1932

Abstract

The impact of food technology and product development on the nutritional quality of foods is discussed in the context of food classification schemes, clinical research, and sociocultural studies. Food processing operations are analyzed in terms of their beneficial and detrimental consequences for the nutritional value of foods and ingredients. Several classification schemes are discussed, including dietary guidelines, nutrition information panels, and nutritional scores. The health impact of processed and ultraprocessed foods is discussed in connection with the processing–formulation scheme previously developed by the authors. The importance of product development as a driver for the food industry is highlighted, and formulation-based approaches to improve the healthfulness of industrially produced foods are discussed. Finally, the public perception of processed foods and its impact on the industry are discussed, and the need for a broad engagement among stakeholders to ensure the sustainability of our food system and healthy diets for individuals is emphasized.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-111523-122028
2025-04-28
2025-06-18
Loading full text...

Full text loading...

/deliver/fulltext/food/16/1/annurev-food-111523-122028.html?itemId=/content/journals/10.1146/annurev-food-111523-122028&mimeType=html&fmt=ahah

Literature Cited

  1. Allen L, de Benoist B, Dary O, Hurrell R. 2006.. Guidelines on Food Fortification with Micronutrients. Geneva:: WHO/FAO
    [Google Scholar]
  2. Al-Mazeedi HM, Regenstein JM, Riaz MN. 2013.. The issue of undeclared ingredients in halal and kosher food production: a focus on processing aids. . Compr. Rev. Food Sci. Food Saf. 12:(2):22833
    [Crossref] [Google Scholar]
  3. Altuna L, Herrera ML, Foresti ML. 2018.. Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. . Food Hydrocoll. 80::97110
    [Crossref] [Google Scholar]
  4. Aminova M, Marchi E. 2021.. The role of innovation on start-up failure versus its success. . Int. J. Bus. Ethics Gov. 4:(1):4172
    [Crossref] [Google Scholar]
  5. Anderson IH, Levine AS, Levitt MD. 1981.. Incomplete absorption of the carbohydrate in all-purpose wheat flour. . N. Engl. J. Med. 304:(15):89192
    [Crossref] [Google Scholar]
  6. Antoniak MA, Szymkowiak A, Pepliński B. 2022.. The source of protein or its value? Consumer perception regarding the importance of meat(-like) product attributes. . Appl. Sci. 12:(9):4128
    [Crossref] [Google Scholar]
  7. Ares G, Antúnez L, Curutchet MR, Giménez A. 2023.. Warning labels as a policy tool to encourage healthier eating habits. . Curr. Opin. Food Sci. 51::101011
    [Crossref] [Google Scholar]
  8. Bancil AS, Sandall AM, Rossi M, Chassaing B, Lindsay JO, Whelan K. 2021.. Food additive emulsifiers and their impact on gut microbiome, permeability, and inflammation: mechanistic insights in inflammatory bowel disease. . J. Crohn's Colitis 15:(6):106879
    [Crossref] [Google Scholar]
  9. Banovic M, Arvola A, Pennanen K, Duta DE, Brückner-Gühmann M, et al. 2018.. Foods with increased protein content: a qualitative study on European consumer preferences and perceptions. . Appetite 125::23343
    [Crossref] [Google Scholar]
  10. Baskar G, Aiswarya R. 2018.. Overview on mitigation of acrylamide in starchy fried and baked foods. . J. Sci. Food Agric. 98:(12):438594
    [Crossref] [Google Scholar]
  11. Belz MCE, Ryan LAM, Arendt EK. 2012.. The impact of salt reduction in bread: a review. . Crit. Rev. Food Sci. Nutr. 52:(6):51424
    [Crossref] [Google Scholar]
  12. Bennett C, Blissett J. 2020.. Interactive effects of impulsivity and dietary restraint over snack intake in children. . Appetite 146::104496
    [Crossref] [Google Scholar]
  13. Besancon S, Beran D, Batal M. 2023.. A study is 21 times more likely to find unfavourable results about the nutrition label Nutri-Score if the authors declare a conflict of interest or the study is funded by the food industry. . BMJ Glob. Health 8:(5):e011720
    [Crossref] [Google Scholar]
  14. Bishai D, Nalubola R. 2002.. The history of food fortification in the United States: its relevance for current fortification efforts in developing countries. . Econ. Dev. Cult. Change 51:(1):3753
    [Crossref] [Google Scholar]
  15. Bleiweiss-Sande R, Goldberg J, Evans EW, Chui K, Sacheck J. 2020.. Perceptions of processed foods among low-income and immigrant parents. . Health Educ. Behav. 47:(1):10110
    [Crossref] [Google Scholar]
  16. Boukid F, Rosell CM, Castellari M. 2021.. Pea protein ingredients: a mainstream ingredient to (re)formulate innovative foods and beverages. . Trends Food Sci. Technol. 110::72942
    [Crossref] [Google Scholar]
  17. Braesco V, Souchon I, Sauvant P, Haurogne T, Maillot M, et al. 2022.. Ultra-processed foods: How functional is the NOVA system?. Eur. J. Clin. Nutr. 76:(9):124553 Study showing that the assignment of foods according to the NOVA scheme is evaluator dependent.
