1932

Abstract

The comfort food (CF) concept emerged during the latter half of the twentieth century. Although not well defined, CF can be described as familiar foods that elicit feelings of well-being and play a role in social interactions and psychological health. These foods are often calorically dense and nutrient-poor, and overconsumption of some CF may contribute to negative metabolic health outcomes. This is particularly relevant when considering the global increase in obesity, leading to the development of therapeutics for improved weight control and metabolic health. In this review, we aim to () provide a historical perspective of the CF concept, () detail some genetic, developmental, and cultural factors that determine food preference, () discuss the influence of diet on the gut–brain connection, hormones, nutrient absorption, and microbiome diversity, and () provide a perspective detailing possible future directions in which food technology may enable a new generation of CF with enhanced palatability and nutrient profiles while contributing to well-being and environmental sustainability.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-111523-122109
2025-04-28
2025-06-25
Loading full text...

Full text loading...

/deliver/fulltext/food/16/1/annurev-food-111523-122109.html?itemId=/content/journals/10.1146/annurev-food-111523-122109&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmad R, Dalziel JE. 2020.. G protein-coupled receptors in taste physiology and pharmacology. . Front. Pharmacol. 11::587664
    [Crossref] [Google Scholar]
  2. Akinola R, Pereira LM, Mabhaudhi T, De Bruin F-M, Rusch L. 2020.. A review of indigenous food crops in Africa and the implications for more sustainable and healthy food systems. . Sustainability 12::3493
    [Crossref] [Google Scholar]
  3. Bachmanov AA, Beauchamp GK. 2007.. Taste receptor genes. . Annu. Rev. Nutr. 27::389414
    [Crossref] [Google Scholar]
  4. Bachmanov AA, Bosak NP, Floriano WB, Inoue M, Li X, et al. 2011.. Genetics of sweet taste preferences. . Flavour Fragr. J. 26::28694
    [Crossref] [Google Scholar]
  5. Bancil AS, Sandall AM, Rossi M, Chassaing B, Lindsay JO, Whelan K. 2021.. Food additive emulsifiers and their impact on gut microbiome, permeability, and inflammation: mechanistic insights in inflammatory bowel disease. . J. Crohn's Colitis 15::106879
    [Crossref] [Google Scholar]
  6. Bauer KW, Larson NI, Nelson MC, Story M, Neumark-Sztainer D. 2009.. Socio-environmental, personal and behavioural predictors of fast-food intake among adolescents. . Public Health Nutr. 12::176774
    [Crossref] [Google Scholar]
  7. Behrens M, Meyerhof W. 2011.. Gustatory and extragustatory functions of mammalian taste receptors. . Physiol. Behav. 105::413
    [Crossref] [Google Scholar]
  8. Behrens M, Reichling C, Batram C, Brockhoff A, Meyerhof W. 2009.. Bitter taste receptors and their cells. . Ann. N. Y. Acad. Sci. 1170::11115
    [Crossref] [Google Scholar]
  9. Bitarafan V, Fitzgerald PC, Little TJ, Meyerhof W, Jones KL, et al. 2020.. Intragastric administration of the bitter tastant quinine lowers the glycemic response to a nutrient drink without slowing gastric emptying in healthy men. . Am. J. Physiol.-Regul. Integr. Comp. Physiol. 318::R26373
    [Crossref] [Google Scholar]
  10. Borbón-Mendívil D, Tapia-Fonllem C, Fraijo-Sing B. 2022.. Contextual and individual variables as predictors of energy-dense meals in food choices. . Front. Psychol. 13::803326
    [Crossref] [Google Scholar]
  11. Bremner EA, Mainland JD, Khan RM, Sobel N. 2003.. The prevalence of androstenone anosmia. . Chem. Senses 28::42332
    [Crossref] [Google Scholar]
  12. Buck L, Axel R. 1991.. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. . Cell 65::17587
    [Crossref] [Google Scholar]
  13. Bufe B, Breslin PA, Kuhn C, Reed DR, Tharp CD, et al. 2005.. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. . Curr. Biol. 15::32227
    [Crossref] [Google Scholar]
  14. Caldwell EM, Kobayashi MM, DuBow W, Wytinck S. 2009.. Perceived access to fruits and vegetables associated with increased consumption. . Public Health Nutr. 12::174350
