1932

Abstract

The emergence of several chemical substances continues to enrich and facilitate the development of food science, but their irrational use also poses a threat to food safety and human health. Nontargeted screening (NTS) has become an important tool for rapid traceability and efficient identification of chemical hazards in food matrices. NTS in food analysis is highly integrated with sample pretreatment, instrumental analysis platforms, data acquisition and analysis, and toxicology. This article is a systemic review of current sample preparation, analytical platforms, and toxicity-guided NTS techniques and provides the latest advancements in workflows and innovative applications of the NTS process based on mass spectrometric techniques. High-throughput toxicity screening platforms play an important role in NTS of unknown chemical hazards of complex food matrices. Advanced machine learning and artificial intelligence are increasingly accessible fields that may effectively process large-scale screening data and advance food NTS research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-111523-121908
2025-04-28
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/food/16/1/annurev-food-111523-121908.html?itemId=/content/journals/10.1146/annurev-food-111523-121908&mimeType=html&fmt=ahah

Literature Cited

  1. Adeleye Y, Andersen M, Clewell R, Davies M, Dent M, et al. 2015.. Implementing Toxicity Testing in the 21st Century (TT21C): making safety decisions using toxicity pathways, and progress in a prototype risk assessment. . Toxicology 332::10211
    [Crossref] [Google Scholar]
  2. Aladaghlo Z, Javanbakht S, Sahragard A, Fakhari AR, Shaabani A. 2023.. Cellulose-based nanocomposite for ultrasonic assisted dispersive solid phase microextraction of triazole fungicides from water, fruits, and vegetables samples. . Food Chem. 403::134273
    [Crossref] [Google Scholar]
  3. Amaral JS. 2021.. Target and non-target approaches for food authenticity and traceability. . Foods 10:(1):172
    [Crossref] [Google Scholar]
  4. Bamba T, Lee JW, Matsubara A, Fukusaki E. 2012.. Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. . J. Chromatogr. A 1250::21219
    [Crossref] [Google Scholar]
  5. Banerjee P, Bhunia AK. 2009.. Mammalian cell-based biosensors for pathogens and toxins. . Trends Biotechnol. 27:(3):17988
    [Crossref] [Google Scholar]
  6. Bergana MM, Adams KM, Harnly J, Moore JC, Xie Z. 2019.. Non-targeted detection of milk powder adulteration by 1H NMR spectroscopy and conformity index analysis. . J. Food Compos. Anal. 78::4958
    [Crossref] [Google Scholar]
  7. Breiman L. 2001.. Random forests. . Mach. Learn. 45:(1):532
    [Crossref] [Google Scholar]
  8. Brendel R, Schwolow S, Rohn S, Weller P. 2020.. Gas-phase volatilomic approaches for quality control of brewing hops based on simultaneous GC-MS-IMS and machine learning. . Anal. Bioanal. Chem. 412:(26):708597
    [Crossref] [Google Scholar]
  9. Brunner AM, Dingemans MML, Baken KA, van Wezel AP. 2019.. Prioritizing anthropogenic chemicals in drinking water and sources through combined use of mass spectrometry and ToxCast toxicity data. . J. Hazard. Mater. 364::33238
    [Crossref] [Google Scholar]
  10. Cacciola F, Rigano F, Dugo P, Mondello L. 2020.. Comprehensive two-dimensional liquid chromatography as a powerful tool for the analysis of food and food products. . Trends Anal. Chem. 127::115894
    [Crossref] [Google Scholar]
  11. Cano-Carrillo I, Gilbert-Lopez B, Montero L, Martinez-Piernas AB, Garcia-Reyes JF. 2023.. Comprehensive and heart-cutting multidimensional liquid chromatography-mass spectrometry and its applications in food analysis. . Mass Spectrom. Rev. 43:(5):93676
    [Crossref] [Google Scholar]
  12. Cavanna D, Righetti L, Elliott C, Suman M. 2018.. The scientific challenges in moving from targeted to non-targeted mass spectrometric methods for food fraud analysis: a proposed validation workflow to bring about a harmonized approach. . Trends Food Sci. Technol. 80::22341
    [Crossref] [Google Scholar]
