1932

Abstract

Aging is an inevitable process that is characterized by physiological deterioration and increased vulnerability to stressors. Therefore, the interest in hallmarks, mechanisms, and ways to delay or prevent aging has grown for decades. Natural plant products and their bioactive compounds have been studied as a promising strategy to overcome aging. Ginseng, a traditional herbal medicine, and its bioactive compound, the ginsenosides, have increasingly gained attention because of various pharmacological functions. This review introduces the species, useful parts, characteristics, and active components of ginseng. It primarily focuses on the bioconversion of ginsenosides through the unique steaming and drying process. More importantly, this review enumerates the antiaging mechanisms of ginseng, ginsenosides, and other bioactive compounds, highlighting their potential to extend the health span and mitigate age-related diseases based on twelve representative hallmarks of aging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-111523-121753
2025-04-28
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/food/16/1/annurev-food-111523-121753.html?itemId=/content/journals/10.1146/annurev-food-111523-121753&mimeType=html&fmt=ahah

Literature Cited

  1. Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, et al. 2021.. Autophagy in healthy aging and disease. . Nat. Aging 1::63450
    [Crossref] [Google Scholar]
  2. Bae HJ, Chung SI, Lee SC, Kang MY. 2014.. Influence of aging process on the bioactive components and antioxidant activity of ginseng (Panax ginseng L.). . J. Food Sci. 79::H212731
    [Google Scholar]
  3. Barbé-Tuana F, Funchal G, Schmitz CRR, Maurmann RM, Bauer ME. 2020.. The interplay between immunosenescence and age-related diseases. . Semin. Immunopathol. 42::54557
    [Crossref] [Google Scholar]
  4. Brown MK, Naidoo N. 2012.. The endoplasmic reticulum stress response in aging and age-related diseases. . Front. Physiol. 3::263
    [Google Scholar]
  5. Burhans WC, Weinberger M. 2007.. DNA replication stress, genome instability and aging. . Nucleic Acids Res. 35::754556
    [Crossref] [Google Scholar]
  6. Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. 2019.. From discoveries in ageing research to therapeutics for healthy ageing. . Nature 571::18392
    [Crossref] [Google Scholar]
  7. Chang JW, Park KH, Hwang HS, Shin YS, Oh Y-T, Kim C-H. 2014.. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes. . J. Radiat. Res. 55::24556
    [Crossref] [Google Scholar]
  8. Chen C, Zhou M, Ge Y, Wang X. 2020.. SIRT1 and aging related signaling pathways. . Mech. Ageing Dev. 187::111215
    [Crossref] [Google Scholar]
  9. Chen L, Yao H, Chen X, Wang Z, Xiang Y, et al. 2018.. Ginsenoside Rg1 decreases oxidative stress and down-regulates Akt/mTOR signalling to attenuate cognitive impairment in mice and senescence of neural stem cells induced by D-galactose. . Neurochem. Res. 43::43040
    [Crossref] [Google Scholar]
  10. Chen R, Meng F, Zhang S, Liu Z. 2009.. Effects of ultrahigh pressure extraction conditions on yields and antioxidant activity of ginsenoside from ginseng. . Sep. Purif. Technol. 66::34046
    [Crossref] [Google Scholar]
  11. Chen X, Li H, Yang Q, Lan X, Wang J, et al. 2019.. Ginsenoside compound K ameliorates Alzheimer's disease in HT22 cells by adjusting energy metabolism. . Mol. Biol. Rep. 46::532332
    [Crossref] [Google Scholar]
  12. Chen Z, Zhang Z, Liu J, Qi H, Li J, et al. 2022.. Gut microbiota: therapeutic targets of ginseng against multiple disorders and ginsenoside transformation. . Front. Cell. Infect. Microbiol. 12::853981
    [Crossref] [Google Scholar]
  13. Cheung TH, Rando TA. 2013.. Molecular regulation of stem cell quiescence. . Nat. Rev. Mol. Cell Biol. 14::32940
    [Crossref] [Google Scholar]
  14. Childs BG, Durik M, Baker DJ, Van Deursen JM. 2015.. Cellular senescence in aging and age-related disease: from mechanisms to therapy. . Nat. Med. 21::142435
    [Crossref] [Google Scholar]
