1932

Abstract

The growing human population, climate change, and environmental pollution pose urgent threats to global food security. New plant-based foods and precision fermentation that enable the production of new food ingredients can contribute to a revolutionary change in the food industry and can contribute to food security, yet they do not come without hazards. In this review, we describe the hazards of new plant-based foods, including precision fermentation–produced food ingredients. For these foods derived from plant-based raw materials, chemical and microbiological hazards are presented, including natural hazards, environmental hazards, and hazards derived from (inadequate) food processing. In addition, prospects for safety improvement of new plant-based foods and precision fermentation–produced food ingredients are also discussed. Chemical and microbiological hazards of new plant-based foods and precision fermentation–produced food ingredients are to be included in the hazard analysis and critical control point plans. New plant-based foods present hazards carried over from the plant-based raw materials and new hazards from the production process and storage, whereas the risks appear lower for precision fermentation–produced food ingredients than for regular fermented foods because of the use of a more controlled environment and purification of the targeted ingredients.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-111523-122059
2025-04-28
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/food/16/1/annurev-food-111523-122059.html?itemId=/content/journals/10.1146/annurev-food-111523-122059&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham K, Andres S, Palavinskas R, Berg K, Appel KE, Lampen A. 2011.. Toxicology and risk assessment of acrolein in food. . Mol. Nutr. Food Res. 55::127790
    [Crossref] [Google Scholar]
  2. Adamcová A, Laursen KH, Ballin NZ. 2021.. Lectin activity in commonly consumed plant-based foods: calling for method harmonization and risk assessment. . Foods 10::2796
    [Crossref] [Google Scholar]
  3. Adeyeye SAO, Ashaolu TJ. 2021.. Heterocyclic amine formation and mitigation in processed meat and meat products: a mini-review. . J. Food Prot. 84::186877
    [Crossref] [Google Scholar]
  4. Ahmed FE. 2003.. Analysis of polychlorinated biphenyls in food products. . Trends Anal. Chem. 22::17085
    [Crossref] [Google Scholar]
  5. Alcorta A, Porta A, Tárrega A, Alvarez MD, Vaquero MP. 2021.. Foods for plant-based diets: challenges and innovations. . Foods 10::293
    [Crossref] [Google Scholar]
  6. Alsalman FB, Ramaswamy H. 2020.. Reduction in soaking time and anti-nutritional factors by high pressure processing of chickpeas. . J. Food Sci. Technol. 57::257285
    [Crossref] [Google Scholar]
  7. Alting A, Pouvreau L, Giuseppin M, Van Nieuwenhuijzen N. 2011.. Potato proteins. . In Handbook of Food Proteins, ed. GO Phillips, PA Williams , pp. 31634. Sawston, UK:: Woodhead Publ.
    [Google Scholar]
  8. Anaya Y, Rosario Martinez R, Goodman RE, Johnson P, Vajpeyi S, et al. 2024.. Evaluation of the potential food allergy risks of human lactoferrin expressed in Komagataella phaffii. . Front. Immunol. 15::1380028
    [Crossref] [Google Scholar]
  9. ANZFA. 2001.. Lupin alkaloids in food. Tech. Rep. Ser. 3 , ANZFA, Wellington, NZ:. https://www.foodstandards.gov.au/sites/default/files/publications/Documents/TR3.pdf
    [Google Scholar]
  10. Arroyo-Manzanares N, Hamed AM, García-Campaña AM, Gámiz-Gracia L. 2019.. Plant-based milks: unexplored source of emerging mycotoxins. A proposal for the control of enniatins and beauvericin using UHPLC-MS/MS. . Food Addit. Contam. Part B 12::296302
    [Crossref] [Google Scholar]
  11. Augustin MA, Hartley CJ, Maloney G, Tyndall S. 2024.. Innovation in precision fermentation for food ingredients. . Crit. Rev. Food Sci. Nutr. 64::621838
    [Crossref] [Google Scholar]
  12. Azeez OH, Alkass SY, Persike DS. 2019.. Long-term saccharin consumption and increased risk of obesity, diabetes, hepatic dysfunction, and renal impairment in rats. . Medicina 55::681
    [Crossref] [Google Scholar]
  13. Baert L, Debevere J, Uyttendaele M. 2009.. The efficacy of preservation methods to inactivate foodborne viruses. . Int. J. Food Microbiol. 131::8394