  13. Chahardehi AM, Arsad H, Lim V. 2020.. Zebrafish as a successful animal model for screening toxicity of medicinal plants. . Plants 9:(10):1345
    [Crossref] [Google Scholar]
  14. Christmann J, Rohn S, Weller P. 2022.. Finding features: variable extraction strategies for dimensionality reduction and marker compounds identification in GC-IMS data. . Food Res Int. 161::111779
    [Crossref] [Google Scholar]
  15. Chung T, Tam IYS, Lam NYY, Yang Y, Liu B, et al. 2022.. Non-targeted detection of food adulteration using an ensemble machine-learning model. . Sci. Rep. 12:(1):2545253
    [Google Scholar]
  16. Creydt M, Fischer M. 2020.. Food phenotyping: recording and processing of non-targeted liquid chromatography mass spectrometry data for verifying food authenticity. . Molecules 25:(17):3972
    [Crossref] [Google Scholar]
  17. Deng H, Ji Y, Tang S, Yang F, Tang G, et al. 2020.. Application of chiral and achiral supercritical fluid chromatography in pesticide analysis: a review. . J. Chromatogr. A 1634::461684
    [Crossref] [Google Scholar]
  18. Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW. 2007.. The ToxCast program for prioritizing toxicity testing of environmental chemicals. . Toxicol. Sci. 95:(1):512
    [Crossref] [Google Scholar]
  19. Dodds JN, Baker ES. 2019.. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. . J. Am. Soc. Mass Spectrom. 30:(11):218595
    [Crossref] [Google Scholar]
  20. Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. 2015.. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. . PNAS 112:(41):1258085
    [Crossref] [Google Scholar]
  21. Duy-Thanh D, Bich-Ngoc N, Van den Bossche F, Lai-Thanh N, Muller M. 2022.. Discovering novel bioactivities of controversial food additives by means of simple zebrafish embryotoxicity (ZET) assays. . Toxics 11:(1):8
    [Crossref] [Google Scholar]
  22. Escher BI, Stapleton HM, Schymanski EL. 2020.. Tracking complex mixtures of chemicals in our changing environment. . Science 367:(6476):38892
    [Crossref] [Google Scholar]
  23. Feng C, Xu Q, Qiu X, Jin Y, Ji J, et al. 2020.. Comprehensive strategy for analysis of pesticide multi-residues in food by GC-MS/MS and UPLC-Q-Orbitrap. . Food Chem. 320::126576
    [Crossref] [Google Scholar]
  24. Fisher CM, Croley TR, Knolhoff AM. 2021.. Data processing strategies for non-targeted analysis of foods using liquid chromatography/high-resolution mass spectrometry. . Trends Anal. Chem. 136::116188
    [Crossref] [Google Scholar]
  25. Franchina FA, Zanella D, Dubois LM, Focant J-F. 2021.. The role of sample preparation in multidimensional gas chromatographic separations for non-targeted analysis with the focus on recent biomedical, food, and plant applications. . J. Sep. Sci. 44:(1):188210
    [Crossref] [Google Scholar]
  26. Fu L, Zhou H, Miao E, Lu S, Jing S, et al. 2019.. Functionalization of amino terminated carbon nanotubes with isocyanates for magnetic solid phase extraction of sulfonamides from milk and their subsequent determination by liquid chromatography-high resolution mass spectrometry. . Food Chem. 289::7017
    [Crossref] [Google Scholar]
  27. Fu Q, Jia X, Zhang S, Zhang J, Sun-Waterhouse D, et al. 2023.. Highly defective copper-based metal-organic frameworks for the efficient adsorption and detection of organophosphorus pesticides: an experimental and computational investigation. . Food Chem. 423::136319
    [Crossref] [Google Scholar]
  28. Fu Q, Sun B, Fan J, Wang M, Sun X, et al. 2022.. Mixed matrix of MOF@COF hybrids for enrichment and determination of phenoxy carboxylic acids in water and vegetables. . Food Chem. 371::131090
    [Crossref] [Google Scholar]
  29. Fu Y, Zhao C, Lu X, Xu G. 2017.. Nontargeted screening of chemical contaminants and illegal additives in food based on liquid chromatography-high resolution mass spectrometry. . Trends Anal. Chem. 96::8998
    [Crossref] [Google Scholar]
  30. Gabelica V, Marklund E. 2018.. Fundamentals of ion mobility spectrometry. . Curr. Opin. Chem. Biol. 42::5159
    [Crossref] [Google Scholar]