  15. Chung I-M, Lim J-J, Ahn M-S, Jeong H-N, An T-J, Kim S-H. 2016.. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. . J. Ginseng Res. 40::6875
    [Crossref] [Google Scholar]
  16. Chung YH, Jeong SA, Choi HS, Ro S, Lee JS, Park JK. 2018.. Protective effects of ginsenoside Rg2 and astaxanthin mixture against UVB-induced DNA damage. . Anim. Cells Syst. 22::4006
    [Crossref] [Google Scholar]
  17. Conway J, Duggal NA. 2021.. Ageing of the gut microbiome: potential influences on immune senescence and inflammageing. . Ageing Res. Rev. 68::101323
    [Crossref] [Google Scholar]
  18. Cui H, Kong Y, Zhang H. 2012.. Oxidative stress, mitochondrial dysfunction, and aging. . J. Signal Transduct. 2012::646354
    [Crossref] [Google Scholar]
  19. Cui L, Chen L, Yang G, Li Y, Qiao Z, et al. 2021.. Structural characterization and immunomodulatory activity of a heterogalactan from Panax ginseng flowers. . Food Res. Int. 140::109859
    [Crossref] [Google Scholar]
  20. Dahl ES, Aird KM. 2017.. Ataxia-telangiectasia mutated modulation of carbon metabolism in cancer. . Front. Oncol. 7::291
    [Crossref] [Google Scholar]
  21. Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. 2021.. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. . Nat. Rev. Mol. Cell Biol. 22::7595
    [Crossref] [Google Scholar]
  22. Ding S, Zhang H, Sun Z, Han Y, Li Y, et al. 2020.. Ginsenoside Rg1 protects against aging-induced renal interstitial fibrosis due to inhibition of tubular epithelial cells endoplasmic reticulum stress in SAMP8 mice. . J. Funct. Foods 72::104049
    [Crossref] [Google Scholar]
  23. Driss LB, Lian J, Walker RG, Howard JA, Thompson TB, et al. 2023.. GDF11 and aging biology-controversies resolved and pending. . J. Cardiov. Aging 3:(4):42
    [Crossref] [Google Scholar]
  24. Dun Y, Liu M, Chen J, Peng D, Zhao H, et al. 2018.. Regulatory effects of saponins from Panax japonicus on colonic epithelial tight junctions in aging rats. . J. Ginseng Res. 42::5056
    [Crossref] [Google Scholar]
  25. Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, et al. 2018.. The continuum of aging and age-related diseases: common mechanisms but different rates. . Front. Med. 5::61
    [Crossref] [Google Scholar]
  26. Gao Y, Yuan D, Gai L, Wu X, Shi Y, et al. 2021.. Saponins from Panax japonicus ameliorate age-related renal fibrosis by inhibition of inflammation mediated by NF-κB and TGF-β1/Smad signaling and suppression of oxidative stress via activation of Nrf2-ARE signaling. . J. Ginseng Res. 45::40819
    [Crossref] [Google Scholar]
  27. Ghosh TS, Shanahan F, O'Toole PW. 2022.. The gut microbiome as a modulator of healthy ageing. . Nat. Rev. Gastroenterol. Hepatol. 19::56584
    [Crossref] [Google Scholar]
  28. Go G-Y, Jo A, Seo D-W, Kim W-Y, Kim YK, et al. 2020.. Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling–mediated muscular hypertrophy and myoblast differentiation. . J. Ginseng Res. 44::43541
    [Crossref] [Google Scholar]
  29. Gonzalo S. 2010.. Epigenetic alterations in aging. . J. Appl. Physiol. 109::58697
    [Crossref] [Google Scholar]
  30. Goodell MA, Rando TA. 2015.. Stem cells and healthy aging. . Science 350::1199204
    [Crossref] [Google Scholar]
  31. Grabowska W, Sikora E, Bielak-Zmijewska A. 2017.. Sirtuins, a promising target in slowing down the ageing process. . Biogerontology 18::44776
    [Crossref] [Google Scholar]
  32. Guo LL, Yan RY, Du Z, Li HB, Li GL, Wu SH. 2024.. Ginseng promotes the function of intestinal stem cells through the Wnt/β-catenin signaling pathway in D-galactose-induced aging mice. . Exp. Gerontol. 185::112351
    [Crossref] [Google Scholar]
  33. Ha SE, Shin DH, Kim HD, Shim SM, Kim HS, et al. 2010.. Effects of ginsenoside Rg2 on the ultraviolet B-induced DNA damage responses in HaCaT cells. . Naunyn-Schmiedeberg's Arch. Pharmacol. 382::89101
    [Crossref] [Google Scholar]
  34. Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J. 2014.. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. . Cell. Signal. 26::2694701
    [Crossref] [Google Scholar]