    [Crossref] [Google Scholar]
  18. Buttriss JL. 2013.. Food reformulation: the challenges to the food industry. . Proc. Nutr. Soc. 72:(1):6169
    [Crossref] [Google Scholar]
  19. Chronakis IS. 1998.. On the molecular characteristics, compositional properties, and structural-functional mechanisms of maltodextrins: a review. . Crit. Rev. Food Sci. Nutr. 38:(7):599637
    [Crossref] [Google Scholar]
  20. Collins EJT. 1993.. Food adulteration and food safety in Britain in the 19th and early 20th centuries. . Food Policy 18:(2):95109
    [Crossref] [Google Scholar]
  21. Cox S, Sandall A, Smith L, Rossi M, Whelan K. 2021.. Food additive emulsifiers: a review of their role in foods, legislation and classifications, presence in food supply, dietary exposure, and safety assessment. . Nutr. Rev. 79:(6):72641
    [Crossref] [Google Scholar]
  22. Davčik NS, Rundquist J. 2012.. An exploratory study of brand success: evidence from the food industry. . J. Int. Food Agribus. Mark. 24:(1):91109
    [Crossref] [Google Scholar]
  23. de Morais Sato P, Couto MT, Wells J, Cardoso MA, Devakumar D, Scagliusi FB. 2020.. Mothers’ food choices and consumption of ultra-processed foods in the Brazilian Amazon: a grounded theory study. . Appetite 148::104602 Systems analysis of the impact of ultraprocessed foods on a community in the Amazon region.
    [Crossref] [Google Scholar]
  24. DeAndreis P. 2020.. Italy formally adopts Nutrinform labeling system. . Olive Oil Times, Oct. 30. https://www.oliveoiltimes.com/business/europe/italy-formally-adopts-nutrinform-labeling-system/86882
    [Google Scholar]
  25. Deliza R, Lima MF, Ares G. 2021.. Rethinking sugar reduction in processed foods. . Curr. Opin. Food Sci. 40::5866
    [Crossref] [Google Scholar]
  26. Devia G, Forli S, Vidal L, Curutchet MR, Ares G. 2021.. References to home-made and natural foods on the labels of ultra-processed products increase healthfulness perception and purchase intention: insights for policy making. . Food Qual. Prefer. 88::104110
    [Crossref] [Google Scholar]
  27. Dias MI, Ferreira IC, Barreiro MF. 2015.. Microencapsulation of bioactives for food applications. . Food Funct. 6:(4):103552
    [Crossref] [Google Scholar]
  28. Dobson PW, Gerstner E. 2010.. For a few cents more: Why supersize unhealthy food?. Mark. Sci. 29:(4):77078
    [Crossref] [Google Scholar]
  29. Drewnowski A, Burton-Freeman B. 2020.. A new category-specific nutrient rich food (NRF9f.3) score adds flavonoids to assess nutrient density of fruit. . Food Funct. 11:(1):12330
    [Crossref] [Google Scholar]
  30. Drewnowski A, Fulgoni V. 2008.. Nutrient profiling of foods: creating a nutrient-rich food index. . Nutr. Rev. 66:(1):2339
    [Crossref] [Google Scholar]
  31. Drewnowski A, Gupta S, Darmon N. 2020.. An overlap between “ultraprocessed” foods and the preexisting nutrient rich foods index?. Nutr. Today 55:(2):7581 Analysis of how the processing-based NOVA system compares with nutrient-based classification systems.