  31. Galmán-Graíño S, Sendón R, López-Hernández J, Rodríguez-Bernaldo de Quirós A. 2018.. GC-MS screening analysis for the identification of potential migrants in plastic and paper-based candy wrappers. . Polymers 10:(7):802
    [Crossref] [Google Scholar]
  32. Gao B, Holroyd SE, Moore JC, Laurvick K, Gendel SM, Xie Z. 2019.. Opportunities and challenges using non-targeted methods for food fraud detection. . J. Agric. Food Chem. 67:(31):842530
    [Crossref] [Google Scholar]
  33. Goldman S, Xin J, Provenzano J, Coley CW. 2023.. MIST-CF: chemical formula inference from tandem mass spectra. . J. Chem. Inf. Model. 64:(7):242131
    [Crossref] [Google Scholar]
  34. Gong Y, Yang D, Barrett H, Sun J, Peng H. 2023.. Building the environmental chemical-protein interaction network (eCPIN): an exposome-wide strategy for bioactive chemical contaminant identification. . Environ. Sci. Technol. 57:(9):348695
    [Crossref] [Google Scholar]
  35. González-Gaya B, Lopez-Herguedas N, Bilbao D, Mijangos L, Iker AM, et al. 2021.. Suspect and non-target screening: the last frontier in environmental analysis. . Anal. Methods 13:(16):1876904
    [Crossref] [Google Scholar]
  36. Guerrero-Rubio MA, Hernández-García S, García-Carmona F, Gandía-Herrero F. 2023.. Consumption of commonly used artificial food dyes increases activity and oxidative stress in the animal model Caenorhabditis elegans. . Food Res. Int. 169::112925
    [Crossref] [Google Scholar]
  37. Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B, et al. 2018.. METLIN: a technology platform for identifying knowns and unknowns. . Anal. Chem. 90:(5):315664
    [Crossref] [Google Scholar]
  38. Guo J, Huan T. 2020.. Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics. . Anal. Chem. 92:(12):807280
    [Crossref] [Google Scholar]
  39. Guo Z, Zhu Z, Huang S, Wang J. 2020.. Non-targeted screening of pesticides for food analysis using liquid chromatography high-resolution mass spectrometry: a review. . Food Addit. Contam. Part A 37:(7):1180201
    [Crossref] [Google Scholar]
  40. Hajeb P, Zhu L, Bossi R, Vorkamp K. 2022.. Sample preparation techniques for suspect and non-target screening of emerging contaminants. . Chemosphere 287:(3):132306
    [Crossref] [Google Scholar]
  41. Hall DR, Peng H. 2020.. Characterizing physical protein targets of chemical contaminants with chemical proteomics: Is it time to fill a crucial environmental toxicology knowledge gap?. Comp. Biochem. Physiol. Part D 34::100655
    [Google Scholar]
  42. Hammerschick T, Wagner T, Deser C, Vetter W. 2023.. Isolation of plastochromanol-8 from flaxseed oil by countercurrent separation methods. . Food Chem. 409::135345
    [Crossref] [Google Scholar]
  43. Hao T, Xu X, Lin Q, Wu S, Wu X, et al. 2022.. Rapid discrimination of recycled and virgin poly(ethylene terephthalate) based on non-targeted screening of semi-volatile organic compounds using a novel method of DSI/GC×GC-Q-TOF-MS coupled with various chemometrics. . Food Packag. Shelf Life 34::100978
    [Crossref] [Google Scholar]
  44. Hegazi NM, Khattab AR, Frolov A, Wessjohann LA, Farag MA. 2022.. Authentication of saffron spice accessions from its common substitutes via a multiplex approach of UV/VIS fingerprints and UPLC/MS using molecular networking and chemometrics. . Food Chem. 367::130739
    [Crossref] [Google Scholar]
  45. Heger S, Bluhm K, Du M, Lehmann G, Anders N, et al. 2018.. Aquatic toxicity of biofuel candidates on Daphnia magna. . Ecotoxicol. Environ. Saf. 164::12530
    [Crossref] [Google Scholar]
  46. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, et al. 2010.. MassBank: a public repository for sharing mass spectral data for life sciences. . J. Mass Spectrom. 45:(7):70314
    [Crossref] [Google Scholar]
  47. Houtman CJ, Brewster K, Ten Broek R, Duijve B, van Oorschot Y, et al. 2021.. Characterisation of (anti-)progestogenic and (anti-)androgenic activities in surface and wastewater using high resolution effect directed analysis. . Environ. Int. 153::106536
    [Crossref] [Google Scholar]
  48. Hsu C, Fang M, Tseng H, Lin Y, Tseng S, et al. 2021.. Comprehensive detection of 120 additives in food using nontargeted MS data acquisition. . J. Food Drug Anal. 29:(3):41932