    [Crossref] [Google Scholar]
  15. Campbell JE, Drucker DJ. 2013.. Pharmacology, physiology, and mechanisms of incretin hormone action. . Cell Metab. 17::81937
    [Crossref] [Google Scholar]
  16. Campbell MC, Ranciaro A, Zinshteyn D, Rawlings-Goss R, Hirbo J, et al. 2014.. Origin and differential selection of allelic variation at TAS2R16 associated with salicin bitter taste sensitivity in Africa. . Mol. Biol. Evol. 31::288302
    [Crossref] [Google Scholar]
  17. Campos A, Port JD, Acosta A. 2022.. Integrative hedonic and homeostatic food intake regulation by the central nervous system: insights from neuroimaging. . Brain Sci. 12:(4):431
    [Crossref] [Google Scholar]
  18. Cawthon CR, de La Serre CB. 2021.. The critical role of CCK in the regulation of food intake and diet-induced obesity. . Peptides 138::170492
    [Crossref] [Google Scholar]
  19. CDC (Cent. Dis. Control Prev.). 2024.. Consider cultural food preferences: FAQ. . CDC. https://www.cdc.gov/food-service-guidelines-toolkit/php/strategize-act/cultural-food-preferences.html
    [Google Scholar]
  20. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, et al. 2000.. T2Rs function as bitter taste receptors. . Cell 100::70311
    [Crossref] [Google Scholar]
  21. Cheadle A, Psaty BM, Curry S, Wagner E, Diehr P, et al. 1991.. Community-level comparisons between the grocery store environment and individual dietary practices. . Prev. Med. 20::25061
    [Crossref] [Google Scholar]
  22. Chelakkot C, Ghim J, Ryu SH. 2018.. Mechanisms regulating intestinal barrier integrity and its pathological implications. . Exp. Mol. Med. 50::103
    [Crossref] [Google Scholar]
  23. Chupeerach C, Tapanee P, On-Nom N, Temviriyanukul P, Chantong B, et al. 2021.. The influence of TAS2R38 bitter taste gene polymorphisms on obesity risk in three racially diverse groups. . Biomedicine 11::43
    [Crossref] [Google Scholar]
  24. Cohen SG. 1991.. The chicken, in history and in the soup. . Allergy Asthma Proc. 12::4756
    [Crossref] [Google Scholar]
  25. Cook TM, Mansuy-Aubert V. 2022.. Communication between the gut microbiota and peripheral nervous system in health and chronic disease. . Gut Microbes 14::2068365
    [Crossref] [Google Scholar]
  26. Cox DN, Hendrie GA, Lease HJ. 2018.. Do healthy diets differ in their sensory characteristics?. Food Qual. Prefer. 68::1218
    [Crossref] [Google Scholar]
  27. Crary IL, Ardoin NM, Gardner C. 2022.. Impact of child interaction with food preparation on vegetable preferences: a farm-based education approach. . J. Nutr. Educ. Behav. 54::4655
    [Crossref] [Google Scholar]
  28. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, et al. 2019.. The microbiota-gut-brain axis. . Physiol. Rev. 99::18772013
    [Crossref] [Google Scholar]
  29. Cwiertka KJ, Walraven BC. 2013.. Asian Food: The Global and the Local. Abingdon, UK:: Routledge
    [Google Scholar]
  30. Damon Aiken K, Meuter ML, Sukhdial A. 2023.. An exploration of comfort brands and the theory of brand comfort. . J. Brand Strategy 11::34457
    [Crossref] [Google Scholar]
  31. Davis H. 2014.. French Comfort Food. Kaysville, UT:: Gibbs Smith
    [Google Scholar]
  32. DeSimone JA, Lyall V. 2006.. Taste receptors in the gastrointestinal tract III. Salty and sour taste: sensing of sodium and protons by the tongue. . Am. J. Physiol.-Gastrointest. Liver Physiol. 291::G100510
    [Crossref] [Google Scholar]
  33. Dias AG, Rousseau D, Duizer L, Cockburn M, Chiu W, et al. 2013.. Genetic variation in putative salt taste receptors and salt taste perception in humans. . Chem. Senses 38::13745
    [Crossref] [Google Scholar]
  34. Dicker D, Beck A, Markel A, Marcovicu D, Mazzawi S, et al. 2020.. Weight loss, dietary preferences, and reduction in the sense of smell with the use of a novel nasal device. . Obes. Facts 13::47386
    [Crossref] [Google Scholar]
  35. Drewnowski A, Greenwood M. 1983.. Cream and sugar: human preferences for high-fat foods. . Physiol. Behav. 30::62933
    [Crossref] [Google Scholar]