    [Crossref] [Google Scholar]
  32. Earle RL. 2013.. Unit Operations in Food Processing. Oxford, UK:: Pergamon Press
    [Google Scholar]
  33. Etale A, Siegrist M. 2021.. Food processing and perceived naturalness: Is it more natural or just more traditional?. Food Qual. Prefer. 94::104323
    [Crossref] [Google Scholar]
  34. Farrugia F, Aquilina A, Vassallo J, Pace NP. 2021.. Bisphenol A and type 2 diabetes mellitus: a review of epidemiologic, functional, and early life factors. . Int. J. Environ. Res. Public Health 18:(2):716
    [Crossref] [Google Scholar]
  35. Ferruzzi MG, Jonnalagadda SS, Liu S, Marquart L, McKeown N, et al. 2014.. Developing a standard definition of whole-grain foods for dietary recommendations: summary report of a multidisciplinary expert roundtable discussion. . Adv. Nutr. 5:(2):16476
    [Crossref] [Google Scholar]
  36. Fiolet T, Srour B, Sellem L, Kesse-Guyot E, Allès B, et al. 2018.. Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. . BMJ 360::k322
    [Crossref] [Google Scholar]
  37. Fjellström C. 2004.. Mealtime and meal patterns from a cultural perspective. . Scand. J. Nutr. 48:(4):16164
    [Crossref] [Google Scholar]
  38. Food Agric. Organ. U. N. 2024.. Food-based dietary guidelines. . FAO. https://www.fao.org/nutrition/education/food-based-dietary-guidelines
    [Google Scholar]
  39. Franceschelli MV, Santoro G, Candelo E. 2018.. Business model innovation for sustainability: a food start-up case study. . Br. Food J. 120:(10):248394
    [Crossref] [Google Scholar]
  40. Gálvez-Ontiveros Y, Páez S, Monteagudo C, Rivas A. 2020.. Endocrine disruptors in food: impact on gut microbiota and metabolic diseases. . Nutrients 12:(4):1158
    [Crossref] [Google Scholar]
  41. Gärtner C, Stahl W, Sies H. 1997.. Lycopene is more bioavailable from tomato paste than from fresh tomatoes. . Am. J. Clin. Nutr. 66:(1):11622
    [Crossref] [Google Scholar]
  42. Garza KB, Ding M, Owensby JK, Zizza CA. 2016.. Impulsivity and fast-food consumption: a cross-sectional study among working adults. . J. Acad. Nutr. Diet. 116:(1):6168
    [Crossref] [Google Scholar]
  43. Grover Y, Negi PS. 2023.. Recent developments in freezing of fruits and vegetables: striving for controlled ice nucleation and crystallization with enhanced freezing rates. . J. Food Sci. 88:(12):4799826
    [Crossref] [Google Scholar]
  44. Guillen MD, Sopelana P, Partearroyo MA. 1997.. Food as a source of polycyclic aromatic carcinogens. . 12(3):13346
  45. Guiné RPF, Florença SG, Barroca MJ, Anjos O. 2020.. The link between the consumer and the innovations in food product development. . Foods 9:(9):1317
    [Crossref] [Google Scholar]
  46. Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, et al. 2019.. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. . Cell Metab. 30:(1):6777.e3 The first published clinical study quantitatively comparing consumption of ultraprocessed foods against regularly processed foods.
    [Crossref] [Google Scholar]
  47. Hashem KM, Burt HE, Brown MK, MacGregor GA. 2024.. Outcomes of sugar reduction policies, United Kingdom of Great Britain and Northern Ireland. . Bull. World Health Organ. 102:(6):43239
    [Crossref] [Google Scholar]
  48. Hässig A, Hartmann C, Sanchez-Siles L, Siegrist M. 2023.. Perceived degree of food processing as a cue for perceived healthiness: the NOVA system mirrors consumers’ perceptions. . Food Qual. Prefer. 110::104944 Study finding that consumer perception of processing and healthiness partially overlaps with the NOVA classification.
    [Crossref] [Google Scholar]
  49. Haytowitz DB, Ahuja JKC. 2015.. Composition of foods raw, processed, prepared. USDA National Nutrient Database for Standard Reference, Release 28 , Beltsville, MD:. https://doi.org/10.15482/USDA.ADC/1324304
    [Google Scholar]
  50. He FJ, MacGregor GA. 2009.. A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. . J. Hum. Hypertens. 23:(6):36384
    [Crossref] [Google Scholar]
  51. Hercberg S, Touvier M, Salas-Salvado J, Group Eur. Sci. Support. Implement. Nutri-Score Eur. 2022.. The Nutri-Score nutrition label. . Int. J. Vitam. Nutr. Res. 92:(3–4):14757
    [Crossref] [Google Scholar]
  52. Hess JM, Comeau ME, Casperson S, Slavin JL, Johnson GH, et al. 2023.. Dietary guidelines meet NOVA: developing a menu for a healthy dietary pattern using ultra-processed foods. . J Nutr. 153:(8):247281