    [Crossref] [Google Scholar]
  49. Hu Y, Song J, Du Z. 2021.. Non-targeted screening of PET oligomers by LC-MS. . Plastics 50:(1):1004
    [Google Scholar]
  50. Huber F, Ridder L, Verhoeven S, Spaaks JH, Diblen F, et al. 2021.. Spec2Vec: improved mass spectral similarity scoring through learning of structural relationships. . PLOS Comput. Biol. 17:(2):1008724
    [Crossref] [Google Scholar]
  51. Janesick AS, Dimastrogiovanni G, Vanek L, Boulos C, Chamorro-García R, et al. 2016.. On the utility of ToxCast™ and ToxPi as methods for identifying new obesogens. . Environ. Health Perspect. 124:(8):121426
    [Crossref] [Google Scholar]
  52. Ji H, Xu Y, Lu H, Zhang Z. 2019.. Deep MS/MS-aided structural-similarity scoring for unknown metabolite identification. . Anal. Chem. 91:(9):562937
    [Crossref] [Google Scholar]
  53. Jia W, Zhang R, Shi L, Zhang F, Chang J, Chu X. 2020.. Effects of spices on the formation of biogenic amines during the fermentation of dry fermented mutton sausage. . Food Chem. 321::126723
    [Crossref] [Google Scholar]
  54. Jimenez-Carvelo AM, Cuadros-Rodríguez L. 2021.. Data mining/machine learning methods in foodomics. . Curr. Opin. Food Sci. 37::7682
    [Crossref] [Google Scholar]
  55. Jin Y, Qi Y, Tang C, Shao B. 2021.. Hierarchical micro- and mesoporous metal-organic framework-based magnetic nanospheres for the nontargeted analysis of chemical hazards in vegetables. . J. Mater. Chem A 9:(14):905665
    [Crossref] [Google Scholar]
  56. Karmaus AL, Filer DL, Martin MT, Houck KA. 2016.. Evaluation of food-relevant chemicals in the ToxCast high-throughput screening program. . Food Chem Toxicol. 92::18896
    [Crossref] [Google Scholar]
  57. Karunathilaka SR, Farris S, Mossoba MM, Moore JC, Yakes BJ. 2016.. Characterising variances of milk powder and instrumentation for the development of a non-targeted, Raman spectroscopy and chemometrics detection method for the evaluation of authenticity. . Food Addit. Contam. A 33:(6):92132
    [Crossref] [Google Scholar]
  58. Karunathilaka SR, Farris S, Mossoba MM, Moore JC, Yakes BJ. 2017.. Non-targeted detection of milk powder adulteration using Raman spectroscopy and chemometrics: melamine case study. . Food Addit. Contam. Part A 34:(2):17082
    [Crossref] [Google Scholar]
  59. Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, et al. 2018.. Identification of small molecules using accurate mass MS/MS search. . Mass Spectrom. Rev. 37:(4):51332
    [Crossref] [Google Scholar]
  60. Knapik LFO, Ramsdorf W. 2020.. Ecotoxicity of malathion pesticide and its genotoxic effects over the biomarker comet assay in Daphnia magna. . Environ. Monit. Assess. 192:(5):264
    [Crossref] [Google Scholar]
  61. Kogure K, Tamplin ML, Simidu U, Colwell RR. 1988.. A tissue culture assay for tetrodotoxin, saxitoxin and related toxins. . Toxicon 26:(2):19197
    [Crossref] [Google Scholar]
  62. Kumar A, Joshi R, Awasthi T, Singh N. 2023.. Insights into the non-targeted metabolomic profile, rheological, functional and structural characteristics of rice bran and pulse protein isolates. . Int. J. Food Sci. Technol. 59:(1):56072
    [Crossref] [Google Scholar]
  63. Kwok M, Lee C, Li HS, Deng R, Tsoi C, et al. 2022.. Remdesivir induces persistent mitochondrial and structural damage in human induced pluripotent stem cell-derived cardiomyocytes. . Cardiovasc. Res. 118:(12):265264
    [Crossref] [Google Scholar]
  64. Li H, Wu X, Wu S, Chen L, Kou X, et al. 2022.. Machine learning directed discrimination of virgin and recycled poly(ethylene terephthalate) based on non-targeted analysis of volatile organic compounds. . J. Hazard. Mater. 436::129116
    [Crossref] [Google Scholar]
  65. Li W, Gao R-Z, Jiang H-X, Lu Q-Y, Tang A-N, Kong D-M. 2021.. Metal organic frameworks as sacrificial templates for preparation of hierarchical covalent organic frameworks enabling ultrafast sample treatment in nontargeted food safety analysis. . Chem. Eng. J. 425::130673
    [Crossref] [Google Scholar]