    [Crossref] [Google Scholar]
  14. Ballard AM, Laramee N, Haardörfer R, Freeman MC, Levy K, Caruso BA. 2023.. Measurement in the study of human exposure to animal feces: a systematic review and audit. . Int. J. Hyg. Environ. Health 249::114146
    [Crossref] [Google Scholar]
  15. Banach J, Van Der Berg J, Kleter G, Van Bokhorst-van De Veen H, Bastiaan-Net S, et al. 2023.. Alternative proteins for meat and dairy replacers: food safety and future trends. . Crit. Rev. Food Sci. Nutr. 63::1106380
    [Crossref] [Google Scholar]
  16. Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A. 2020.. Effects of titanium dioxide nanoparticles exposure on human health—a review. . Biol. Trace Element Res. 193::11829
    [Crossref] [Google Scholar]
  17. Bartula K, Begley M, Latour N, Callanan M. 2023.. Growth of food-borne pathogens Listeria and Salmonella and spore-forming Paenibacillus and Bacillus in commercial plant-based milk alternatives. . Food Microbiol. 109::104143
    [Crossref] [Google Scholar]
  18. Baumeister R, Schievelbein H, Zickgraf-Rüdel G. 1975.. Toxicological and clinical aspects of cyanide metabolism. . Arzneimittelforschung 25:(7):105664
    [Google Scholar]
  19. Benedetti B, Di Carro M, Magi E. 2018.. Phytoestrogens in soy-based meat substitutes: comparison of different extraction methods for the subsequent analysis by liquid chromatography-tandem mass spectrometry. . J. Mass Spectrom. 53::86270
    [Crossref] [Google Scholar]
  20. Bessaire T, Ernest M, Christinat N, Carrères B, Panchaud A, Badoud F. 2021.. High resolution mass spectrometry workflow for the analysis of food contaminants: application to plant toxins, mycotoxins and phytoestrogens in plant-based ingredients. . Food Addit. Contam. Part A 38::97896
    [Crossref] [Google Scholar]
  21. BfR. 2018.. Table potatoes should contain low levels of glycoalkaloids (solanine). BfR Opin. No. 010/2018 of 23 April 2018 , BfR, Berlin:. http://www.bfr.bund.de/cm/349/table-potatoes-should-contain-low-levels-of-glycoalkaloids-solanine.pdf
    [Google Scholar]
  22. Bhattacharya P, Samal A, Majumdar J, Santra S. 2010.. Arsenic contamination in rice, wheat, pulses, and vegetables: a study in an arsenic affected area of West Bengal, India. . Water Air Soil Pollut. 213::313
    [Crossref] [Google Scholar]
  23. Bhutto RA, Khanal S, Wang M, Iqbal S, Fan Y, Yi J. 2024.. Potato protein as an emerging high-quality: source, extraction, purification, properties (functional, nutritional, physicochemical, and processing), applications, and challenges using potato protein. . Food Hydrocoll. 157::110415
    [Crossref] [Google Scholar]
  24. Boukid F, Ganeshan S, Wang Y, Tülbek , Nickerson MT. 2023.. Bioengineered enzymes and precision fermentation in the food industry. . Int. J. Mol. Sci. 24::10156
    [Crossref] [Google Scholar]
  25. Brusick D. 2008.. A critical review of the genetic toxicity of steviol and steviol glycosides. . Food Chem. Toxicol. 46::S8391
    [Crossref] [Google Scholar]
  26. Bucher G, El Hadri H, Asensio O, Auger F, Barrero J, Rosec J-P. 2024.. Large-scale screening of E171 food additive (TiO2) on the French market from 2018 to 2022: occurrence and particle size distribution in various food categories. . Food Control 155::110102
    [Crossref] [Google Scholar]
  27. Burdock GA. 2007.. Safety assessment of hydroxypropyl methylcellulose as a food ingredient. . Food Chem. Toxicol. 45::234151
    [Crossref] [Google Scholar]
  28. Casado N, Casado-Hidalgo G, González-Gómez L, Morante-Zarcero S, Sierra I. 2023.. Insight into the impact of food processing and culinary preparations on the stability and content of plant alkaloids considered as natural food contaminants. . Appl. Sci. 13::1704
    [Crossref] [Google Scholar]
  29. Cebrián G, Condón S, Mañas P. 2017.. Physiology of the inactivation of vegetative bacteria by thermal treatments: mode of action, influence of environmental factors and inactivation kinetics. . Foods 6::107
    [Crossref] [Google Scholar]
  30. Chai KF, Ng KR, Samarasiri M, Chen WN. 2022.. Precision fermentation to advance fungal food fermentations. . Curr. Opin. Food Sci. 47::100881
    [Crossref] [Google Scholar]
  31. Chandorkar S, Vaze N. 2013.. Analysis of metal content of organic foods. . IOSR J. Environ. Sci. Toxicol. Food Technol. 3::4449