    [Crossref] [Google Scholar]
  53. Horwath CC, Hagmann D, Hartmann C. 2020.. The power of food: self-control moderates the association of hedonic hunger with overeating, snacking frequency and palatable food intake. . Eat. Behav. 38::101393
    [Crossref] [Google Scholar]
  54. Hutchings SC, Low JYQ, Keast RSJ. 2019.. Sugar reduction without compromising sensory perception. An impossible dream?. Crit. Rev. Food Sci. Nutr. 59:(14):2287307
    [Crossref] [Google Scholar]
  55. Hwang H-S. 2020.. A critical review on structures, health effects, oxidative stability, and sensory properties of oleogels. . Biocatal. Agric. Biotechnol. 26::101657
    [Crossref] [Google Scholar]
  56. Inst. Food Technol. 2019.. 2018 guidelines for initial IFT approval of undergraduate food science and food technology programs. Rep. , Inst. Food Technol., Chicago:. https://www.ift.org/-/media/community/pdfs/educators-herb/2018herbguidelinesforinitialiftapproval1.pdf
    [Google Scholar]
  57. Int. Food Inf. Counc. 2022.. 2022 food and health survey. Rep., Int. Food Inf. Counc., Washington, DC:. https://foodinsight.org/wp-content/uploads/2022/06/IFIC-2022-Food-and-Health-Survey-Report-May-2022.pdf
    [Google Scholar]
  58. Isaksen IM, Dankel SN. 2023.. Ultra-processed food consumption and cancer risk: a systematic review and meta-analysis. . Clin. Nutr. 42:(6):91928
    [Crossref] [Google Scholar]
  59. Jahns L, Davis-Shaw W, Lichtenstein AH, Murphy SP, Conrad Z, Nielsen F. 2018.. The history and future of dietary guidance in America. . Adv. Nutr. 9:(2):13647
    [Crossref] [Google Scholar]
  60. Julia C, Etile F, Hercberg S. 2018.. Front-of-pack Nutri-Score labelling in France: an evidence-based policy. . Lancet Public Health 3:(4):e164
    [Crossref] [Google Scholar]
  61. Katz DL, Njike VY, Rhee LQ, Reingold A, Ayoob KT. 2010.. Performance characteristics of NuVal and the overall nutritional quality index (ONQI). . Am. J. Clin. Nutr. 91:(4):1102S8S
    [Crossref] [Google Scholar]
  62. Kearns CE, Schmidt LA, Glantz SA. 2016.. Sugar industry and coronary heart disease research: a historical analysis of internal industry documents. . JAMA Intern. Med. 176:(11):168085
    [Crossref] [Google Scholar]
  63. Kittler PG, Sucher KP. 2004.. Accent on taste: an applied approach to multicultural competency. . Diabetes Spectr. 17:(4):2004
    [Crossref] [Google Scholar]
  64. Kliemann N, Al Nahas A, Vamos EP, Touvier M, Kesse-Guyot E, et al. 2022.. Ultra-processed foods and cancer risk: from global food systems to individual exposures and mechanisms. . Br. J. Cancer 127:(1):1420
    [Crossref] [Google Scholar]
  65. Koehn NF. 1999.. Henry Heinz and brand creation in the late nineteenth century: making markets for processed food. . Bus. Hist. Rev. 73:(3):34993
    [Crossref] [Google Scholar]
  66. Kong F, Singh RP. 2016.. Chemical deterioration and physical instability of foods and beverages. . In The Stability and Shelf Life of Food, ed. P Subramaniam , pp. 4376. Sawston, UK:: Woodhead Publ. , 2nd ed..
    [Google Scholar]
  67. Kritchevsky D. 1998.. History of recommendations to the public about dietary fat. . J. Nutr. 128:(2):449S52S
    [Crossref] [Google Scholar]
  68. Kurek M, Benaida-Debbache N, Elez Garofulić I, Galić K, Avallone S, et al. 2022.. Antioxidants and bioactive compounds in food: critical review of issues and prospects. . Antioxidants 11:(4):742
    [Crossref] [Google Scholar]
  69. Kwan S. 2009.. Individual versus corporate responsibility. . Food Cult. Soc. 12:(4):47795
    [Crossref] [Google Scholar]
  70. La Berge AF. 2008.. How the ideology of low fat conquered America. . J. Hist. Med. Allied Sci. 63:(2):13977
    [Crossref] [Google Scholar]
  71. Lacy-Nichols J, Williams O. 2021.. “ Part of the solution:” food corporation strategies for regulatory capture and legitimacy. . Int. J. Health Policy Manag. 10:(12):84556
    [Google Scholar]
  72. Lam ACY, Can Karaca A, Tyler RT, Nickerson MT. 2018.. Pea protein isolates: structure, extraction, and functionality. . Food Rev. Int. 34:(2):12647
    [Crossref] [Google Scholar]
  73. Lane MM, Gamage E, Du S, Ashtree DN, McGuinness AJ, et al. 2024.. Ultra-processed food exposure and adverse health outcomes: umbrella review of epidemiological meta-analyses. . BMJ 384::e077310 Comprehensive review of available data on the consequences of ultraprocessed food consumption for human health.