  66. Li W, Jiang H, Cui M, Wang R, Tang A, Kong D. 2022.. SiO2 templates-derived hierarchical porous COFs sample pretreatment tool for non-targeted analysis of chemicals in foods. . J. Hazard. Mater. 432::128705
    [Crossref] [Google Scholar]
  67. Li W, Jin W-L, Jiang H-X, Wang R, Jia H, et al. 2023a.. Facile fabrication of hierarchically porous melamine foam@COF composite for sample treatment of non-targeted food safety analysis and oil/water separation. . Chem. Eng. J. 455::140900
    [Crossref] [Google Scholar]
  68. Li W, Wang X-H, Liu J-Q, Jiang H-X, Cao D-X, et al. 2023b.. Efficient food safety analysis for vegetables by a heteropore covalent organic framework derived silicone tube with flow-through purification. . Talanta 265::124880
    [Crossref] [Google Scholar]
  69. Li W, Wu Z, Xu Y, Long H, Deng Y, et al. 2023c.. Emerging LC-MS/MS-based molecular networking strategy facilitates foodomics to assess the function, safety, and quality of foods: recent trends and future perspectives. . Trends Food Sci. Technol. 139::104114
    [Crossref] [Google Scholar]
  70. Li X, Wang H, Jiang M, Ding M, Xu X, et al. 2023.. Collision cross section prediction based on machine learning. . Molecules 28:(10):4050
    [Crossref] [Google Scholar]
  71. Li Y, Kind T, Folz J, Vaniya A, Mehta SS, Fiehn O. 2021.. Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. . Nat. Methods 18:(12):152431
    [Crossref] [Google Scholar]
  72. Li Z-C, Li W, Wang R, Wang D-X, Tang A-N, et al. 2023.. Lignin-based covalent organic polymers with improved crystallinity for non-targeted analysis of chemical hazards in food samples. . J. Hazard. Mater. 448::130821
    [Crossref] [Google Scholar]
  73. Liang R, Hu Y, Li G. 2020.. Photochemical synthesis of magnetic covalent organic framework/carbon nanotube composite and its enrichment of heterocyclic aromatic amines in food samples. . J. Chromatogr. A 1618::460867
    [Crossref] [Google Scholar]
  74. Litsa EE, Chenthamarakshan V, Das P, Kavraki LE. 2023.. An end-to-end deep learning framework for translating mass spectra to de-novo molecules. . Commun. Chem. 6:(1):132
    [Crossref] [Google Scholar]
  75. Liu Y, Chen X, Li F, Shi H, He M, et al. 2023.. Analysis of microbial diversity and metabolites in sauerkraut products with and without microorganism addition. . Foods 12:(6):1164
    [Crossref] [Google Scholar]
  76. Louzao MC, Vieytes MR, Baptista de Sousa JM, Leira F, Botana LM. 2001.. A fluorimetric method based on changes in membrane potential for screening paralytic shellfish toxins in mussels. . Anal. Biochem. 289:(2):24650
    [Crossref] [Google Scholar]
  77. Luo Y-S, Chiu Z-Y, Wu K-Y, Hsu C-C. 2023.. Integrating high-throughput exposure assessment and in vitro screening data to prioritize endocrine-active potential and dietary risks of pesticides and veterinary drug residues in animal products. . Food Chem. Toxicol. 173::113639
    [Crossref] [Google Scholar]
  78. Lyu Q, Kuo T-H, Sun C, Chen K, Hsu C-C, Li X. 2019.. Comprehensive structural characterization of phenolics in litchi pulp using tandem mass spectral molecular networking. . Food Chem. 282::917
    [Crossref] [Google Scholar]
  79. Lyu Q, Zheng W, Shan Q, Huang L, Wang Y, et al. 2023.. Expanding annotation of chemical compounds in hawthorn fruits and their variations in thermal processing using integrated mass spectral similarity networking. . Food Res. Int. 172::113114
    [Crossref] [Google Scholar]
  80. Manouchehri M, Seidi S, Tavasolinoor A, Razeghi Y. 2023.. A new approach of magnetic field application in miniaturized pipette-tip extraction for trace analysis of four synthetic hormones in breast milk samples. . Food Chem. 409::135222
    [Crossref] [Google Scholar]
  81. Manz KE, Feerick A, Braun JM, Feng Y-L, Hall A, et al. 2023.. Non-targeted analysis (NTA) and suspect screening analysis (SSA): a review of examining the chemical exposome. . J. Expo. Sci. Environ. Epidemiol. 33:(4):52436
    [Crossref] [Google Scholar]