  36. Duan X, Block E, Li Z, Connelly T, Zhang J, et al. 2012.. Crucial role of copper in detection of metal-coordinating odorants. . PNAS 109::349297
    [Crossref] [Google Scholar]
  37. Duffy VB, Davidson AC, Kidd JR, Kidd KK, Speed WC, et al. 2004.. Bitter receptor gene (TAS2R38), 6-n-propylthiouracil (PROP) bitterness and alcohol intake. . Alcohol Clin. Exp. Res. 28::162937
    [Crossref] [Google Scholar]
  38. Dulac C, Axel R. 1995.. A novel family of genes encoding putative pheromone receptors in mammals. . Cell 83::195206
    [Crossref] [Google Scholar]
  39. Eny KM, Wolever TM, Corey PN, El-Sohemy A. 2010.. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. . Am. J. Clin. Nutr. 92::150110
    [Crossref] [Google Scholar]
  40. Eny KM, Wolever TM, Fontaine-Bisson B, El-Sohemy A. 2008.. Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations. . Physiol. Genom. 33::35560
    [Crossref] [Google Scholar]
  41. Fitzsimons JT. 1979.. The Physiology of Thirst and Sodium Appetite. New York:: Springer
    [Google Scholar]
  42. Fox MK, Pac S, Devaney B, Jankowski L. 2004.. Feeding infants and toddlers study: What foods are infants and toddlers eating?. J. Am. Diet. Assoc. 104::2230
    [Crossref] [Google Scholar]
  43. Franzago M, Alessandrelli E, Notarangelo S, Stuppia L, Vitacolonna E. 2023.. Chrono-nutrition: circadian rhythm and personalized nutrition. . Int. J. Mol. Sci. 24::2571
    [Crossref] [Google Scholar]
  44. Fushan AA, Simons CT, Slack JP, Drayna D. 2010.. Association between common variation in genes encoding sweet taste signaling components and human sucrose perception. . Chem. Senses 35::57992
    [Crossref] [Google Scholar]
  45. Gisladottir RS, Ivarsdottir EV, Helgason A, Jonsson L, Hannesdottir NK, et al. 2020.. Sequence variants in TAAR5 and other loci affect human odor perception and naming. . Curr. Biol. 30::464353.e3
    [Crossref] [Google Scholar]
  46. Gram L, Dalgaard P. 2002.. Fish spoilage bacteria—problems and solutions. . Curr. Opin. Biotechnol. 13::26266
    [Crossref] [Google Scholar]
  47. Gribble FM, Reimann F. 2016.. Enteroendocrine cells: chemosensors in the intestinal epithelium. . Annu. Rev. Physiol. 78::27799
    [Crossref] [Google Scholar]
  48. Grus WE, Zhang J. 2008.. Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis. . Mol. Biol. Evol. 25::1593601
    [Crossref] [Google Scholar]
  49. Haag F, Hoffmann S, Krautwurst D. 2021.. Key food furanones furaneol and sotolone specifically activate distinct odorant receptors. . J. Agric. Food Chem. 69::109991005
    [Crossref] [Google Scholar]
  50. Halpern M, Martinez-Marcos A. 2003.. Structure and function of the vomeronasal system: an update. . Prog. Neurobiol. 70::245318
    [Crossref] [Google Scholar]
  51. Han P, Keast R, Roura E. 2018.. TAS1R1 and TAS1R3 polymorphisms relate to energy and protein-rich food choices from a buffet meal respectively. . Nutrients 10::1906
    [Crossref] [Google Scholar]
  52. Hashiguchi Y, Nishida M. 2007.. Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium. . Mol. Biol. Evol. 24::2099107
    [Crossref] [Google Scholar]
  53. Hasin-Brumshtein Y, Lancet D, Olender T. 2009.. Human olfaction: from genomic variation to phenotypic diversity. . Trends Genet. 25::17884
    [Crossref] [Google Scholar]
  54. Hayes JE, Wallace MR, Knopik VS, Herbstman DM, Bartoshuk LM, Duffy VB. 2011.. Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. . Chem. Senses 36::31119
    [Crossref] [Google Scholar]
  55. Heim A, Pyhälä A. 2020.. Changing food preferences among a former hunter-gatherer group in Namibia. . Appetite 151::104709
    [Crossref] [Google Scholar]
  56. Hill MR, Goicochea S, Merlo LJ. 2018.. In their own words: stressors facing medical students in the millennial generation. . Med. Educ. Online 23::1530558
    [Crossref] [Google Scholar]
  57. Holt RR, Barile D, Wang SC, Munafo JP Jr., Arvik T, et al. 2022.. Chardonnay Marc as a new model for upcycled co-products in the food industry: concentration of diverse natural products chemistry for consumer health and sensory benefits. . J. Agric. Food Chem. 70::1500727