    [Crossref] [Google Scholar]
  74. Larrivee S, Greenway FL, Johnson WD. 2015.. A statistical analysis of a traffic-light food rating system to promote healthy nutrition and body weight. . J. Diabetes Sci. Technol. 9:(6):133641
    [Crossref] [Google Scholar]
  75. Larson NI, Nelson MC, Neumark-Sztainer D, Story M, Hannan PJ. 2009.. Making time for meals: meal structure and associations with dietary intake in young adults. . J. Am. Diet. Assoc. 109:(1):7279
    [Crossref] [Google Scholar]
  76. Laudisi F, Stolfi C, Monteleone G. 2019.. Impact of food additives on gut homeostasis. . Nutrients 11:(10):2334
    [Crossref] [Google Scholar]
  77. Lemos TC, Coutinho GMS, Silva LAA, Stariolo JB, Campagnoli RR, et al. 2022.. Ultra-processed foods elicit higher approach motivation than unprocessed and minimally processed foods. . Front. Public Health 10::891546
    [Crossref] [Google Scholar]
  78. Levine AS, Silvis SE. 1980.. Absorption of whole peanuts, peanut oil, and peanut butter. . N. Engl. J. Med. 303:(16):91718
    [Crossref] [Google Scholar]
  79. Levine AS, Ubbink J. 2023.. Ultra-processed foods: processing versus formulation. . Obes. Sci. Pract. 9:(4):43539
    [Crossref] [Google Scholar]
  80. Lupton JR, Balentine DA, Black RM, Hildwine R, Ivens BJ, et al. 2010.. The Smart Choices front-of-package nutrition labeling program: rationale and development of the nutrition criteria. . Am. J. Clin. Nutr. 91:(4):1078S89S
    [Crossref] [Google Scholar]
  81. MacDonald FJ. 1966.. Available lysine content of dried milk. . Nature 209:(5028):1134
    [Crossref] [Google Scholar]
  82. Machín L, Antúnez L, Curutchet MR, Ares G. 2020.. The heuristics that guide healthiness perception of ultra-processed foods: a qualitative exploration. . Public Health Nutr. 23:(16):293240
    [Crossref] [Google Scholar]
  83. Marcos-Méndez DA, Canseco-Nava H, Oliart-Ros RM, Ramírez-Higuera A. 2021.. Presence of antinutritional factors in legumes. . J. Innov. Eng. 5:(17):613
    [Google Scholar]
  84. Maruyama S, Streletskaya NA, Lim J. 2021.. Clean label: Why this ingredient but not that one?. Food Qual. Prefer. 87::104062
    [Crossref] [Google Scholar]
  85. McClements DJ. 2024.. Designing healthier and more sustainable ultraprocessed foods. . Compr. Rev. Food Sci. Food Saf. 23:(2):e13331
    [Crossref] [Google Scholar]
  86. Mela DJ. 2024.. Conflicts of interest in nutrition: categorical thinking and the stigma of commercial collaboration. . Curr. Dev. Nutr. 8:(8):104413
    [Crossref] [Google Scholar]
  87. Montagnac JA, Davis CR, Tanumihardjo SA. 2009.. Processing techniques to reduce toxicity and antinutrients of cassava for use as a staple food. . Compr. Rev. Food Sci. Food Saf. 8:(1):1727
    [Crossref] [Google Scholar]
  88. Monteiro CA. 2009.. Nutrition and health. The issue is not food, nor nutrients, so much as processing. . Public Health Nutr. 12:(5):72931
    [Crossref] [Google Scholar]
  89. Monteiro CA, Cannon G. 2012.. The impact of transnational “big food” companies on the south: a view from Brazil. . PLOS Med. 9:(7):e1001252
    [Crossref] [Google Scholar]
  90. Monteiro CA, Cannon G, Lawrence M, da Costa Louzada ML. 2019a.. Ultra-processed foods, diet quality, and health using the NOVA classification system. Rep. , FAO, Rome:. https://openknowledge.fao.org/server/api/core/bitstreams/5277b379-0acb-4d97-a6a3-602774104629/content Systematic overview of the NOVA system with ample examples of foods and their categorization.
    [Google Scholar]
  91. Monteiro CA, Cannon G, Levy RB, Moubarac J-C, Louzada ML, et al. 2019b.. Ultra-processed foods: what they are and how to identify them. . Public Health Nutr. 22:(5):93641
    [Crossref] [Google Scholar]
  92. Morr CV, Ha EYW. 1993.. Whey protein concentrates and isolates: processing and functional properties. . Crit. Rev. Food Sci. Nutr. 33:(6):43176
    [Crossref] [Google Scholar]
  93. Muhialdin Mula Hasan BJ, Uzunalioglu D, Ubbink J. 2025.. Meat alternatives: from traditional high-protein food products to modern technologies and formulation approaches. . In Plant Proteins: Farm to Table, ed. D Uzunalioglu, V Brovell, R Ramakrishna . Sawston, UK:: Woodhead Publ. In press
    [Google Scholar]
  94. Nestle M. 2016.. Food industry funding of nutrition research: the relevance of history for current debates. . JAMA Intern. Med. 176:(11):168586
    [Crossref] [Google Scholar]
  95. Nestle M. 2018.. Perspective: challenges and controversial issues in the dietary guidelines for Americans, 1980–2015. . Adv. Nutr. 9:(2):14850
    [Crossref] [Google Scholar]
  96. O'Connor LE, Higgins KA, Smiljanec K, Bergia R, Brown AW, et al. 2023.. Perspective: a research roadmap about ultra-processed foods and human health for the United States food system: proceedings from an interdisciplinary, multi-stakeholder workshop. . Adv. Nutr. 14:(6):125569
    [Crossref] [Google Scholar]
  97. Ordóñez-Santos LE, Martínez-Girón J. 2020.. Thermal degradation kinetics of carotenoids, vitamin C and provitamin A in tree tomato juice. . Int. J. Food Sci. Technol. 55:(1):20110
    [Crossref] [Google Scholar]
  98. Özen AE, Kartarı A, Correia A, Wen J, Kozak M. 2022.. Positive effects of COVID-19 on food preparation and expenditure habits: a comparative study across three countries. . Public Health Nutr. 25:(11):305466
    [Crossref] [Google Scholar]
  99. Parada J, Aguilera JM. 2007.. Food microstructure affects the bioavailability of several nutrients. . J. Food Sci. 72:(2):R2132
    [Crossref] [Google Scholar]
  100. Parker K, Salas M, Nwosu VC. 2010.. High fructose corn syrup: production, uses and public health concerns. . Biotechnol. Mol. Biol. Rev. 5:(5):7178
    [Google Scholar]
  101. Pénicaud C, Achir N, Dhuique-Mayer C, Dornier M, Bohuon P. 2011.. Degradation of β-carotene during fruit and vegetable processing or storage: reaction mechanisms and kinetic aspects: a review. . Fruits 66:(6):41740
    [Crossref] [Google Scholar]
  102. Pernetti M, van Malssen KF, Flöter E, Bot A. 2007.. Structuring of edible oils by alternatives to crystalline fat. . Curr. Opin. Colloid Interface Sci. 12:(4):22131
    [Crossref] [Google Scholar]
  103. Petrick GM. 2012.. Industrial food. . In The Oxford Handbook of Food History, ed. JM Pilcher , pp. 25878. Oxford, UK:: Oxford Acad.