    [Crossref] [Google Scholar]
  32. Cotacallapa-Sucapuca M, Vega EN, Maieves HA, Berrios JDJ, Morales P, et al. 2021.. Extrusion process as an alternative to improve pulses products consumption. A review. . Foods 10::1096
    [Crossref] [Google Scholar]
  33. Cravotto C, Fabiano-Tixier A-S, Claux O, Abert-Vian M, Tabasso S, et al. 2022.. Towards substitution of hexane as extraction solvent of food products and ingredients with no regrets. . Foods 11::3412
    [Crossref] [Google Scholar]
  34. Crews C. 2010.. The determination of N-nitrosamines in food. . Qual. Assur. Saf. Crops Foods 2::212
    [Crossref] [Google Scholar]
  35. de Nijs M, Crews C, Dorgelo F, MacDonald S, Mulder PP. 2023.. Emerging issues on tropane alkaloid contamination of food in Europe. . Toxins 15::98
    [Crossref] [Google Scholar]
  36. do Carmo CS, Knutsen SH, Malizia G, Dessev T, Geny A, et al. 2021.. Meat analogues from a faba bean concentrate can be generated by high moisture extrusion. . Future Foods 3::100014
    [Crossref] [Google Scholar]
  37. Dreher J, König M, Herrmann K, Terjung N, Gibis M, Weiss J. 2021.. Varying the amount of solid fat in animal fat mimetics for plant-based salami analogues influences texture, appearance and sensory characteristics. . Lebensmittel-Wissenschaft Technol. 143::111140
    [Crossref] [Google Scholar]
  38. Dusemund B, Rietjens IMCM, Cartus A, Schaefer B, Lampen A. 2017.. Plant-derived contaminants in food: occurrence, effects and risk assessment. . Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 60::72836
    [Crossref] [Google Scholar]
  39. Eastham JL, Leman AR. 2024.. Precision fermentation for food proteins: ingredient innovations, bioprocess considerations, and outlook: a mini-review. . Curr. Opin. Food Sci. 58::101194
    [Crossref] [Google Scholar]
  40. EFSA. 2011.. Guidance on the risk assessment of genetically modified microorganisms and their products intended for food and feed use. . EFSA J. 9::2193
    [Crossref] [Google Scholar]
  41. EFSA. 2013.. Scientific opinion on tropane alkaloids in food and feed. . EFSA J. 11::3386
    [Google Scholar]
  42. EFSA. 2015a.. Risk assessment for peri- and post-menopausal women taking food supplements containing isolated isoflavones. . EFSA J. 13::4246
    [Crossref] [Google Scholar]
  43. EFSA. 2015b.. Scientific opinion on the safety of the proposed extension of use of erythritol (E 968) as a food additive. . EFSA J. 13::4033
    [Crossref] [Google Scholar]
  44. EFSA. 2016a.. Acute health risks related to the presence of cyanogenic glycosides in raw apricot kernels and products derived from raw apricot kernels. . EFSA J. 14::e04424
    [Google Scholar]
  45. EFSA. 2016b.. Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. . EFSA J. 14::e04426
    [Google Scholar]
  46. EFSA, Binaglia M, Baert K, Schutte M, Serafimova R. 2019.. Overview of available toxicity data for calystegines. . EFSA J. 17::e05574
    [Google Scholar]
  47. EFSA, Carrasco Cabrera L, Di Piazza G, Dujardin B, Medina Pastor P. 2023.. The 2021 European Union report on pesticide residues in food. . EFSA J. 21::e07939
    [Google Scholar]
  48. EFSA Panel Addit. Prod. Subst. Anim. Feed, Rychen G, Aquilina G, Azimonti G, Bampidis V, et al. 2018.. Safety and efficacy of sodium saccharin when used as a feed flavour for piglets, pigs for fattening, calves for rearing and calves for fattening. . EFSA J. 16::e05208
    [Google Scholar]
  49. EFSA Panel Biol. Hazard, Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, et al. 2018.. Public health risks associated with food-borne parasites. . EFSA J. 16::e05495
    [Google Scholar]
  50. EFSA Panel Contam. Food Chain, Knutsen HK, Alexander J, Barregård L, Bignami M, et al. 2017a.. Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. . EFSA J. 15::e04908
    [Google Scholar]
  51. EFSA Panel Contam. Food Chain, Knutsen HK, Alexander J, Barregård L, Bignami M, et al. 2017b.. Risks for public health related to the presence of furan and methylfurans in food. . EFSA J. 15::e05005
    [Google Scholar]
  52. EFSA Panel Contam. Food Chain, Schrenk D, Bignami M, Bodin L, Chipman JK, et al. 2020a.. Risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato-derived products. . EFSA J. 18::e06222
    [Google Scholar]