    [Crossref] [Google Scholar]
  58. Holt RR, Munafo JP Jr., Salmen J, Keen CL, Mistry BS, et al. 2023.. Mycelium: a nutrient-dense food to help address world hunger, promote health, and support a regenerative food system. . J. Agric. Food Chem. 72::2697707
    [Crossref] [Google Scholar]
  59. Horowitz LF, Saraiva LR, Kuang D, Yoon KH, Buck LB. 2014.. Olfactory receptor patterning in a higher primate. . J. Neurosci. 34::1224152
    [Crossref] [Google Scholar]
  60. Jaeger A, Sahin AW, Nyhan L, Zannini E, Arendt EK. 2023.. Functional properties of brewer's spent grain protein isolate: the missing piece in the plant protein portfolio. . Foods 12::798
    [Crossref] [Google Scholar]
  61. Jastreboff AM, Kushner RF. 2023.. New frontiers in obesity treatment: GLP-1 and nascent nutrient-stimulated hormone-based therapeutics. . Annu. Rev. Med. 74::12539
    [Crossref] [Google Scholar]
  62. Kalina U, Koyama N, Hosoda T, Nuernberger H, Sato K, et al. 2002.. Enhanced production of IL-18 in butyrate-treated intestinal epithelium by stimulation of the proximal promoter region. . Eur. J. Immunol. 32::263543
    [Crossref] [Google Scholar]
  63. Karagiannaki K, Ritz C, Jensen LGH, Tørsleff EH, Møller P, et al. 2021.. Optimising repeated exposure: determining optimal exposure frequency for introducing a novel vegetable among children. . Foods 10::913
    [Crossref] [Google Scholar]
  64. Kavaliauskienė I, Domarkienė I, Ambrozaitytė L, Barauskienė L, Meškienė R, et al. 2021.. Association study of taste preference: analysis in the Lithuanian population. . Food Sci. Nutr. 9::431021
    [Crossref] [Google Scholar]
  65. Keller A, Hempstead M, Gomez IA, Gilbert AN, Vosshall LB. 2012.. An olfactory demography of a diverse metropolitan population. . BMC Neurosci. 13::122
    [Crossref] [Google Scholar]
  66. Keller A, Zhuang H, Chi Q, Vosshall LB, Matsunami H. 2007.. Genetic variation in a human odorant receptor alters odour perception. . Nature 449::46872
    [Crossref] [Google Scholar]
  67. Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D. 2003.. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. . Science 299::122125
    [Crossref] [Google Scholar]
  68. Kim UK, Wooding S, Riaz N, Jorde LB, Drayna D. 2006.. Variation in the human TAS1R taste receptor genes. . Chem. Senses 31::599611
    [Crossref] [Google Scholar]
  69. Kim K-S, Lee I-S, Kim K-H, Park J, Kim Y, et al. 2017.. Activation of intestinal olfactory receptor stimulates glucagon-like peptide-1 secretion in enteroendocrine cells and attenuates hyperglycemia in type 2 diabetic mice. . Sci. Rep. 7::13978
    [Crossref] [Google Scholar]
  70. König J, Wells J, Cani PD, García-Ródenas CL, MacDonald T, et al. 2016.. Human intestinal barrier function in health and disease. . Clin. Trans. Gastroenterol. 7:(10):e196
    [Crossref] [Google Scholar]
  71. Krautwurst D. 2008.. Human olfactory receptor families and their odorants. . Chem. Biodivers. 5::84252
    [Crossref] [Google Scholar]
  72. Krautwurst D, Kotthoff M. 2013.. A hit map-based statistical method to predict best ligands for orphan olfactory receptors: natural key odorants versus “lock picks. .” Methods Mol. Biol. 1003::8597
    [Crossref] [Google Scholar]
  73. Lasaleta JD, Werle CO, Yamim AP. 2021.. Nostalgia makes people eat healthier. . Appetite 162::105187
    [Crossref] [Google Scholar]
  74. Lewin AH. 2006.. Receptors of mammalian trace amines. . AAPS J. 8::E13845
    [Crossref] [Google Scholar]
  75. Li S, Zong A, An R, Wang H, Liu L, et al. 2023.. Effects of whole grain intake on glycemic traits: a systematic review and meta-analysis of randomized controlled trials. . Crit. Rev. Food Sci. Nutr. 63::435170
    [Crossref] [Google Scholar]
  76. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. 2002.. Human receptors for sweet and umami taste. . PNAS 99::469296
    [Crossref] [Google Scholar]
  77. Liberles SD. 2015.. Trace amine-associated receptors: ligands, neural circuits, and behaviors. . Curr. Opin. Neurobiol. 34::17
    [Crossref] [Google Scholar]