    [Google Scholar]
  104. Pinto VRA, de Abreu Campos RF, Rocha F, Emmendoerfer ML, Vidigal MCTR, et al. 2021.. Perceived healthiness of foods: a systematic review of qualitative studies. . Future Foods 4::100056
    [Crossref] [Google Scholar]
  105. Praxedes DRS, Silva-Júnior AE, Macena ML, Oliveira AD, Cardoso KS, et al. 2022.. Prevalence of food addiction determined by the Yale Food Addiction Scale and associated factors: a systematic review with meta-analysis. . Eur. Eat. Disord. Rev. 30:(2):8595
    [Crossref] [Google Scholar]
  106. Ranganathan J, Vennard D, Waite R, Searchinger T, Dumas P, et al. 2016.. Shifting diets: toward a sustainable food future. World Resour. Inst. Work. Pap., Washington, DC:. https://www.wri.org/research/shifting-diets-sustainable-food-future
    [Google Scholar]
  107. Reddy MB, Love M. 1999.. The impact of food processing on the nutritional quality of vitamins and minerals. . In Impact of Processing on Food Safety, ed. LS Jackson, MG Knize, JN Morgan , pp. 99106. Boston:: Springer US
    [Google Scholar]
  108. Redgwell RJ, Fischer M. 2005.. Dietary fiber as a versatile food component: an industrial perspective. . Mol. Nutr. Food Res. 49:(6):52135
    [Crossref] [Google Scholar]
  109. Res. Chefs Assoc. 2019.. Culinology® learning objectives based upon CRC® and CCS® principal knowledge topics. Rep., Res. Chefs Assoc., Lexington, KY:. https://www.culinology.org/files/articles/Culinology%20Learning%20Objectives%20Jan%202019.pdf
    [Google Scholar]
  110. Roberto CA, Shivaram M, Martinez O, Boles C, Harris JL, Brownell KD. 2012.. The Smart Choices front-of-package nutrition label. Influence on perceptions and intake of cereal. . Appetite 58:(2):65157
    [Crossref] [Google Scholar]
  111. Rolls BJ. 2020.. Properties of ultraprocessed foods that can drive excess intake. . Nutr. Today 55:(3):10915
    [Crossref] [Google Scholar]
  112. Roodenburg AJC, Feunekes GIJ, Leenen R, Ramsay G. 2008.. Food products and dietary guidelines: how to align?. Trends Food Sci. Technol. 19:(3):16570
    [Crossref] [Google Scholar]
  113. Rowe S, Alexander N, Clydesdale F, Applebaum R, Atkinson S, et al. 2009.. Funding food science and nutrition research: financial conflicts and scientific integrity. . Nutr. Rev. 67:(5):26472
    [Crossref] [Google Scholar]
  114. Sadler CR, Grassby T, Hart K, Raats M, Sokolović M, et al. 2021.. Processed food classification: conceptualisation and challenges. . Trends Food Sci. Technol. 112:(4):14962
    [Crossref] [Google Scholar]
  115. Sandrou DK, Arvanitoyannis IS. 2000.. Low-fat/calorie foods: current state and perspectives. . Crit. Rev. Food Sci. Nutr. 40:(5):42747
    [Crossref] [Google Scholar]
  116. Sarmiento-Santos J, Souza MBN, Araujo LS, Pion JMV, Carvalho RA, Vanin FM. 2022.. Consumers’ understanding of ultra-processed foods. . Foods 11:(9):1359
    [Crossref] [Google Scholar]
  117. Schaller K, Mons U. 2018.. Tax on sugar sweetened beverages and influence of the industry to prevent regulation. . Ernahrungs Umschau 65:(2):3441
    [Google Scholar]
  118. Sharma LL, Teret SP, Brownell KD. 2010.. The food industry and self-regulation: standards to promote success and to avoid public health failures. . Am. J. Public Health 100:(2):24046
    [Crossref] [Google Scholar]
  119. Shears P. 2010.. Food fraud—a current issue but an old problem. . Br. Food J. 112:(2):198213
    [Crossref] [Google Scholar]
  120. Siegrist M, Hartmann C. 2020.. Consumer acceptance of novel food technologies. . Nat. Food 1:(6):34350
    [Crossref] [Google Scholar]
  121. Silow C, Axel C, Zannini E, Arendt EK. 2016.. Current status of salt reduction in bread and bakery products—a review. . J. Cereal Sci. 72::13545
    [Crossref] [Google Scholar]
  122. Silva MM, Reboredo FH, Lidon FC. 2022.. Food colour additives: a synoptical overview on their chemical properties, applications in food products, and health side effects. . Foods 11:(3):379
    [Crossref] [Google Scholar]
  123. Silva VL, Sereno AM, do Amaral Sobral PJ. 2018.. Food industry and processing technology: on time to harmonize technology and social drivers. . Food Eng. Rev. 10::113