  35. Hou J, Cui C, Kim S, Sung C, Choi C. 2018.. Ginsenoside F1 suppresses astrocytic senescence-associated secretory phenotype. . Chem. Biol. Interact. 283::7583
    [Crossref] [Google Scholar]
  36. Hou J, Kim S, Sung C, Choi C. 2017.. Ginsenoside Rg3 prevents oxidative stress-induced astrocytic senescence and ameliorates senescence paracrine effects on glioblastoma. . Molecules 22::1516
    [Crossref] [Google Scholar]
  37. Hou J, Yun Y, Jeon B, Baek J, Kim S. 2023.. Ginsenoside F1-mediated telomere preservation delays cellular senescence. . Int. J. Mol. Sci. 24::14241
    [Crossref] [Google Scholar]
  38. Hrncir T. 2022.. Gut microbiota dysbiosis: triggers, consequences, diagnostic and therapeutic options. . Microorganisms 10:(3):578
    [Crossref] [Google Scholar]
  39. Hu Q, Hong H, Zhang Z, Feng H, Luo T, et al. 2023.. Methods on improvements of the poor oral bioavailability of ginsenosides: pre-processing, structural modification, drug combination, and micro- or nano-delivery system. . J. Ginseng Res. 47:(6):694705
    [Crossref] [Google Scholar]
  40. Hu W, Jing P, Wang L, Zhang Y, Yong J, Wang Y. 2015.. The positive effects of ginsenoside Rg1 upon the hematopoietic microenvironment in a D-galactose-induced aged rat model. . BMC Complement. Altern. Med. 15::119
    [Crossref] [Google Scholar]
  41. Huang L, Li H-J, Wu Y-C. 2023.. Processing technologies, phytochemistry, bioactivities and applications of black ginseng—a novel manufactured ginseng product: a comprehensive review. . Food Chem. 407::134714
    [Crossref] [Google Scholar]
  42. Huang T, Fang F, Chen L, Zhu Y, Zhang J, et al. 2012.. Ginsenoside Rg1 attenuates oligomeric Aβ1–42-induced mitochondrial dysfunction. . Curr. Alzheimer Res. 9::38895
    [Crossref] [Google Scholar]
  43. Hunt NJ, Kang SWS, Lockwood GP, Le Couteur DG, Cogger VC. 2019.. Hallmarks of aging in the liver. . Comput. Struct. Biotechnol. J. 17::115161
    [Crossref] [Google Scholar]
  44. Im D-S, Nah S-Y. 2013.. Yin and yang of ginseng pharmacology: ginsenosides versus gintonin. . Acta Pharmacol. Sin. 34::136773
    [Crossref] [Google Scholar]
  45. Jang I-S, Jo E, Park SJ, Baek SJ, Hwang I-H, et al. 2020.. Proteomic analyses reveal that ginsenoside Rg3 (S) partially reverses cellular senescence in human dermal fibroblasts by inducing peroxiredoxin. . J. Ginseng Res. 44::5057
    [Crossref] [Google Scholar]
  46. Jayanama K, Theou O. 2020.. Effects of probiotics and prebiotics on frailty and ageing: a narrative review. . Curr. Clin. Pharmacol. 15::18392
    [Google Scholar]
  47. Jegal J, Jeong EJ, Yang MH. 2019.. A review of the different methods applied in ginsenoside extraction from Panax ginseng and Panax quinquefolius roots. . Nat. Prod. Commun. 14:(9). https://doi.org/10.1177/1934578X19868393
    [Google Scholar]
  48. Jeong SJ, Han SH, Kim DY, Lee JC, Kim HS, et al. 2007.. Effects of mRg2, a mixture of ginsenosides containing 60% Rg2, on the ultraviolet B–induced DNA repair synthesis and apoptosis in NIH3T3 cells. . Int. J. Toxicol. 26::15158
    [Crossref] [Google Scholar]
  49. Jiang H. 2007.. Telomere shortening and ageing. . Z. Gerontol. Geriatr. 40:(5):31424
    [Crossref] [Google Scholar]
  50. Jin Y, Kim Y-J, Jeon J-N, Wang C, Min J-W, et al. 2015.. Effect of white, red and black ginseng on physicochemical properties and ginsenosides. . Plant Foods Hum. Nutr. 70::14145
    [Crossref] [Google Scholar]
  51. Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, et al. 1992.. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. . Cell 71::58797
    [Crossref] [Google Scholar]
  52. Kaushik S, Cuervo AM. 2015.. Proteostasis and aging. . Nat. Med. 21::140615
    [Crossref] [Google Scholar]
  53. Kaushik S, Tasset I, Arias E, Pampliega O, Wong E, et al. 2021.. Autophagy and the hallmarks of aging. . Ageing Res. Rev. 72::101468
    [Crossref] [Google Scholar]
  54. Ke S, Wu L, Wang M, Liu D, Shi G, et al. 2021.. Ginsenoside Rb1 attenuates age-associated vascular impairment by modulating the Gas6 pathway. . Pharm. Biol. 59::136977
    [Crossref] [Google Scholar]