  53. EFSA Panel Contam. Food Chain, Schrenk D, Bignami M, Bodin L, Chipman JK, et al. 2020b.. Risk to human health related to the presence of perfluoroalkyl substances in food. . EFSA J. 18::e06223
    [Google Scholar]
  54. EFSA Panel Contam. Food Chain, Schrenk D, Bodin L, Chipman JK, del Mazo J, et al. 2019.. Scientific opinion on the risks for animal and human health related to the presence of quinolizidine alkaloids in feed and food, in particular in lupins and lupin-derived products. . EFSA J. 17::e05860
    [Google Scholar]
  55. EFSA Panel Food Addit. Flavour., Younes M, Aquilina G, Degen G, Engel K-H, et al. 2024.. Safety of soy leghemoglobin from genetically modified Komagataella phaffii as a food additive. . EFSA J. 22::e8822
    [Google Scholar]
  56. EFSA Panel Food Addit. Nutrient Sources Food. 2010.. Scientific opinion on the safety of steviol glycosides for the proposed uses as a food additive. . EFSA J. 8:(4):1537
    [Google Scholar]
  57. EFSA Panel Food Addit. Nutrient Sources Food. 2015.. Safety of a change in specifications for the food additive hydroxypropyl methyl cellulose (E 464). . EFSA J. 13::4088
    [Google Scholar]
  58. EFSA Panel Food Addit. Nutrient Sources Food, Younes M, Aggett P, Aguilar F, Crebelli R, et al. 2018.. Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. . EFSA J. 16::e05238
    [Google Scholar]
  59. Eisenbrand G. 2007.. Isoflavones as phytoestrogens in food supplements and dietary foods for special medical purposes. . Mol. Nutr. Food Res. 51:(10):130512
    [Crossref] [Google Scholar]
  60. Ekonomou , Kageler S, Stratakos AC. 2024.. The effect of 3D printing speed and temperature on transferability of Staphylococcus aureus and Escherichia coli during 3D food printing. . Food Microbiol. 122::104561
    [Crossref] [Google Scholar]
  61. EPA (Environ. Prot. Agency). 2009.. National Primary Drinking Water Regulations. EPA 816-F-09-004 , Washington, DC:. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations
    [Google Scholar]
  62. Erickson MC, Ortega YR. 2006.. Inactivation of protozoan parasites in food, water, and environmental systems. . J. Food Prot. 69::2786808
    [Crossref] [Google Scholar]
  63. Fadimu GJ, Olatunde OO, Bandara N, Truong T. 2023.. Reducing allergenicity in plant-based proteins. . In Engineering Plant-Based Food Systems, ed. S Prakesh, BR Bhandari, C Gaiani , pp. 6177. New York:: Academic
    [Google Scholar]
  64. FAO. 2009.. How to feed the world in 2050. Rep. , FAO, Rome:
    [Google Scholar]
  65. Feruke-Bello YM. 2023.. Contamination of fermented foods with heavy metals. . In Indigenous Fermented Foods for the Tropics, ed. O Ayodeji Adebo, CE Chinma, A Olusegun Obadina, A Gomes Soares, S Kumar Panda, R-Y Gan , pp. 54959. New York:: Academic
    [Google Scholar]
  66. Forooghi E, Hashempour-Baltork F, Rastegar H. 2024.. Soybean-based proteins as functional and nutritional ingredients of plant-based meat analogs. . In Handbook of Plant-Based Meat Analogs: Innovation, Technology and Quality, ed. GA Ravishankar, AR Rao, R Tahergorabi, A Mohan , pp. 4561. New York:: Academic
    [Google Scholar]
  67. Gil MI, Truchado P, Tudela JA, Allende A. 2024.. Environmental monitoring of three fresh-cut processing facilities reveals harborage sites for Listeria monocytogenes. . Food Control 155::110093
    [Crossref] [Google Scholar]
  68. Giugliano R, Musolino N, Ciccotelli V, Ferraris C, Savio V, et al. 2023.. Soy, rice and oat drinks: investigating chemical and biological safety in plant-based milk alternatives. . Nutrients 15::2258
    [Crossref] [Google Scholar]
  69. Gräfenhahn M, Beyrer M. 2024.. Plant-based meat analogues in the human diet: What are the hazards?. Foods 13::1541
    [Crossref] [Google Scholar]
  70. Grootveld M, Percival BC, Leenders J, Wilson PB. 2020.. Potential adverse public health effects afforded by the ingestion of dietary lipid oxidation product toxins: significance of fried food sources. . Nutrients 12::974
    [Crossref] [Google Scholar]
  71. Grossmann L. 2024.. Sustainable media feedstocks for cellular agriculture. . Biotechnol. Adv. 73::108367
    [Crossref] [Google Scholar]
  72. Grossmann L, McClements DJ. 2021.. The science of plant-based foods: approaches to create nutritious and sustainable plant-based cheese analogs. . Trends Food Sci. Technol. 118::20729