  82. Mao X, Xiao W, Wan Y, Li Z, Luo D, Yang H. 2021.. Dispersive solid-phase extraction using microporous metal-organic framework UiO-66: improving the matrix compounds removal for assaying pesticide residues in organic and conventional vegetables. . Food Chem. 345::128807
    [Crossref] [Google Scholar]
  83. Mao X, Yan A, Wan Y, Luo D, Yang H. 2019.. Dispersive solid-phase extraction using microporous sorbent UiO-66 coupled to gas chromatography-tandem mass spectrometry: a QuEChERS-type method for the determination of organophosphorus pesticide residues in edible vegetable oils without matrix interference. . J. Agric. Food. Chem. 67:(6):176070
    [Crossref] [Google Scholar]
  84. McCullagh M, Douce D, Van Hoeck E, Goscinny S. 2018.. Exploring the complexity of steviol glycosides analysis using ion mobility mass spectrometry. . Anal. Chem. 90:(7):458595
    [Crossref] [Google Scholar]
  85. McGrath TF, Haughey SA, Patterson J, Fauhl-Hassek C, Donarski J, et al. 2018.. What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed?—Spectroscopy case study. . Trends Food Sci. Technol. 76::3855
    [Crossref] [Google Scholar]
  86. Mei X, Wu X, Zhou F, Liu Y, Ji H, et al. 2023.. Non-targeted screening and trimethylamine determination in Tilletia foetida-infected wheat using HS-SPME-GC-MS. . Food Addit. Contam. Part A 40:(2):18192
    [Crossref] [Google Scholar]
  87. Naidenko OV, Andrews DQ, Temkin AM, Stoiber T, Uche UI, et al. 2021.. Investigating molecular mechanisms of immunotoxicity and the utility of ToxCast for immunotoxicity screening of chemicals added to food. . Int. J. Environ. Res. Public Health 18:(7):3332
    [Crossref] [Google Scholar]
  88. Nicolas J, Hendriksen PJM, Gerssen A, Bovee TFH, Rietjens IMCM. 2014.. Marine neurotoxins: state of the art, bottlenecks, and perspectives for mode of action based methods of detection in seafood. . Mol. Nutr. Food Res. 58:(1):87100
    [Crossref] [Google Scholar]
  89. Nkoom M, Lu G, Liu J. 2022.. Chronic toxicity of diclofenac, carbamazepine and their mixture to Daphnia magna: a comparative two-generational study. . Environ. Sci. Pollut. Res. Int. 29:(39):5896379
    [Crossref] [Google Scholar]
  90. Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J, et al. 2020.. Feature-based molecular networking in the GNPS analysis environment. . Nat. Methods 17:(9):9058
    [Crossref] [Google Scholar]
  91. Paul GV, Huang Y-Y, Wu Y-N, Ho T-N, Hsiao H-I, Hsu T. 2022.. Aluminum (Al) causes a delayed suppression of nucleotide excision repair (NER) capacity in zebrafish (Danio rerio) embryos via disturbance of DNA lesion detection. . Ecotoxicol. Environ. Saf. 242::113902
    [Crossref] [Google Scholar]
  92. Pérez-Mayán L, Cobo-Golpe M, Ramil M, Cela R, Rodríguez I. 2020.. Evaluation of supercritical fluid chromatography accurate mass spectrometry for neonicotinoid compounds determination in wine samples. . J. Chromatogr. A 1620::460963
    [Crossref] [Google Scholar]
  93. Piras C, Hale OJ, Reynolds CK, Jones AK, Taylor N, et al. 2021.. Speciation and milk adulteration analysis by rapid ambient liquid MALDI mass spectrometry profiling using machine learning. . Sci. Rep. 11:(1):3305
    [Crossref] [Google Scholar]
  94. Pourchet M, Debrauwer L, Klanova J, Price EJ, Covaci A, et al. 2020.. Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: from promises to challenges and harmonisation issues. . Environ. Int. 139::105545
    [Crossref] [Google Scholar]
  95. Qi Y, Zhang J, Shan W, Zhang W, Sun J, et al. 2023a.. Magnetic amino-rich hyper-crosslinked polymers for fat-rich foodstuffs pretreatment in nontargeted analysis of chemical hazards. . Food Chem. 425::136467
    [Crossref] [Google Scholar]
  96. Qi Y, Zhang J, Zhang L, Zhou X, Li W, et al. 2023b.. 3D macro/mesoporous highly reproducible amino-functionalized covalent organic framework nanospheres for fat-rich foodstuffs pretreatment in nontargeted analysis. . Chem. Eng. J. 454::140319
    [Crossref] [Google Scholar]
  97. Reçber T, Çelebier M. 2022.. Ion mobility-derived collision cross section database: application to mycotoxin analysis. . In Current and Future Developments in Food Science, ed. B Gómara, ML Marina , pp. 5057. Sharjah, UAE:: Bentham Sci. Publ.