    [Crossref] [Google Scholar]
  124. Slavin JL, Jacobs D, Marquart L. 2000.. Grain processing and nutrition. . Crit. Rev. Food Sci. Nutr. 40:(4):30926
    [Crossref] [Google Scholar]
  125. Smith MR, Micha R, Golden CD, Mozaffarian D, Myers SS. 2016.. Global Expanded Nutrient Supply (GENuS) model: a new method for estimating the global dietary supply of nutrients. . PLOS ONE 11:(1):e0146976
    [Crossref] [Google Scholar]
  126. Świąder K, Wegner K, Piotrowska A, Tan F-J, Sadowska A. 2019.. Plants as a source of natural high-intensity sweeteners: a review. . J. Appl. Bot. Food Qual. 92::16071
    [Google Scholar]
  127. Taillie LS. 2018.. Who's cooking? Trends in US home food preparation by gender, education, and race/ethnicity from 2003 to 2016. . Nutr. J. 17:(1):41
    [Crossref] [Google Scholar]
  128. Taillie LS, Hall MG, Popkin BM, Ng SW, Murukutla N. 2020.. Experimental studies of front-of-package nutrient warning labels on sugar-sweetened beverages and ultra-processed foods: a scoping review. . Nutrients 12:(2):569
    [Crossref] [Google Scholar]
  129. Taladrid D, Laguna L, Bartolomé B, Moreno-Arribas MV. 2020.. Plant-derived seasonings as sodium salt replacers in food. . Trends Food Sci. Technol. 99::194202
    [Crossref] [Google Scholar]
  130. Tan B, Wu N-N, Zhai X-T. 2020.. Solutions for whole grain food development. . Nutr. Rev. 78:(Suppl. 1):6168
    [Crossref] [Google Scholar]
  131. Tan H-L, Tan T-C, Easa AM. 2022.. The use of salt substitutes to replace sodium chloride in food products: a review. . Int. J. Food Sci. Technol. 57:(11):69977007
    [Crossref] [Google Scholar]
  132. Tashiro S, Lo C-P. 2012.. Gender difference in the allocation of time. . Food Cult. Soc. 15:(3):45571
    [Crossref] [Google Scholar]
  133. Tedlow RS. 1990.. New and Improved: The Story of Mass Marketing in America. Cambridge, MA:: Harv. Bus. Sch. Press
    [Google Scholar]
  134. Thakur A, Sharma V, Thakur A. 2019.. An overview of anti-nutritional factors in food. . Int. J. Chem. Stud. 7:(1):247279
    [Google Scholar]
  135. Traill WB, Meulenberg M. 2002.. Innovation in the food industry. . Agribusiness 18:(1):121
    [Crossref] [Google Scholar]
  136. Trasande L, Shaffer RM, Sathyanarayana S, Counc. Environ. Health, Lowry JA, et al. 2018.. Food additives and child health. . Pediatrics 142:(2):e20181410
    [Crossref] [Google Scholar]
  137. Ubbink J, Burbidge A, Mezzenga R. 2008.. Food structure and functionality: a soft matter perspective. . Soft Matter 4:(8):156981
    [Crossref] [Google Scholar]
  138. Ubbink J, Kruger J. 2006.. Physical approaches for the delivery of active ingredients in foods. . Trends Food Sci. Technol. 17:(5):24454
    [Crossref] [Google Scholar]
  139. US Dep. Agric., US Dep. Health Hum. Serv. 2020.. Dietary guidelines for Americans, 2020–2025. Rep., US Dep. Agric., US Dep. Health Hum. Serv., Washington, DC:. https://www.dietaryguidelines.gov/sites/default/files/2021-03/Dietary_Guidelines_for_Americans-2020-2025.pdf
    [Google Scholar]
  140. US Food Drug Adm. 2024.. Authorized health claims that meet the significant scientific agreement (SSA) standard. Rep., FDA, Silver Spring, MD:. https://www.fda.gov/food/food-labeling-nutrition/authorized-health-claims-meet-significant-scientific-agreement-ssa-standard
    [Google Scholar]
  141. Valicente VM, Peng C-H, Pacheco KN, Lin L, Kielb EI, et al. 2023.. Ultraprocessed foods and obesity risk: a critical review of reported mechanisms. . Adv. Nutr. 14:(4):71838
    [Crossref] [Google Scholar]
  142. van der Kamp JW, Poutanen K, Seal CJ, Richardson DP. 2014.. The HEALTHGRAIN definition of ‘whole grain. .’ Food Nutr. Res. 58:(1):22100
    [Crossref] [Google Scholar]
  143. Vergeer L, Ahmed M, Vanderlee L, L'Abbé M. 2020.. Examining the nutritional quality of the product portfolios of major packaged food and beverage companies in Canada. . Proc. Nutr. Soc. 79:(OCE2):E130 Systematic analysis of the nutritional quality of the foods and beverages as marketed by 22 companies.
