutritive value of yeast biomass and yeast protein concentrates. . J. Nutr. Sci. Vitaminol. 43:(6):60112
    [Crossref] [Google Scholar]
  92. Pandey A, Negi S, Soccol CR. 2016.. Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products. Amsterdam:: Elsevier
    [Google Scholar]
  93. Pikaar I, de Vrieze J, Rabaey K, Herrero M, Smith P, Verstraete W. 2018.. Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: potentials and limitations. . Sci. Total Environ. 644::152530
    [Crossref] [Google Scholar]
  94. Pimentel D, Marklein A, Toth MA, Karpoff MN, Paul GS, et al. 2009.. Food versus biofuels: environmental and economic costs. . Hum. Ecol. 37:(1):112
    [Crossref] [Google Scholar]
  95. Pinu FR, Villas-Boas SG. 2017.. Extracellular microbial metabolomics: the state of the art. . Metabolites 7:(3):43
    [Crossref] [Google Scholar]
  96. Ratledge C. 2004.. Fatty acid biosynthesis in microorganisms being used for single cell oil production. . Biochimie 86:(11):80715
    [Crossref] [Google Scholar]
  97. Revell BJ. 2015.. One Man's Meat…2050? Ruminations on future meat demand in the context of global warming. . J. Agric. Econ. 66:(3):573614
    [Crossref] [Google Scholar]
  98. Reyes TF, Chen Y, Fraser RZ, Chan T, Li X. 2021.. Assessment of the potential allergenicity and toxicity of Pichia proteins in a novel leghemoglobin preparation. . Regul. Toxicol. Pharmacol. 119::104817
    [Crossref] [Google Scholar]
  99. Ritala A, Häkkinen ST, Toivari M, Wiebe MG. 2017.. Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. . Front. Microbiol. 8:: 2009.
    [Google Scholar]
  100. Ritchie H. 2021.. How much of global greenhouse gas emissions come from food?. Our World in Data, March 18. https://ourworldindata.org/greenhouse-gas-emissions-food#:∼:text=The%20specific%20number%20that%20answers,we%20include%20all%20agricultural%20products
    [Google Scholar]
  101. Rozin P, Siegal M. 2003.. Vegemite as a marker of national identity. . Gastronomica 3:(4):6367
    [Crossref] [Google Scholar]
  102. Salehizadeh H, Yan N, Farnood R. 2020.. Recent advances in microbial CO2 fixation and conversion to value-added products. . Chem. Eng. J. 390::124584
    [Crossref] [Google Scholar]
  103. Schaafsma G. 2000.. The protein digestibility-corrected amino acid score. . J. Nutr. 130:(7):1865S67S
    [Crossref] [Google Scholar]
  104. Sekoai PT, Roets-Dlamini Y, O'Brien F, Ramchuran S, Chunilall V. 2024.. Valorization of food waste into single-cell protein: an innovative technological strategy for sustainable protein production. . Microorganisms 12:(1):166
    [Crossref] [Google Scholar]
  105. Sen B, Aravind J, Kanmani P, Lay C-H. 2016.. State of the art and future concept of food waste fermentation to bioenergy. . Renew. Sustain. Energy Rev. 53::54757
    [Crossref] [Google Scholar]
  106. Sikkeland LIB, Eduard W, Stangeland AM, Thorgersen EB, Haug T, et al. 2009.. Occupational exposure to bacterial single cell protein induces inflammation in lung and blood. . Inhal. Toxicol. 21:(8):67481
    [Crossref] [Google Scholar]
  107. Silverman MP, Gordon JN, Wender I. 1966.. Food from coal-derived materials by microbial synthesis. . Nature 211:(5050):73536
    [Crossref] [Google Scholar]
  108. Singh A, Prajapati P, Vyas S, Gaur VK, Sindhu R, et al. 2023.. A comprehensive review of feedstocks as sustainable substrates for next-generation biofuels. . BioEnergy Res. 16:(1):10522
    [Crossref] [Google Scholar]
  109. Skillen N, Daly H, Lan L, Aljohani M, Murnaghan CWJ, et al. 2022.. Photocatalytic reforming of biomass: What role will the technology play in future energy systems. . Top. Curr. Chem. 380:(5):33
    [Crossref] [Google Scholar]
  110. Skogman H. 1976.. The Symba process. . Starch-Stärke 28:(8):27882
    [Crossref] [Google Scholar]
  111. Spier MR, Vandenberghe L, Medeiros ABP, Soccol CR. 2011.. Application of different types of bioreactors in bioprocesses. . Bioreact. Des. Prop. Appl. 2011::5590
    [Google Scholar]
  112. Stoll IK, Boukis N, Sauer J. 2020.. Syngas fermentation to alcohols: reactor technology and application perspective. . Chem. Ing. Tech. 92:(1–2):12536
    [Crossref] [Google Scholar]
  113. Unibio. 2024.. The U-Loop® fermentor. . Unibio. https://www.unibio.dk/our-technology
    [Google Scholar]
  114. Watson E. 2023.. LanzaTech chief sustainability officer: ‘There's no need to take carbon out of the ground; there's enough above ground to make everything we need. .’ AFN, Aug. 17. https://agfundernews.com/lanzatech-chief-sustainability-officer-theres-no-need-to-take-carbon-out-of-the-ground-theres-enough-above-ground-to-make-everything-we-need
    [Google Scholar]
  115. Westlake R. 1986.. Large-scale continuous production of single cell protein. . Chem. Ing. Tech. 58:(12):93437
    [Crossref] [Google Scholar]
  116. Whittaker JA, Johnson RI, Finnigan TJA, Avery SV, Dyer PS. 2020.. The biotechnology of Quorn mycoprotein: past, present and future challenges. . In Grand Challenges in Fungal Biotechnology, ed. H Nevalainen , pp. 5979. Cham, Switz:.: Springer
    [Google Scholar]
  117. Wiebe MG. 2004.. Quorn® myco-protein: overview of a successful fungal product. . Mycologist 18:(1):1720
    [Crossref] [Google Scholar]
  118. Xia Q, Yang J, Hu L, Zhao H, Lu Y. 2024.. Biotransforming CO2 into valuable chemicals. . J. Clean. Prod. 434::140185
    [Crossref] [Google Scholar]
  119. Xiang S, Liu Y, Zhang G, Ruan R, Wang Y, et al. 2020.. New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters. . World J. Microbiol. Biotechnol. 36:(10):144
    [Crossref] [Google Scholar]
  120. Yafetto L. 2022.. Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: a review and bibliometric analysis. . Heliyon 8:(3):e09173
    [Crossref] [Google Scholar]
  121. Yamada EA, Sgarbieri VC. 2005.. Yeast (Saccharomyces cerevisiae) protein concentrate: preparation, chemical composition, and nutritional and functional properties. . J. Agric. Food Chem. 53:(10):393136
    [Crossref] [Google Scholar]
  122. Ye D, Tsang SCE. 2023.. Prospects and challenges of green ammonia synthesis. . Nat. Synth. 2:(7):61223
    [Crossref] [Google Scholar]
  123. Zhou C, Wang Y. 2020.. Recent progress in the conversion of biomass wastes into functional materials for value-added applications. . Sci. Technol. Adv. Mater. 21:(1):787804
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-111523-121717
Loading
/content/journals/10.1146/annurev-food-111523-121717
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error