  55. Ke S-Y, Liu D-H, Wu L, Yu X-G, Wang M, et al. 2020.. Ginsenoside Rb1 ameliorates age-related myocardial dysfunction by regulating the NF-κB signaling pathway. . Am. J. Chin. Med. 48::136983
    [Crossref] [Google Scholar]
  56. Kim D, Yang KE, Kim DW, Hwang HY, Kim J, et al. 2021.. Activation of Ca2+-AMPK-mediated autophagy by ginsenoside Rg3 attenuates cellular senescence in human dermal fibroblasts. . Clin. Transl. Med. 11:(8):e521
    [Crossref] [Google Scholar]
  57. Kim E, Kim D, Yoo S, Hong YH, Han SY, et al. 2018.. The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng. . J. Ginseng Res. 42::21824
    [Crossref] [Google Scholar]
  58. Kim E-H, Kim S-W, Park S-J, Kim S, Yu K-M, et al. 2019.. Greater efficacy of black ginseng (CJ EnerG) over red ginseng against lethal influenza A virus infection. . Nutrients 11::1879
    [Crossref] [Google Scholar]
  59. Kim GW, Jo HK, Chung SH. 2018.. Ginseng seed oil ameliorates hepatic lipid accumulation in vitro and in vivo. . J. Ginseng Res. 42::41928
    [Crossref] [Google Scholar]
  60. Kim JK, Shin KK, Kim H, Hong YH, Choi W, et al. 2021.. Korean red ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice. . J. Ginseng Res. 45::71725
    [Crossref] [Google Scholar]
  61. Kim J-S. 2016.. Investigation of phenolic, flavonoid, and vitamin contents in different parts of Korean ginseng (Panax ginseng C.A. Meyer). . Prevent. Nutr. Food Sci. 21::26370
    [Crossref] [Google Scholar]
  62. Kulkarni AS, Aleksic S, Berger DM, Sierra F, Kuchel GA, Barzilai N. 2022.. Geroscience-guided repurposing of FDA-approved drugs to target aging: a proposed process and prioritization. . Aging Cell 21::e13596
    [Crossref] [Google Scholar]
  63. Kumari R, Jat P. 2021.. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. . Front. Cell Dev. Biol. 9::485
    [Google Scholar]
  64. Kuo LJ, Yang L-X. 2008.. γ-H2AX—a novel biomarker for DNA double-strand breaks. . In Vivo 22::3059
    [Google Scholar]
  65. Kwan KKL, Yun H, Dong TTX, Tsim KWK. 2021.. Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide. . J. Ginseng Res. 45::47381
    [Crossref] [Google Scholar]
  66. Leak RK. 2014.. Heat shock proteins in neurodegenerative disorders and aging. . J. Cell Commun. Signal. 8::293310
    [Crossref] [Google Scholar]
  67. Lee B-H, Choi S-H, Kim H-J, Park S-D, Rhim H, et al. 2018.. Gintonin absorption in intestinal model systems. . J. Ginseng Res. 42::3541
    [Crossref] [Google Scholar]
  68. Lee B-Y. 2018.. Korean ginseng: composition, processing, and health benefits. . In Korean Functional Foods: Composition, Processing and Health Benefits, ed. K-Y Park, DY Kwon, KW Lee, S Park , pp. 23356. Boca Raton, FL:: CRC Press
    [Google Scholar]
  69. Lee D-Y, Arndt J, O'Connell JF, Egan JM, Kim Y. 2024.. Red ginseng attenuates the hepatic cellular senescence in aged mice. . Biology 13::36
    [Crossref] [Google Scholar]
  70. Lee H, Hong Y, Tran Q, Cho H, Kim M, et al. 2019.. A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts. . J. Ginseng Res. 43::43141
    [Crossref] [Google Scholar]
  71. Lee J-H, Kim EW, Croteau DL, Bohr VA. 2020.. Heterochromatin: an epigenetic point of view in aging. . Exp. Mol. Med. 52::146674
    [Crossref] [Google Scholar]
  72. Lee MY, Singh D, Kim SH, Lee SJ, Lee CH. 2016.. Ultrahigh pressure processing produces alterations in the metabolite profiles of Panax ginseng. . Molecules 21::816
    [Crossref] [Google Scholar]
  73. Lee S-J, Lee D-Y, O'Connell JF, Egan JM, Kim Y. 2022.. Black ginseng ameliorates cellular senescence via p53-p21/p16 pathway in aged mice. . Biology 11::1108
    [Crossref] [Google Scholar]
  74. Lee SM, Bae B-S, Park H-W, Ahn N-G, Cho B-G, et al. 2015.. Characterization of Korean red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. . J. Ginseng Res. 39::38491
    [Crossref] [Google Scholar]
  75. Lee SY, Kim YK, Park NI, Kim CS, Lee CY, Park SU. 2010.. Chemical constituents and biological activities of the berry of Panax ginseng. . J. Med. Plants Res. 4::34953
    [Google Scholar]