    [Crossref] [Google Scholar]
  73. Hamilton AN, Gibson KE. 2023.. Efficacy of manufacturer recommendations for the control of Salmonella Typhimurium and Listeria monocytogenes in food ink capsules utilized in 3D food printing systems. . J. Food Prot. 86::100030
    [Crossref] [Google Scholar]
  74. Herzke D, Huber S, Bervoets L, D'Hollander W, Hajslova J, et al. 2013.. Perfluorinated alkylated substances in vegetables collected in four European countries; occurrence and human exposure estimations. . Environ. Sci. Pollut. Res. 20::793039
    [Crossref] [Google Scholar]
  75. Hirattanapun E, Koonrungsesomboon N, Teekachunhatean S. 2018.. Variability of isoflavone content in soy milk products commercially available in Thailand. . J. Health Sci. Med. Res. 36::11726
    [Crossref] [Google Scholar]
  76. JECFA. 1993.. Toxicological evaluation of certain food additives and naturally occurring toxicants. Paper presented at the 39th Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JEFCA), Rome:
    [Google Scholar]
  77. Jin Y, He X, Andoh-Kumi K, Fraser RZ, Lu M, Goodman RE. 2018.. Evaluating potential risks of food allergy and toxicity of soy leghemoglobin expressed in Pichia pastoris. . Mol. Nutr. Food Res. 62::1700297
    [Crossref] [Google Scholar]
  78. Joshi A, Sethi S, Arora B, Azizi AF, Thippeswamy B. 2020.. Potato peel composition and utilization. . In Potato: Nutrition and Food Security, ed. P Raigond, B Singh, S Dutt, SK Chakrabarti , pp. 22945. Singapore:: Springer
    [Google Scholar]
  79. Kakar F, Akbarian Z, Leslie T, Mustafa ML, Watson J, et al. 2010.. An outbreak of hepatic veno-occlusive disease in western Afghanistan associated with exposure to wheat flour contaminated with pyrrolizidine alkaloids. . J. Toxicol. 2010::313280
    [Crossref] [Google Scholar]
  80. Kerstner F, Buffon JG. 2024.. Mycotoxins in plant-based beverages: an updated occurrence. . Food Res. Int. 194::114863
    [Crossref] [Google Scholar]
  81. Keuth O, Humpf H, Fürst P. 2023.. Quinolizidine alkaloids in lupine flour and lupine products from the German retail market and risk assessment of the results regarding human health. . Food Addit. Contam. Part A 40::66774
    [Crossref] [Google Scholar]
  82. Kohnen-Johannsen KL, Kayser O. 2019.. Tropane alkaloids: chemistry, pharmacology, biosynthesis and production. . Molecules 24::796
    [Crossref] [Google Scholar]
  83. Kruhlak NL, Schmidt M, Froetschl R, Graber S, Haas B, et al. 2024.. Determining recommended acceptable intake limits for N-nitrosamine impurities in pharmaceuticals: development and application of the Carcinogenic Potency Categorization Approach (CPCA). . Regul. Toxicol. Pharmacol. 150::105640
    [Crossref] [Google Scholar]
  84. Kyrylenko A, Eijlander RT, Alliney G, Lucas-van de Bos E, Wells-Bennik MH. 2023.. Levels and types of microbial contaminants in different plant-based ingredients used in dairy alternatives. . Int. J. Food Microbiol. 407::110392
    [Crossref] [Google Scholar]
  85. Langyan S, Yadava P, Khan FN, Dar ZA, Singh R, Kumar A. 2022.. Sustaining protein nutrition through plant-based foods. . Front. Nutr. 8::772573
    [Crossref] [Google Scholar]
  86. Lazăr N-N, Râpeanu G, Iticescu C. 2024.. Mitigating eggplant processing waste's environmental impact through functional food developing. . Trends Food Sci. Technol. 147::104414
    [Crossref] [Google Scholar]
  87. Lechner M, Knapp H. 2011.. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis sativus). . J. Agric. Food Chem. 59::1101118
    [Crossref] [Google Scholar]
  88. Li X, Wang H, Guo C, Wang L. 2024.. Profiling of microbial populations present in ground beef and plant-based meat analogues. . LWT 196::115845
    [Crossref] [Google Scholar]
  89. Lin X, Duan N, Wu J, Lv Z, Wang Z, Wu S. 2023.. Potential food safety risk factors in plant-based foods: source, occurrence, and detection methods. . Trends Food Sci. Technol. 138::51122
    [Crossref] [Google Scholar]
  90. Linder T. 2019.. Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. . Food Secur. 11::26578
    [Crossref] [Google Scholar]
  91. Lomas MN, Paradell NG, Garralda VC, Sanz LA, Calderón J, Sabaté S. 2024.. Plant-based meat analogues marketed in Catalonia: analysis of contaminants, essential elements, microbiological and physicochemical status, dietary intake estimation and health risk assessment. . Food Risk Assess Eur. 2:(3):0040E