    [Crossref] [Google Scholar]
  144. Vermeer WM, Steenhuis IHM, Poelman MP. 2014.. Small, medium, large or supersize? The development and evaluation of interventions targeted at portion size. . Int. J. Obesity 38:(1):S1318
    [Crossref] [Google Scholar]
  145. Victory K, Nenycz-Thiel M, Dawes J, Tanusondjaja A, Corsi AM. 2021.. How common is new product failure and when does it vary?. Mark. Lett. 32:(1):1732
    [Crossref] [Google Scholar]
  146. Wacher C. 2004.. Nixtamalization, a Mesoamerican technology to process maize at small-scale with great potential for improving the nutritional quality of maize based foods. . In Proceedings of the 2nd International Workshop Food-Based Approaches for a Healthy Nutrition, ed. ID Brouwer, AS Traoré, S Trèche , pp. 73543. Ouagadougou, Burkina Faso:: Presses Univ. Ouagadougou
    [Google Scholar]
  147. Wang L, Martinez Steele E, Du M, Pomeranz JL, O'Connor LE, et al. 2021.. Trends in consumption of ultraprocessed foods among US youths aged 2–19 years, 1999–2018. . JAMA 326:(6):51930
    [Crossref] [Google Scholar]
  148. Wang S, Li C, Copeland L, Niu Q, Wang S. 2015.. Starch retrogradation: a comprehensive review. . Compr. Rev. Food Sci. Food Saf. 14:(5):56885
    [Crossref] [Google Scholar]
  149. Watzke HJ. 1998.. Impact of processing on bioavailability examples of minerals in foods. . Trends Food Sci. Technol. 9:(8):32027
    [Crossref] [Google Scholar]
  150. Weaver CM. 2014.. Bioactive foods and ingredients for health. . Adv. Nutr. 5:(3):306S11S
    [Crossref] [Google Scholar]
  151. Welch RW, Mitchell PC. 2000.. Food processing: a century of change. . Br. Med. Bull. 56:(1):117
    [Crossref] [Google Scholar]
  152. Wilkins M, Jones G, Morgan N. 1994.. When and why brand names in food and drink?. In Adding Value: Brands and Marketing in Food and Drink, ed. G Jones, NJ Morgan , pp. 1540. London:: Routledge
    [Google Scholar]
  153. Wolfson JA, Martinez-Steele E, Tucker AC, Leung CW. 2024.. Greater frequency of cooking dinner at home and more time spent cooking are inversely associated with ultra-processed food consumption among US adults. . J. Acad. Nutr. Diet. 124:(12):P1590605.e1
    [Crossref] [Google Scholar]
  154. Xiong A. 2017.. Yale researcher's ratings service discontinued. . Yale Daily News, Novemb. 3. https://yaledailynews.com/blog/2017
    [Google Scholar]
  155. Yaylayan VA, Stadler RH. 2005.. Acrylamide formation in food: a mechanistic perspective. . J. AOAC Int. 88:(1):26267
    [Crossref] [Google Scholar]
  156. Yekaninejad MS, Badrooj N, Vosoughi F, Lin CY, Potenza MN, Pakpour AH. 2021.. Prevalence of food addiction in children and adolescents: a systematic review and meta-analysis. . Obes. Rev. 22:(6):e13183
    [Crossref] [Google Scholar]
  157. Zhang G, Hamaker BR. 2009.. Slowly digestible starch: concept, mechanism, and proposed extended glycemic index. . Crit. Rev. Food Sci. Nutr. 49:(10):85267
    [Crossref] [Google Scholar]
  158. Zhang Y, Giovannucci EL. 2022.. Ultra-processed foods and health: a comprehensive review. . Crit. Rev. Food Sci. Nutr. 63:(31):1083848 Robust assessment of current understanding of the effects of ultraprocessed foods on health.
    [Google Scholar]
  159. Zheng L, Regenstein JM, Zhou L, Wang Z. 2022.. Soy protein isolates: a review of their composition, aggregation, and gelation. . Compr. Rev. Food Sci. Food Saf. 21:(2):194057
    [Crossref] [Google Scholar]
  160. Zyzak DV, Sanders RA, Stojanovic M, Tallmadge DH, Eberhart BL, et al. 2003.. Acrylamide formation mechanism in heated foods. . J. Agric. Food Chem. 51:(16):478287
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-111523-122028
Loading
/content/journals/10.1146/annurev-food-111523-122028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error