  76. Lei Z, Chen L, Hu Q, Yang Y, Tong F, et al. 2022.. Ginsenoside Rb1 improves intestinal aging via regulating the expression of sirtuins in the intestinal epithelium and modulating the gut microbiota of mice. . Front. Pharmacol. 13::991597
    [Crossref] [Google Scholar]
  77. Li J, Cai D, Yao X, Zhang Y, Chen L, et al. 2016.. Protective effect of ginsenoside Rg1 on hematopoietic stem/progenitor cells through attenuating oxidative stress and the Wnt/β-catenin signaling pathway in a mouse model of D-galactose-induced aging. . Int. J. Mol. Sci. 17::849
    [Crossref] [Google Scholar]
  78. Li S, Yan M, Zhang D, Ye M, Deng J. 2016.. Effects of ginsenoside Rg1 on the senescence of vascular smooth muscle cells. . Genet. Mol. Res. 15:(3):gmr.15038409
    [Google Scholar]
  79. Li W, Wang J-Q, Zhou Y-D, Hou J-G, Liu Y, et al. 2020.. Rare ginsenoside 20 (R)-Rg3 inhibits D-galactose-induced liver and kidney injury by regulating oxidative stress-induced apoptosis. . Am. J. Chin. Med. 48::114157
    [Crossref] [Google Scholar]
  80. Li Z, Jiang R, Wang M, Zhai L, Liu J, et al. 2022.. Ginsenosides repair UVB-induced skin barrier damage in BALB/c hairless mice and HaCaT keratinocytes. . J. Ginseng Res. 46::11525
    [Crossref] [Google Scholar]
  81. Liu M, Bai X, Yu S, Zhao W, Qiao J, et al. 2019.. Ginsenoside Re inhibits ROS/ASK-1 dependent mitochondrial apoptosis pathway and activation of Nrf2-antioxidant response in beta-amyloid-challenged SH-SY5Y cells. . Molecules 24::2687
    [Crossref] [Google Scholar]
  82. Liu Y, Wang X, Jin C, Qiao J, Wang C, et al. 2024.. Total ginsenosides extend healthspan of aging Drosophila by suppressing imbalances in intestinal stem cells and microbiota. . Phytomedicine 129::155650
    [Crossref] [Google Scholar]
  83. Liu YJ, McIntyre RL, Janssens GE, Houtkooper RH. 2020.. Mitochondrial fission and fusion: a dynamic role in aging and potential target for age-related disease. . Mech. Ageing Dev. 186::111212
    [Crossref] [Google Scholar]
  84. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013.. The hallmarks of aging. . Cell 153::1194217
    [Crossref] [Google Scholar]
  85. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2023.. Hallmarks of aging: an expanding universe. . Cell 186:(2):24378
    [Crossref] [Google Scholar]
  86. Lu D, Xu A, Mai H, Zhao J, Zhang C, et al. 2015.. The synergistic effects of heat shock protein 70 and ginsenoside Rg1 against tert-butyl hydroperoxide damage model in vitro. . Oxidative Med. Cell. Longev. 2015::437127
    [Google Scholar]
  87. Luo Y, Wang B, Liu J, Ma F, Luo D, et al. 2021.. Ginsenoside RG1 enhances the paracrine effects of bone marrow-derived mesenchymal stem cells on radiation induced intestinal injury. . Aging 13::1132
    [Crossref] [Google Scholar]
  88. Martins R, Lithgow GJ, Link W. 2016.. Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. . Aging Cell 15::196207
    [Crossref] [Google Scholar]
  89. Metwaly AM, Lianlian Z, Luqi H, Deqiang D. 2019.. Black ginseng and its saponins: preparation, phytochemistry and pharmacological effects. . Molecules 24::1856
    [Crossref] [Google Scholar]
  90. Mohamad HS, Wenli S, Qi C. 2019.. A review of ginseng species in different regions as a multipurpose herb in traditional Chinese medicine, modern herbology and pharmacological science. . J. Med. Plants Res. 13::21326
    [Crossref] [Google Scholar]
  91. Muñoz-Espín D, Serrano M. 2014.. Cellular senescence: from physiology to pathology. . Nat. Rev. Mol. Cell Biol. 15::48296
    [Crossref] [Google Scholar]
  92. Na J-Y, Kim S, Song K, Lim K-H, Shin G-W, et al. 2012.. Anti-apoptotic activity of ginsenoside Rb1 in hydrogen peroxide-treated chondrocytes: stabilization of mitochondria and the inhibition of caspase-3. . J. Ginseng Res. 36::24247
    [Crossref] [Google Scholar]
  93. Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, et al. 2018.. Gut microbiome and aging: physiological and mechanistic insights. . Nutr. Healthy Aging 4::26785
    [Crossref] [Google Scholar]
  94. Niedernhofer LJ, Gurkar AU, Wang Y, Vijg J, Hoeijmakers JH, Robbins PD. 2018.. Nuclear genomic instability and aging. . Annu. Rev. Biochem. 87::295322