    [Google Scholar]
  92. Lopes M, Pierrepont C, Duarte CM, Filipe A, Medronho B, Sousa I. 2020.. Legume beverages from chickpea and lupin, as new milk alternatives. . Foods 9::1458
    [Crossref] [Google Scholar]
  93. Marquardt RR. 2023.. Vicine, convicine, and their aglycones—divicine and isouramil. . In Toxicants of Plant Origin, ed. PR Cheeke , pp. 161200. Boca Raton, FL:: CRC Press
    [Google Scholar]
  94. Maruyama N. 2021.. Components of plant-derived food allergens: structure, diagnostics, and immunotherapy. . Allergol. Int. 70::291302
    [Crossref] [Google Scholar]
  95. McClements DJ. 2023.. Meat Less: The Next Food Revolution. London:: Springer Nature
    [Google Scholar]
  96. McClements DJ, Grossmann L. 2022.. Next-Generation Plant-Based Foods: Design, Production, and Properties. London:: Springer Nature
    [Google Scholar]
  97. McClements DJ, Grossmann L. 2024.. Next-generation plant-based foods: challenges and opportunities. . Annu. Rev. Food Sci. Technol. 15::79101
    [Crossref] [Google Scholar]
  98. Meng Y, Xie L, You K, Chen W. 2023.. High-level secretory production of leghemoglobin and myoglobin in Escherichia coli through inserting signal peptides. . Food Biosci. 56::103356
    [Crossref] [Google Scholar]
  99. Mihalache OA, Carbonell-Rozas L, Cutroneo S, Dall'Asta C. 2023a.. Multi-mycotoxin determination in plant-based meat alternatives and exposure assessment. . Food Res. Int. 168::112766
    [Crossref] [Google Scholar]
  100. Mihalache OA, Dellafiora L, Dall'Asta C. 2022.. A systematic review of natural toxins occurrence in plant commodities used for plant-based meat alternatives production. . Food Res. Int. 158::111490
    [Crossref] [Google Scholar]
  101. Mihalache OA, Dellafiora L, Dall'Asta C. 2023b.. Assessing the mycotoxin-related health impact of shifting from meat-based diets to soy-based meat analogues in a model scenario based on Italian consumption data. . Expo. Health 15::66175
    [Crossref] [Google Scholar]
  102. Mojska H, Gielecińska I. 2024.. Trends of changes in the content of acrylamide in food in Europe, 2002–2019. . In Acrylamide in Food, ed. V Gökman, BA Mogol , pp. 3962. Cambridge, MA:: Academic Press
    [Google Scholar]
  103. Mombert P, Blondet E, Membré J-M, Delaunay L. 2024.. Microbiological risk assessment of Bacillus cereus in popular hot dishes eaten by plant-based diet consumers in France. . Microb. Risk Anal. 27::100320
    [Google Scholar]
  104. Momoh J, Udobi C, Orukotan A. 2011.. Improving the microbial keeping quality of home made soymilk using a combination of preservatives, pasteurization and refrigeration. . Br. J. Dairy Sci. 2::14
    [Google Scholar]
  105. Mondor M, Aksay S, Drolet H, Roufik S, Farnworth E, Boye JI. 2009.. Influence of processing on composition and antinutritional factors of chickpea protein concentrates produced by isoelectric precipitation and ultrafiltration. . Innov. Food Sci. Emerg. Technol. 10::34247
    [Crossref] [Google Scholar]
  106. Moxley RA. 2022.. Enterobacteriaceae: Escherichia. In Veterinary Microbiology, ed. DS McVey, M Kennedy, MM Chengappa, R Wilkes , pp. 5674. Hoboken, NJ:: Wiley. , 4th ed..
    [Google Scholar]
  107. Narayan KG, Sinha DK, Singh DK. 2023.. Foodborne parasites. . In Veterinary Public Health & Epidemiology: Veterinary Public Health-Epidemiology-Zoonosis-One Health, pp. 36368. Singapore:: Springer
    [Google Scholar]
  108. Niforou A, Magriplis E, Klinaki E, Niforou K, Naska A. 2022.. On account of trans fatty acids and cardiovascular disease risk—There is still need to upgrade the knowledge and educate consumers. . Nutr. Metab. Cardiovasc. Dis. 32::181118
    [Crossref] [Google Scholar]
  109. Nowacka M, Trusinska M, Chraniuk P, Drudi F, Lukasiewicz J, et al. 2023.. Developments in plant proteins production for meat and fish analogues. . Molecules 28::2966
    [Crossref] [Google Scholar]
  110. Olaimat AN, Taybeh AO, Al-Nabulsi A, Al-Holy M, Hatmal MM, et al. 2024.. Common and potential emerging foodborne viruses: a comprehensive review. . Life 14::190
    [Crossref] [Google Scholar]