  78. Liberles SD, Buck LB. 2006.. A second class of chemosensory receptors in the olfactory epithelium. . Nature 442::64550
    [Crossref] [Google Scholar]
  79. Lin B-H, Guthrie J, Frazão E. 1999.. Nutrient contribution of food away from home. . In America's Eating Habits Changes and Consequences, ed. E Frazao , pp. 21342. Washington, DC:: USDA
    [Google Scholar]
  80. Locher JL, Yoels WC, Maurer D, van Ells J. 2005.. Comfort foods: an exploratory journey into the social and emotional significance of food. . Food Foodways 13::27397
    [Crossref] [Google Scholar]
  81. Long Z, Huang L, Lyu J, Xia Y, Chen Y, et al. 2022.. The associations of perceived stress with food preferences and activity preferences: a cross-sectional study among Chinese adults. . J. Affect. Disord. 297::43036
    [Crossref] [Google Scholar]
  82. Looy H, Weingarten HP. 1991.. Effects of metabolic state on sweet taste reactivity in humans depend on underlying hedonic response profile. . Chem. Senses 16::12330
    [Crossref] [Google Scholar]
  83. Mainland JD, Keller A, Li YR, Zhou T, Trimmer C, et al. 2014.. The missense of smell: functional variability in the human odorant receptor repertoire. . Nat. Neurosci. 17::11420
    [Crossref] [Google Scholar]
  84. Martin C, Issanchou S. 2019.. Nutrient sensing: What can we learn from different tastes about the nutrient contents in today's foods?. Food Qual. Prefer. 71::18596
    [Crossref] [Google Scholar]
  85. Menashe I, Man O, Lancet D, Gilad Y. 2003.. Different noses for different people. . Nat. Genet. 34::14344
    [Crossref] [Google Scholar]
  86. Mennella JA, Beauchamp GK. 2010.. The role of early life experiences in flavor perception and delight. . In Obesity Prevention: The Role of Brain and Society on Individual Behavior, ed. L Dubé, A Bechara, A Dagher, A Drewnowski, J LeBel , et al., pp. 20317. Cambridge, MA:: Academic Press
    [Google Scholar]
  87. Mennella JA, Pepino MY, Reed DR. 2005.. Genetic and environmental determinants of bitter perception and sweet preferences. . Pediatrics 115::e21622
    [Crossref] [Google Scholar]
  88. Mennella JA, Ventura AK. 2011.. Early feeding: setting the stage for healthy eating habits. . Nestle Nutr. Workshop Ser. Pediatr. Program 68::15363; Discuss. 64–68
    [Crossref] [Google Scholar]
  89. Meyerhof W, Born S, Brockhoff A, Behrens M. 2011.. Molecular biology of mammalian bitter taste receptors. A review. . Flavour Fragr. J. 26::26068
    [Crossref] [Google Scholar]
  90. Miller V, Webb P, Cudhea F, Shi P, Zhang J, et al. 2022.. Global dietary quality in 185 countries from 1990 to 2018 show wide differences by nation, age, education, and urbanicity. . Nat. Food 3::694702
    [Crossref] [Google Scholar]
  91. Miranda AM, Ingram M, Nuessle TM, Santorico SA, Garneau NL. 2021.. Factors affecting detection of a bimodal sour-savory mixture and inter-individual umami taste perception. . Food Qual. Prefer. 89::104147
    [Crossref] [Google Scholar]
  92. Moran GW, Thapaliya G. 2021.. The gut–brain axis and its role in controlling eating behavior in intestinal inflammation. . Nutrients 13:(3):981
    [Crossref] [Google Scholar]
  93. Morland K, Roux AVD, Wing S. 2006.. Supermarkets, other food stores, and obesity: the atherosclerosis risk in communities study. . Am. J. Prev. Med. 30::33339
    [Crossref] [Google Scholar]
  94. Morze J, Danielewicz A, Hoffmann G, Schwingshackl L. 2020.. Diet quality as assessed by the healthy eating index, alternate healthy eating index, dietary approaches to stop hypertension score, and health outcomes: a second update of a systematic review and meta-analysis of cohort studies. . J. Acad. Nutr. Diet. 120::19982031.e15
    [Crossref] [Google Scholar]
  95. Munger SD, Leinders-Zufall T, Zufall F. 2009.. Subsystem organization of the mammalian sense of smell. . Annu. Rev. Physiol. 71::11540
    [Crossref] [Google Scholar]
  96. Nag AK, Saltagi AK, Saltagi MZ, Wu AW, Higgins TS, et al. 2023.. Management of post-infectious anosmia and hyposmia: a systematic review. . Ann. Otol. Rhinol. Laryngol. 132::80617
    [Crossref] [Google Scholar]