    [Crossref] [Google Scholar]
  95. Noroozi R, Ghafouri-Fard S, Pisarek A, Rudnicka J, Spolnicka M, et al. 2021.. DNA methylation-based age clocks: from age prediction to age reversion. . Ageing Res. Rev. 68::101314
    [Crossref] [Google Scholar]
  96. Oh H-J, Jin H, Lee B-Y. 2022.. The non-saponin fraction of Korean red ginseng ameliorates sarcopenia by regulating immune homeostasis in 22–26-month-old C57BL/6J mice. . J. Ginseng Res. 46:(6):80918
    [Crossref] [Google Scholar]
  97. Oh H-J, Jin H, Nah S-Y, Lee B-Y. 2021.. Gintonin-enriched fraction improves sarcopenia by maintaining immune homeostasis in 20-to 24-month-old C57BL/6J mice. . J. Ginseng Res. 45::74453
    [Crossref] [Google Scholar]
  98. Oh J, Lee YD, Wagers AJ. 2014.. Stem cell aging: mechanisms, regulators and therapeutic opportunities. . Nat. Med. 20::87080
    [Crossref] [Google Scholar]
  99. Park HJ, Kim DH, Park SJ, Kim JM, Ryu JH. 2012.. Ginseng in traditional herbal prescriptions. . J. Ginseng Res. 36::22541
    [Crossref] [Google Scholar]
  100. Parrish AR. 2017.. The impact of aging on epithelial barriers. . Tissue Barriers 5::e1343172
    [Crossref] [Google Scholar]
  101. Payne BA, Chinnery PF. 2015.. Mitochondrial dysfunction in aging: much progress but many unresolved questions. . Biochim. Biophys. Acta Bioenerg. 1847::134753
    [Crossref] [Google Scholar]
  102. Peng X, Hao M, Zhao Y, Cai Y, Chen X, et al. 2021.. Red ginseng has stronger anti-aging effects compared to ginseng possibly due to its regulation of oxidative stress and the gut microbiota. . Phytomedicine 93::153772
    [Crossref] [Google Scholar]
  103. Piao XM, Huo Y, Kang JP, Mathiyalagan R, Zhang H, et al. 2020.. Diversity of ginsenoside profiles produced by various processing technologies. . Molecules 25::4390
    [Crossref] [Google Scholar]
  104. Qi R, Jiang R, Xiao H, Wang Z, He S, et al. 2020.. Ginsenoside Rg1 protects against D-galactose induced fatty liver disease in a mouse model via FOXO1 transcriptional factor. . Life Sci. 254::117776
    [Crossref] [Google Scholar]
  105. Ratan ZA, Haidere MF, Hong YH, Park SH, Lee J-O, et al. 2021.. Pharmacological potential of ginseng and its major component ginsenosides. . J. Ginseng Res. 45::199210
    [Crossref] [Google Scholar]
  106. Ribeiro-Rodrigues TM, Kelly G, Korolchuk VI, Girao H. 2023.. Intercellular communication and aging. . In Aging: From Fundamental Biology to Societal Impact, ed. PJ Oliveira, JO Malva , pp. 25774. Cambridge, MA:: Academic Press
    [Google Scholar]
  107. Robbins PD, Jurk D, Khosla S, Kirkland JL, LeBrasseur NK, et al. 2021.. Senolytic drugs: reducing senescent cell viability to extend health span. . Annu. Rev. Pharmacol. Toxicol. 61::779803
    [Crossref] [Google Scholar]
  108. Rumman M, Dhawan J, Kassem M. 2015.. Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. . Stem Cells 33::290312
    [Crossref] [Google Scholar]
  109. Salminen A, Kaarniranta K, Kauppinen A. 2012.. Inflammaging: disturbed interplay between autophagy and inflammasomes. . Aging 4::16675
    [Crossref] [Google Scholar]
  110. Saul D, Kosinsky RL. 2021.. Epigenetics of aging and aging-associated diseases. . Int. J. Mol. Sci. 22::401
    [Crossref] [Google Scholar]
  111. Sharma A, Mir R, Galande S. 2021.. Epigenetic regulation of the Wnt/β-catenin signaling pathway in cancer. . Front. Genet. 12::681053
    [Crossref] [Google Scholar]
  112. Sharma R. 2022.. Emerging interrelationship between the gut microbiome and cellular senescence in the context of aging and disease: perspectives and therapeutic opportunities. . Probiot. Antimicrob. Proteins 14::64863
    [Crossref] [Google Scholar]
  113. Shen X, Dong X, Han Y, Li Y, Ding S, et al. 2020.. Ginsenoside Rg1 ameliorates glomerular fibrosis during kidney aging by inhibiting NOX4 and NLRP3 inflammasome activation in SAMP8 mice. . Int. Immunopharmacol. 82::106339
    [Crossref] [Google Scholar]
  114. Shin KK, Yi Y-S, Kim JK, Kim H, Hossain MA, et al. 2020.. Korean red ginseng plays an anti-aging role by modulating expression of aging-related genes and immune cell subsets. . Molecules 25::1492