  111. Pernu N, Keto-Timonen R, Lindström M, Korkeala H. 2020.. High prevalence of Clostridium botulinum in vegetarian sausages. . Food Microbiol. 91::103512
    [Crossref] [Google Scholar]
  112. Pogozhykh D, Posokhov Y, Myasoedov V, Gubina-Vakulyck G, Chumachenko T, et al. 2021.. Experimental evaluation of food-grade semi-refined carrageenan toxicity. . Int. J. Mol. Sci. 22::11178
    [Crossref] [Google Scholar]
  113. Pospiech J, Hoelzle E, Schoepf A, Melzer T, Granvogl M, Frank J. 2024.. Acrylamide increases and furanoic compounds decrease in plant-based meat alternatives during pan-frying. . Food Chem. 439::138063
    [Crossref] [Google Scholar]
  114. Präger L, Simon JC, Treudler R. 2023.. Food allergy—new risks through vegan diet? Overview of new allergen sources and current data on the potential risk of anaphylaxis. . J. Dtsch. Dermatol. Ges. 21::130813
    [Google Scholar]
  115. Radauer C, Breiteneder H. 2007.. Evolutionary biology of plant food allergens. . J. Allergy Clin. Immunol. 120::51825
    [Crossref] [Google Scholar]
  116. Ramo A, Del Cacho E, Sánchez-Acedo C, Quílez J. 2017.. Occurrence of Cryptosporidium and Giardia in raw and finished drinking water in north-eastern Spain. . Sci. Total Environ. 580::100713
    [Crossref] [Google Scholar]
  117. Redding M, Bolten S, Gu G, Luo Y, Micallef SA, et al. 2023.. Growth and inactivation of Listeria monocytogenes in sterile extracts of fruits and vegetables: impact of the intrinsic factors pH, sugar and organic acid content. . Int. J. Food Microbiol. 386::110043
    [Crossref] [Google Scholar]
  118. Reyes-Jurado F, Soto-Reyes N, Dávila-Rodríguez M, Lorenzo-Leal A, Jiménez-Munguía M, et al. 2023.. Plant-based milk alternatives: types, processes, benefits, and characteristics. . Food Rev. Int. 39::232051
    [Crossref] [Google Scholar]
  119. Rietjens IMCM, Dussort P, Günther H, Hanlon P, Honda H, et al. 2018.. Exposure assessment of process-related contaminants in food by biomarker monitoring. . Arch. Toxicol. 92::1540
    [Crossref] [Google Scholar]
  120. Rietjens IMCM, Eisenbrand G. 2023.. Natural toxicants in plant-based foods, including herbs and spices and herbal food supplements, and accompanying risks. . In Present Knowledge in Food Safety, ed. M Knowles, LE Anelich, AR Boobis, B Popping , pp. 225. Cambridge, MA:: Academic Press
    [Google Scholar]
  121. Rietjens IMCM, Louisse J, Beekmann K. 2017.. The potential health effects of dietary phytoestrogens. . Br. J. Pharmacol. 174::126380
    [Crossref] [Google Scholar]
  122. Rietjens IMCM, Michael A, Bolt HM, Siméon B, Andrea H, et al. 2022.. The role of endogenous versus exogenous sources in the exposome of putative genotoxins and consequences for risk assessment. . Arch. Toxicol. 96::1297352
    [Crossref] [Google Scholar]
  123. Samarasiri M, Chai KF, Chen WN. 2023.. Forward-looking risk assessment framework for novel foods. . Food Humanit. 1::50013
    [Crossref] [Google Scholar]
  124. Schaich KM. 2020.. Toxicity of lipid oxidation products consumed in the diet. . Bailey's Ind. Oil Fat Prod. https://doi.org/10.1002/047167849X.bio116
    [Google Scholar]
  125. Setlow P, Christie G. 2023.. New thoughts on an old topic: secrets of bacterial spore resistance slowly being revealed. . Microbiol. Mol. Biol. Rev. 87::e00080-22
    [Crossref] [Google Scholar]
  126. Shanmugavel V, Santhi KK, Kurup AH, Kalakandan S, Anandharaj A, Rawson A. 2020.. Potassium bromate: effects on bread components, health, environment and method of analysis: a review. . Food Chem. 311::125964
    [Crossref] [Google Scholar]
  127. Shen H, Starr J, Han J, Zhang L, Lu D, et al. 2016.. The bioaccessibility of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) in cooked plant and animal origin foods. . Environ. Int. 94::3342
    [Crossref] [Google Scholar]
  128. Shi S, Wang Z, Shen L, Xiao H. 2022.. Synthetic biology: a new frontier in food production. . Trends Biotechnol. 40::781803
    [Crossref] [Google Scholar]
  129. Silva AR, Silva MM, Ribeiro BD. 2020.. Health issues and technological aspects of plant-based alternative milk. . Food Res. Int. 131::108972
    [Crossref] [Google Scholar]
  130. Soetikno JO. 2023.. Culinary innovation and new product development: the utilization of eggplant, tofu, oyster mushrooms and enoki mushrooms to make vegetarian nugget analogs. Rep. , Ottimmo Int., Surabaya, Indones. http://repository.ottimmo.ac.id/975/1/Cover.pdf