  97. Nei M, Niimura Y, Nozawa M. 2008.. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. . Nat. Rev. Genet. 9::95163
    [Crossref] [Google Scholar]
  98. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. 2001.. Mammalian sweet taste receptors. . Cell 106::38190
    [Crossref] [Google Scholar]
  99. Nolden AA, Feeney EL. 2020.. Genetic differences in taste receptors: implications for the food industry. . Annu. Rev. Food Sci. Technol. 11::183204
    [Crossref] [Google Scholar]
  100. Nyhan L, Sahin AW, Schmitz HH, Siegel JB, Arendt EK. 2023.. Brewers’ spent grain: an unprecedented opportunity to develop sustainable plant-based nutrition ingredients addressing global malnutrition challenges. . J. Agric. Food Chem. 71::1054364
    [Crossref] [Google Scholar]
  101. Olender T, Waszak SM, Viavant M, Khen M, Ben-Asher E, et al. 2012.. Personal receptor repertoires: olfaction as a model. . BMC Genom. 13::414
    [Crossref] [Google Scholar]
  102. Ortolani D, Oyama L, Ferrari E, Melo L, Spadari-Bratfisch R. 2011.. Effects of comfort food on food intake, anxiety-like behavior and the stress response in rats. . Physiol. Behav. 103::48792
    [Crossref] [Google Scholar]
  103. Osbaldeston TA, Wood RPA. 2000.. Dioscorides de Materia Medica. Johannesburg:: IBIDIS Press
    [Google Scholar]
  104. Palatini K, Wilson M, Alley J, Esposito D, Komarnytsky S. 2015.. Diverse classes of bitter phytochemicals modulate carbohydrate metabolism and immune responses through gastrointestinal bitter taste receptors. . FASEB J. 29:(S1):405.5
    [Crossref] [Google Scholar]
  105. Pechey R, Cartwright E, Pilling M, Hollands GJ, Vasiljevic M, et al. 2019.. Impact of increasing the proportion of healthier foods available on energy purchased in worksite cafeterias: a stepped wedge randomized controlled pilot trial. . Appetite 133::28696
    [Crossref] [Google Scholar]
  106. Pechey R, Sexton O, Codling S, Marteau TM. 2021.. Impact of increasing the availability of healthier versus less-healthy food on food selection: a randomised laboratory experiment. . BMC Public Health 21::132
    [Crossref] [Google Scholar]
  107. Pereira JM, Guedes Melo R, de Souza Medeiros J, Queiroz de Medeiros AC, de Araújo Lopes F, Fed. Univ. Rio Grande do Norte. 2024.. Comfort food concepts and contexts in which they are used: a scoping review protocol. . PLOS ONE 19::e0299991
    [Crossref] [Google Scholar]
  108. Perna S, Riva A, Nicosanti G, Carrai M, Barale R, et al. 2018.. Association of the bitter taste receptor gene TAS2R38 (polymorphism RS713598) with sensory responsiveness, food preferences, biochemical parameters and body-composition markers. A cross-sectional study in Italy. . Int. J. Food. Sci. Nutr. 69::24552
    [Crossref] [Google Scholar]
  109. Phelps NH, Singleton RK, Zhou B, Heap RA, Mishra A, et al. 2024.. Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. . Lancet Gastroenterol. Hepatol. 403::102750
    [Google Scholar]
  110. Pi-Sunyer FX. 2002.. The obesity epidemic: pathophysiology and consequences of obesity. . Obes. Res. 10::97S104S
    [Google Scholar]
  111. Pilic L, Lubasinski NJ, Berk M, Ward D, Graham CA-M, et al. 2020.. The associations between genetics, salt taste perception and salt intake in young adults. . Food Qual. Prefer. 84::103954
    [Crossref] [Google Scholar]
  112. Pinto VRA, Milião GL, Balbino DF, Della Lucia SM, Vidigal MCTR, et al. 2020.. Contemporary foods—Can they become new comfort foods or simply mimic them?. Int. J. Gastron. Food Sci. Nutr. 22::100271
    [Crossref] [Google Scholar]
  113. Pirastu N, Kooyman M, Traglia M, Robino A, Willems SM, et al. 2014.. Association analysis of bitter receptor genes in five isolated populations identifies a significant correlation between TAS2R43 variants and coffee liking. . PLOS ONE 9::e92065
    [Crossref] [Google Scholar]
  114. Powell N, Walker MM, Talley NJ. 2017.. The mucosal immune system: master regulator of bidirectional gut–brain communications. . Nat. Rev. Gastroenterol. Hepatol. 14::14359
    [Crossref] [Google Scholar]