    [Crossref] [Google Scholar]
  115. Shin SJ, Jeon SG, Kim J-I, Jeong Y-O, Kim S, et al. 2019.. Red ginseng attenuates Aβ-induced mitochondrial dysfunction and Aβ-mediated pathology in an animal model of Alzheimer's disease. . Int. J. Mol. Sci. 20::3030
    [Crossref] [Google Scholar]
  116. Shivakumar CV, Brown DR, Deb S, Deb SP. 1995.. Wild-type human p53 transactivates the human proliferating cell nuclear antigen promoter. . Mol. Cell. Biol. 15::678593
    [Crossref] [Google Scholar]
  117. Siddiqui MS, François M, Fenech MF, Leifert WR. 2015.. Persistent γH2AX: a promising molecular marker of DNA damage and aging. . Mutat. Res. Rev. Mutat. Res. 766::119
    [Crossref] [Google Scholar]
  118. Srinivas N, Rachakonda S, Kumar R. 2020.. Telomeres and telomere length: a general overview. . Cancers 12::558
    [Crossref] [Google Scholar]
  119. Statzer C, Park JYC, Ewald CY. 2023.. Extracellular matrix dynamics as an emerging yet understudied hallmark of aging and longevity. . Aging Dis. 14::67093
    [Crossref] [Google Scholar]
  120. Sun J, Zhang L, Zhang J, Ran R, Shao Y, et al. 2018.. Protective effects of ginsenoside Rg1 on splenocytes and thymocytes in an aging rat model induced by D-galactose. . Int. Immunopharmacol. 58::94102
    [Crossref] [Google Scholar]
  121. Sun J, Zhong X, Sun D, Xu L, Shi L, et al. 2023.. Anti-aging effects of polysaccharides from ginseng extract residues in Caenorhabditis elegans. . Int. J. Biol. Macromol. 225::107284
    [Crossref] [Google Scholar]
  122. Tan Q, Liang N, Zhang X, Li J. 2021.. Dynamic aging: channeled through microenvironment. . Front. Physiol. 12::702276
    [Crossref] [Google Scholar]
  123. Tang YL, Zhou Y, Wang YP, He YH, Ding JC, et al. 2020.. Ginsenoside Rg1 protects against Sca-1+ HSC/HPC cell aging by regulating the SIRT1-FOXO3 and SIRT3-SOD2 signaling pathways in a γ-ray irradiation-induced aging mice model. . Exp. Ther. Med. 20::124552
    [Crossref] [Google Scholar]
  124. Taylor RC, Dillin A. 2011.. Aging as an event of proteostasis collapse. . Cold Spring Harb. Perspect. Biol. 3::a004440
    [Crossref] [Google Scholar]
  125. Vijg J, Montagna C. 2017.. Genome instability and aging: cause or effect?. Transl. Med. Aging 1::511
    [Crossref] [Google Scholar]
  126. Wang H, Peng D, Xie J. 2009.. Ginseng leaf-stem: bioactive constituents and pharmacological functions. . Chin. Med. 4::20
    [Crossref] [Google Scholar]
  127. Wang N, Wang X, He M, Zheng W, Qi D, et al. 2021.. Ginseng polysaccharides: a potential neuroprotective agent. . J. Ginseng Res. 45::21117
    [Crossref] [Google Scholar]
  128. Wang X, Wang W, Li L, Perry G, Lee H-G, Zhu X. 2014.. Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. . Biochim. Biophys. Acta 1842::124047
    [Crossref] [Google Scholar]
  129. Wang Z, Wang L, Jiang R, Li C, Chen X, et al. 2021.. Ginsenoside Rg1 prevents bone marrow mesenchymal stem cell senescence via NRF2 and PI3K/Akt signaling. . Free Radic. Biol. Med. 174::18294
    [Crossref] [Google Scholar]
  130. Wang ZL, Chen LB, Qiu Z, Chen XB, Liu Y, et al. 2018.. Ginsenoside Rg1 ameliorates testicular senescence changes in D-gal-induced aging mice via anti-inflammatory and antioxidative mechanisms. . Mol. Med. Rep. 17::626976
    [Google Scholar]
  131. Xia C-Y, Chu S-F, Zhang S, Gao Y, Ren Q, et al. 2017.. Ginsenoside Rg1 alleviates corticosterone-induced dysfunction of gap junctions in astrocytes. . J. Ethnopharmacol. 208::20713
    [Crossref] [Google Scholar]
  132. Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, et al. 2016.. An update on inflamm-aging: mechanisms, prevention, and treatment. . J. Immunol. Res. 2016::8426874
    [Crossref] [Google Scholar]
  133. Xu H-Y, Li Q-C, Zhou W-J, Zhang H-B, Chen Z-X, et al. 2023.. Anti-oxidative and anti-aging effects of probiotic fermented ginseng by modulating gut microbiota and metabolites in Caenorhabditis elegans. . Plant Foods Hum. Nutr. 78:(2):32028
    [Crossref] [Google Scholar]