    [Google Scholar]
  131. Sohrabi R, Paasch BC, Liber JA, He SY. 2023.. Phyllosphere microbiome. . Annu. Rev. Plant Biol. 74::53968
    [Crossref] [Google Scholar]
  132. Takayama S, Renwick A, Johansson S, Thorgeirsson U, Tsutsumi M, et al. 2000.. Long-term toxicity and carcinogenicity study of cyclamate in nonhuman primates. . Toxicol. Sci. 53::3339
    [Crossref] [Google Scholar]
  133. Tan YQ, Ong HC, Yong AMH, Fattori V, Mukherjee K. 2024.. Addressing the safety of new food sources and production systems. . Compr. Rev. Food Sci. Food Saf. 23::e13341
    [Crossref] [Google Scholar]
  134. van Asselt E, Focker M, Hobé R, Banach J. 2024.. Risk-ranking of chemical hazards in plant-based burgers: an exploratory case study on recipe formulations. . Food Control 160::110365
    [Crossref] [Google Scholar]
  135. van de Noort M. 2024.. Lupin: an important protein and nutrient source. . In Sustainable Protein Sources, ed. SR Nadathur, JPD Wanasundara, L Scanlin , pp. 21939. Cambridge, MA:: Academic Press
    [Google Scholar]
  136. Wang Y, Jian C. 2022.. Sustainable plant-based ingredients as wheat flour substitutes in bread making. . npj Sci. Food 6::49
    [Crossref] [Google Scholar]
  137. Wang Y, Liu Y, Yang S, Chen Y, Liu Y, et al. 2024.. Effect of temperature, pH, and aw on cereulide synthesis and regulator genes transcription with respect to Bacillus cereus growth and cereulide production. . Toxins 16::32
    [Crossref] [Google Scholar]
  138. Wen Y, Chao C, Che QT, Kim HW, Park HJ. 2023.. Development of plant-based meat analogs using 3D printing: status and opportunities. . Trends Food Sci. Technol. 132::7692
    [Crossref] [Google Scholar]
  139. Wójcicki M, Świder O, Średnicka P, Shymialevich D, Ilczuk T, et al. 2023.. Newly isolated virulent salmophages for biocontrol of multidrug-resistant Salmonella in ready-to-eat plant-based food. . Int. J. Mol. Sci. 24::10134
    [Crossref] [Google Scholar]
  140. Wyckhuys KA, Aebi A, van Lexmond MFB, Bojaca CR, Bonmatin J-M, et al. 2020.. Resolving the twin human and environmental health hazards of a plant-based diet. . Environ. Int. 144::106081
    [Crossref] [Google Scholar]
  141. Xie Z, McAuliffe O, Jin Y-S, Miller MJ. 2024.. Genomic modifications of lactic acid bacteria and their applications in dairy fermentation. . J. Dairy Sci. 107:(11):874964
    [Crossref] [Google Scholar]
  142. Xu L, Liaqat F, Sun J, Khazi MI, Xie R, Zhu D. 2024.. Advances in the vanillin synthesis and biotransformation: a review. . Renew. Sustain. Energy Rev. 189::113905
    [Crossref] [Google Scholar]
  143. Yadav IC, Devi NL. 2017.. Pesticides classification and its impact on human and environment. . Environ. Sci. Eng. 6::14058
    [Google Scholar]
  144. Yamazaki M, Terada M, Mitsukuni Y, Matoba R. 2000.. An autopsy case of salt poisoning from drinking a large quantity of shoyu (Japanese soy sauce). . Legal Med. 2::8487
    [Crossref] [Google Scholar]
  145. Yeak KYC, Dank A, den Besten HM, Zwietering MH. 2024a.. A web-based microbiological hazard identification tool for infant foods. . Food Res. Int. 178::113940
    [Crossref] [Google Scholar]
  146. Yeak KYC, Garre A, Membré J-M, Zwietering MH, den Besten HM. 2024b.. Systematic risk ranking of microbiological hazards in infant foods. . Food Res. Int. 192::114788
    [Crossref] [Google Scholar]
  147. Yebra-Biurrun MC. 2015.. Determination of acesulfame-K, cyclamate, and saccharin. . In Flow Injection Analysis of Food Additives, ed. C Ruiz-Capillas, LML Nollet , pp. 489510. Boca Raton, FL:: CRC Press
    [Google Scholar]
  148. Yuan S, Chang SK. 2010.. Trypsin inhibitor activity in laboratory-produced and commercial soymilk. . In Chemistry, Texture, and Flavor of Soy, ed. KR Cadwallader, SKC Chang , pp. 2343. Washington, DC:: ACS Publ.
    [Google Scholar]
  149. Zhang L, Huang J, Zhou R, Qi Q, Yang M, et al. 2021.. Dynamics of microbial communities, ethyl carbamate, biogenic amines, and major metabolites during fermentation of soy sauce. . Food Sci. Technol. Res. 27::40516
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-111523-122059
Loading
/content/journals/10.1146/annurev-food-111523-122059
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error