  115. Price AL, Zaitlen NA, Reich D, Patterson N. 2010.. New approaches to population stratification in genome-wide association studies. . Nat. Rev. Genet. 11::45963
    [Crossref] [Google Scholar]
  116. Probyn E. 2016.. Eating the Ocean. Durham, NC:: Duke Univ. Press
    [Google Scholar]
  117. Ritchie H, Rosado P, Roser M. 2023.. Diet compositions. . Our World in Data. https://ourworldindata.org/diet-compositions
    [Google Scholar]
  118. Ritchie H, Roser M. 2024.. Obesity: When did obesity increase? How do rates vary across the world? What is the health impact?. Our World in Data. https://ourworldindata.org/obesity
    [Google Scholar]
  119. Robino A, Concas MP, Catamo E, Gasparini P. 2019.. A brief review of genetic approaches to the study of food preferences: current knowledge and future directions. . Nutrients 11::1735
    [Crossref] [Google Scholar]
  120. Rodriguez I, Mombaerts P. 2002.. Novel human vomeronasal receptor-like genes reveal species-specific families. . Curr. Biol. 12::R40911
    [Crossref] [Google Scholar]
  121. Saha S, Murimi M, Oldewage-Theron W. 2023.. Effectiveness of a behavior- and age-specific nutrition education intervention to promote nutrition knowledge and preference for fruits and vegetables among elementary school children. . Am. J. Health Educ. 54::198208
    [Crossref] [Google Scholar]
  122. Salazar-Fernández C, Palet D, Haeger PA, Román Mella F. 2021.. The perceived impact of COVID-19 on comfort food consumption over time: the mediational role of emotional distress. . Nutrients 13:(6):1910
    [Crossref] [Google Scholar]
  123. Shen Y, Kennedy OB, Methven L. 2016.. Exploring the effects of genotypical and phenotypical variations in bitter taste sensitivity on perception, liking and intake of brassica vegetables in the UK. . Food Qual. Prefer. 50::7181
    [Crossref] [Google Scholar]
  124. Shirokova E, Raguse JD, Meyerhof W, Krautwurst D. 2008.. The human vomeronasal type-1 receptor family—detection of volatiles and cAMP signaling in HeLa/Olf cells. . FASEB J. 22::141625
    [Crossref] [Google Scholar]
  125. Siega-Riz AM, Carson T, Popkin B. 1998.. Three squares or mostly snacks—What do teens really eat? A sociodemographic study of meal patterns. . J. Adolesc. Health 22::2936
    [Crossref] [Google Scholar]
  126. Silva Teixeira CS, Cerqueira NM, Silva Ferreira AC. 2016.. Unravelling the olfactory sense: from the gene to odor perception. . Chem. Senses 41::10521
    [Google Scholar]
  127. Silva YP, Bernardi A, Frozza RL. 2020.. The role of short-chain fatty acids from gut microbiota in gut-brain communication. . Front. Endocrinol. 11::508738
    [Google Scholar]
  128. Singh M. 2014.. Mood, food, and obesity. . Front. Psychol. 5::925
    [Crossref] [Google Scholar]
  129. Soffin MT, Batsell WR Jr. 2019.. Towards a situational taxonomy of comfort foods: a retrospective analysis. . Appetite 137::15262
    [Crossref] [Google Scholar]
  130. Spence C. 2017.. Comfort food: a review. . Int. J. Gastron. Food Sci. 9::1059
    [Crossref] [Google Scholar]
  131. Standen EC, Finch LE, Tiongco-Hofschneider L, Schopp E, Lee KM, et al. 2022.. Healthy versus unhealthy comfort eating for psychophysiological stress recovery in low-income Black and Latinx adults. . Appetite 176::106140
    [Crossref] [Google Scholar]
  132. Sugár M, Fusz K, Pusztai D, Rozmann N, Macharia J, et al. 2022.. A survey of changes in taste and food preferences related to the coronavirus disease (COVID-19) in Hungary. . Acta Aliment. 51::61324
    [Crossref] [Google Scholar]
  133. Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, et al. 2013.. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. . Nature 495::22326
    [Crossref] [Google Scholar]
  134. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, et al. 2009.. TGR5-mediated bile acid sensing controls glucose homeostasis. . Cell Metab. 10::16777
    [Crossref] [Google Scholar]
  135. Tomiyama AJ, Finch LE, Cummings JR. 2015.. Did that brownie do its job? Stress, eating, and the biobehavioral effects of comfort food. . In Emerging Trends in the Social and Behavioral Sciences, ed. RA Scott, MC Buchmann , pp. 115. Hoboken, NJ:: Wiley