  134. Yang K-E, Jang H-J, Hwang I-H, Hong EM, Lee M-G, et al. 2020.. Stereoisomer-specific ginsenoside 20 (S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling. . J. Ginseng Res. 44::34149
    [Crossref] [Google Scholar]
  135. Yang Y, Ren C, Zhang Y, Wu X. 2017.. Ginseng: an nonnegligible natural remedy for healthy aging. . Aging Dis. 8::708
    [Crossref] [Google Scholar]
  136. Yoo S, Park B-I, Kim D-H, Lee S, Lee S-H, et al. 2021.. Ginsenoside absorption rate and extent enhancement of black ginseng (CJ EnerG) over red ginseng in healthy adults. . Pharmaceutics 13::487
    [Crossref] [Google Scholar]
  137. Yue Z, Rong J, Ping W, Bing Y, Xin Y, et al. 2014.. Gene expression of the p16INK4a-Rb and p19Arf-p53-p21Cip/Waf1 signaling pathways in the regulation of hematopoietic stem cell aging by ginsenoside Rg1. . Genet. Mol. Res. 13::1008696
    [Crossref] [Google Scholar]
  138. Zeitz MJ, Smyth JW. 2023.. Gap junctions and ageing. . In Biochemistry and Cell Biology of Ageing: Part III Biomedical Science, ed. JR Harris, VI Korolchuk , pp. 11337. Cham, Switz:.: Springer
    [Google Scholar]
  139. Zeng Y, Hu W, Jing P, Chen X, Wang Z, et al. 2018.. The regulation of ginsenoside Rg1 upon aging of bone marrow stromal cell contribute to delaying senescence of bone marrow mononuclear cells (BMNCs). . Life Sci. 209::6368
    [Crossref] [Google Scholar]
  140. Zhang J-J, Chen K-C, Zhou Y, Wei H, Qi M-H, et al. 2022.. Evaluating the effects of mitochondrial autophagy flux on ginsenoside Rg2 for delaying D-galactose induced brain aging in mice. . Phytomedicine 104::154341
    [Crossref] [Google Scholar]
  141. Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD. 2023.. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. . FEBS J. 290::136283
    [Crossref] [Google Scholar]
  142. Zhang Y, Yang X, Wang S, Song S. 2019.. Ginsenoside Rg3 prevents cognitive impairment by improving mitochondrial dysfunction in the rat model of Alzheimer's disease. . J. Agric. Food Chem. 67::1004858
    [Crossref] [Google Scholar]
  143. Zhao J, Lu S, Yu H, Duan S, Zhao J. 2018.. Baicalin and ginsenoside Rb1 promote the proliferation and differentiation of neural stem cells in Alzheimer's disease model rats. . Brain Res. 1678::18794
    [Crossref] [Google Scholar]
  144. Zheng Q-L, Zhu H-Y, Xu X, Chu S-F, Cui L-Y, et al. 2021.. Korean red ginseng alleviate depressive disorder by improving astrocyte gap junction function. . J. Ethnopharmacol. 281::114466
    [Crossref] [Google Scholar]
  145. Zheng Z, Wang M, Cheng C, Liu D, Wu L, et al. 2020.. Ginsenoside Rb1 reduces H2O2-induced HUVEC dysfunction by stimulating the sirtuin-1/AMP-activated protein kinase pathway. . Mol. Med. Rep. 22::24756
    [Crossref] [Google Scholar]
  146. Zhou B, Yu X, Ling Y, Qian X. 2018.. A study on the mechanism of the mTOR in ginsenoside Rb1 against the intrinsic aging of mouse brain. . J. Am. Coll. Cardiol. 72::C34
    [Google Scholar]
  147. Zhou Y, Liu J, Cai S, Liu D, Jiang R, Wang Y. 2015.. Protective effects of ginsenoside Rg1 on aging Sca-1+ hematopoietic cells. . Mol. Med. Rep. 12::362128
    [Crossref] [Google Scholar]
  148. Zhu A, Duan Z, Chen Y, Zhu C, Fan D. 2023.. Ginsenoside Rh4 delays skeletal muscle aging through SIRT1 pathway. . Phytomedicine 118::154906
    [Crossref] [Google Scholar]
  149. Zhu J, Mu X, Zeng J, Xu C, Liu J, et al. 2014.. Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging. . PLOS ONE 9::e101291
    [Crossref] [Google Scholar]
  150. Zhu N, Xu M-H, Li Y. 2022.. Bioactive oligopeptides from ginseng (Panax ginseng Meyer) suppress oxidative stress-induced senescence in fibroblasts via NAD+/SIRT1/PGC-1α signaling pathway. . Nutrients 14::5289
    [Crossref] [Google Scholar]
  151. Zihni C, Mills C, Matter K, Balda MS. 2016.. Tight junctions: from simple barriers to multifunctional molecular gates. . Nat. Rev. Mol. Cell Biol. 17::56480
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-111523-121753
Loading
/content/journals/10.1146/annurev-food-111523-121753
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error