    [Google Scholar]
  98. Ren J, Lu Y, Han Y, Qiao F, Yan H. 2023.. Novel molecularly imprinted phenolic resin-dispersive filter extraction for rapid determination of perfluorooctanoic acid and perfluorooctane sulfonate in milk. . Food Chem. 400::134062
    [Crossref] [Google Scholar]
  99. Righetti L, Bergmann A, Galaverna G, Rolfsson O, Paglia G, Dall'Asta C. 2018.. Ion mobility-derived collision cross section database: application to mycotoxin analysis. . Anal. Chim. Acta 1014::5057
    [Crossref] [Google Scholar]
  100. Rizzo S, Celano R, Piccinelli AL, Serio S, Russo M, Rastrelli L. 2023.. An analytical platform for the screening and identification of pyrrolizidine alkaloids in food matrices with high risk of contamination. . Food Chem. 406::135058
    [Crossref] [Google Scholar]
  101. Salvaggio A, Antoci F, Messina A, Ferrante M, Copat C, et al. 2018.. Teratogenic effects of the neonicotinoid thiacloprid on chick embryos (Gallus gallus domesticus). . Food Chem. Toxicol. 118::81220
    [Crossref] [Google Scholar]
  102. Schmid R, Petras D, Nothias L-F, Wang M, Aron AT, et al. 2021.. Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. . Nat. Commun. 12:(1):3832
    [Crossref] [Google Scholar]
  103. Schmidt FF, Lichtenstein D, Planatscher H, Mentz A, Kalinowski J, et al. 2021.. Pesticide mixture effects on liver protein abundance in HepaRG cells. . Toxicology 458::152839
    [Crossref] [Google Scholar]
  104. Shao B, Li H, Shen J, Wu Y. 2019.. Nontargeted detection methods for food safety and integrity. . Annu. Rev. Food Sci. Technol. 10::42955
    [Crossref] [Google Scholar]
  105. Shrivastava AD, Swainston N, Samanta S, Roberts I, Wright Muelas M, Kell DB. 2021.. MassGenie: a transformer-based deep learning method for identifying small molecules from their mass spectra. . Biomolecules 11:(12):1793
    [Crossref] [Google Scholar]
  106. Sun G, Zhang Z, Yang L, Jiang J, Yao W, et al. 2023.. Optimizing the preparative capacity of two-dimensional liquid chromatography based on analytes retention behaviors. . J. Chromatogr. A 1690::463786
    [Crossref] [Google Scholar]
  107. Sun Q, Dong Y, Wen X, Zhang X, Hou S. 2023.. A review on recent advances in mass spectrometry analysis of harmful contaminants in food. . Front. Nutr. 10:(1):1244459
    [Crossref] [Google Scholar]
  108. Tan H, Sun F, Abdallah MF, Li J, Zhou J, et al. 2022.. Background ions into exclusion list: a new strategy to enhance the efficiency of DDA data collection for high-throughput screening of chemical contaminations in food. . Food Chem. 385::132669
    [Crossref] [Google Scholar]
  109. Tang X, Wang Z, Hu S, Zhou B. 2022.. Assessing drug-induced mitochondrial toxicity in cardiomyocytes: implications for preclinical cardiac safety evaluation. . Pharmaceutics 14:(7):1313
    [Crossref] [Google Scholar]
  110. Te-Brinke E, Arrizabalaga-Larranaga A, Blokland MH. 2022.. Insights of ion mobility spectrometry and its application on food safety and authenticity: a review. . Anal. Chim. Acta 1222::340039
    [Crossref] [Google Scholar]
  111. Teehan P, Schall MK, Blazer VS, Dorman FL. 2022.. Targeted and non-targeted analysis of young-of-year smallmouth bass using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. . Sci. Total Environ. 806:(Pt. 2):150378
    [Crossref] [Google Scholar]
  112. Toribio L, Bernal J, Martín MT, Ares AM. 2021.. Supercritical fluid chromatography coupled to mass spectrometry: a valuable tool in food analysis. . Trends Anal. Chem. 143::116350
    [Crossref] [Google Scholar]
  113. van de Velde B, Guillarme D, Kohler I. 2020.. Supercritical fluid chromatography: mass spectrometry in metabolomics: past, present, and future perspectives. . J. Chromatogr. B 1161::122444
    [Crossref] [Google Scholar]
  114. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, et al. 2016.. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. . Nat. Biotechnol. 34:(8):82837
    [Crossref] [Google Scholar]
  115. Wang R, Jiang H-X, Jia H, Li W, Chen Y, et al. 2023.. Easily operated COF-based monolithic sponges as matrix clean-up materials for non-targeted analysis of chemical hazards in oil-rich foods. . Talanta 255::124250
    [Crossref] [Google Scholar]
  116. Wang R, Yin Y, Zhu Z-J. 2019.. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. . Anal. Bioanal. Chem. 411:(19):434957
    [Crossref] [Google Scholar]
  117. Wang S, Zhang H, Zheng W, Wang X, Andersen ME, et al. 2013.. Organic extract contaminants from drinking water activate Nrf2-mediated antioxidant response in a human cell line. . Environ. Sci. Technol. 47:(9):476877
    [Crossref] [Google Scholar]
  118. Wang X-H, Li W, Jiang H-X, Chen Y, Gao R-Z, et al. 2021.. Heteropore covalent organic framework-based composite membrane prepared by in situ growth on non-woven fabric for sample pretreatment of food non-targeted analysis. . Mikrochim. Acta 188:(7):235
    [Crossref] [Google Scholar]
  119. Wang Z, Xin L, Shengkang L, Zhixu T, Xiwen Y, et al. 2022.. Research progress on application of high-resolution mass spectrometry in analysis of PFAS. . J. Instrum. Anal. 41:(6):93140
    [Google Scholar]
  120. Wu Q, Wang J-Y, Han D-Q, Yao Z-P. 2020.. Recent advances in differentiation of isomers by ion mobility mass spectrometry. . Trends Anal. Chem. 124::115801
    [Crossref] [Google Scholar]
  121. Wu S, Wu X, Li H, Li D, Zheng J, et al. 2022.. The characterization and influence factors of semi-volatile compounds from mechanically recycled polyethylene terephthalate (rPET) by combining GC×GC-TOFMS and chemometrics. . J. Hazard. Mater. 439::129583
    [Crossref] [Google Scholar]
  122. Wu T, Yu G-Y, Xiao J, Yan C, Kurihara H, et al. 2018.. Fostering efficacy and toxicity evaluation of traditional Chinese medicine and natural products: chick embryo as a high throughput model bridging in vitro and in vivo studies. . Pharmacol. Res. 133::2134
    [Crossref] [Google Scholar]
  123. Xie Z, Hu Y, Chen Y, Wu G, Li G, Zhong Q. 2023.. Effective enrichment and detection of bisphenol diglycidyl ether, novolac glycerol ether and their derivatives in canned food using a novel magnetic sulfonatocalix[6]arene covalent cross-linked polymer as the adsorbent. . Food Chem. 399::133918
    [Crossref] [Google Scholar]
  124. Xu X, Ni H, Guo Y, Lin Y, Ji J, et al. 2021.. Hexafluoropropylene oxide dimer acid (HFPO-DA) induced developmental cardiotoxicity and hepatotoxicity in hatchling chickens: roles of peroxisome proliferator activated receptor alpha. . Environ. Pollut. 290::118112
    [Crossref] [Google Scholar]
  125. Xue J, Guijas C, Benton HP, Warth B, Siuzdak G. 2020.. METLIN MS2 molecular standards database: a broad chemical and biological resource. . Nat. Methods 17:(10):95354
    [Crossref] [Google Scholar]
  126. Xue W, Yang C, Liu M, Lin X, Wang M, Wang X. 2022.. Metabolomics approach on non-targeted screening of 50 PPCPs in lettuce and maize. . Molecules 27:(15):4711
    [Crossref] [Google Scholar]
  127. Yang X, Wang J, Chang G, Sun C, Wu Q, Wang Z. 2024.. Post-synthetic modification of covalent organic framework for efficient adsorption of organochlorine pesticides from cattle's milk. . Food Chem. 439::138182
    [Crossref] [Google Scholar]
  128. Young RB, Pica NE, Sharifan H, Chen H, Roth HK, et al. 2022.. PFAS analysis with ultrahigh resolution 21T FT-ICR MS: suspect and nontargeted screening with unrivaled mass resolving power and accuracy. . Environ. Sci. Technol. 56:(4):245565
    [Crossref] [Google Scholar]
  129. Yu D, Guo S, Zhang X, Yan H, Mao S, et al. 2023.. Combining stable isotope, multielement and untargeted metabolomics with chemometrics to discriminate the geographical origins of ginger (Zingiber officinale Roscoe). . Food Chem. 426::136577
    [Crossref] [Google Scholar]
  130. Zhao J, Liu W, Chen Y, Zhang X, Wang X, et al. 2022.. Identification of markers for tea authenticity assessment: non-targeted metabolomics of highly similar oolong tea cultivars (Camellia sinensis var. sinensis). . Food Control 142::109223
    [Crossref] [Google Scholar]
  131. Zhao Y, Wu R, Yu H, Li J, Liu L, et al. 2020.. Magnetic solid-phase extraction of sulfonamide antibiotics in water and animal-derived food samples using core-shell magnetite and molybdenum disulfide nanocomposite adsorbent. . J. Chromatogr. A 1610::460543
    [Crossref] [Google Scholar]
  132. Zhong C, Li S, Yin N, Zhang L, Jiang J, et al. 2023.. Single extraction and integrated non-target data acquisition with data mining workflow for analysis of hazardous substances in agricultural plant products. . Food Chem. 429::136899
    [Crossref] [Google Scholar]
  133. Zhu L, Spachos P, Pensini E, Plataniotis KN. 2021.. Deep learning and machine vision for food processing: a survey. . Curr. Res. Food Sci. 4::23349
    [Crossref] [Google Scholar]
  134. Zwart N, Jonker W, Broek RT, de Boer J, Somsen G, et al. 2020.. Identification of mutagenic and endocrine disrupting compounds in surface water and wastewater treatment plant effluents using high-resolution effect-directed analysis. . Water Res. 168::115204
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-111523-121908
Loading
/content/journals/10.1146/annurev-food-111523-121908
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error