    [Google Scholar]
  136. Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. 2017.. The microbiota–gut–brain axis in obesity. . Lancet Gastroenterol. Hepatol. 2::74756
    [Crossref] [Google Scholar]
  137. Trabulsi JC, Mennella JA. 2012.. Diet, sensitive periods in flavour learning, and growth. . Int. Rev. Psychiatry 24::21930
    [Crossref] [Google Scholar]
  138. Trimmer C, Keller A, Murphy NR, Snyder LL, Willer JR, et al. 2019.. Genetic variation across the human olfactory receptor repertoire alters odor perception. . PNAS 116::947580
    [Crossref] [Google Scholar]
  139. Trimmer C, Mainland J. 2017.. The olfactory system. . In Conn's Translational Neuroscience, ed. PM Conn , pp. 36377. Cambridge, MA:: Academic Press
    [Google Scholar]
  140. Tsugane S. 2021.. Why has Japan become the world's most long-lived country: insights from a food and nutrition perspective. . Eur. J. Clin. Nutr. 75::92128
    [Crossref] [Google Scholar]
  141. Tuzim K, Korolczuk A. 2021.. An update on extra-oral bitter taste receptors. . J. Transl. Med. 19::440
    [Crossref] [Google Scholar]
  142. Ulrich-Lai YM. 2016.. Self-medication with sucrose. . Curr. Opin. Behav. Sci. 9::7883
    [Crossref] [Google Scholar]
  143. Usuda H, Okamoto T, Wada K. 2021.. Leaky gut: effect of dietary fiber and fats on microbiome and intestinal barrier. . Int. J. Mol. Sci. 22:(14):7613
    [Crossref] [Google Scholar]
  144. van Bloemendaal L, IJzerman RG, Ten Kulve JS, Barkhof F, Konrad RJ, et al. 2014.. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. . Diabetes 63::418696
    [Crossref] [Google Scholar]
  145. Van Horn L, Obarzanek E, Friedman LA, Gernhofer N, Barton B. 2005.. Children's adaptations to a fat-reduced diet: the Dietary Intervention Study in Children (DISC). . Pediatrics 115::172333
    [Crossref] [Google Scholar]
  146. Vancamelbeke M, Vermeire S. 2017.. The intestinal barrier: a fundamental role in health and disease. . Expert Rev. Gastroenterol. Hepatol. 11::82134
    [Crossref] [Google Scholar]
  147. Vink JM, Van Hooijdonk KJ, Willemsen G, Feskens EJ, Boomsma DI. 2020.. Causes of variation in food preference in the Netherlands. . Twin Res. Hum. Genet. 23::195203
    [Crossref] [Google Scholar]
  148. Wang J, Lin X, Bloomgarden ZT, Ning G. 2020.. The Jiangnan diet, a healthy diet pattern for Chinese. . J. Diabetes 12::36571
    [Crossref] [Google Scholar]
  149. Wansink B. 2000.. Engineering comfort foods. . Am. Demogr. 22:(7):6667
    [Google Scholar]
  150. Wansink B, Cheney MM, Chan N. 2003.. Exploring comfort food preferences across age and gender. . Physiol. Behav. 79::73947
    [Crossref] [Google Scholar]
  151. Weingarten HP, Kulikovsky OT. 1989.. Taste-to-postingestive consequence conditioning: Is the rise in sham feeding with repeated experience a learning phenomenon?. Physiol. Behav. 45::47176
    [Crossref] [Google Scholar]
  152. Weltens N, Zhao D, Van Oudenhove L. 2014.. Where is the comfort in comfort foods? Mechanisms linking fat signaling, reward, and emotion. . Neurogastroenterol. Motil. 26::30315
    [Crossref] [Google Scholar]
  153. Wilson CE, Vandenbeuch A, Kinnamon SC. 2019.. Physiological and behavioral responses to optogenetic stimulation of PKD2L1+ type III taste cells. . eNeuro 6::ENEURO.0107-19.2019
    [Crossref] [Google Scholar]
  154. Wooding S, Gunn H, Ramos P, Thalmann S, Xing C, Meyerhof W. 2010.. Genetics and bitter taste responses to goitrin, a plant toxin found in vegetables. . Chem. Senses 35::68592
    [Crossref] [Google Scholar]
  155. Wooding SP, Ramirez VA. 2022.. Global population genetics and diversity in the TAS2R bitter taste receptor family. . Front. Genet. 13::952299
    [Crossref] [Google Scholar]
  156. Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X. 2004.. Different functional roles of T1R subunits in the heteromeric taste receptors. . PNAS 101::1425863
    [Crossref] [Google Scholar]
  157. Yamaguchi S. 1967.. The synergistic taste effect of monosodium glutamate and disodium 5′-inosinate. . J. Food Sci. 32::47378
    [Crossref] [Google Scholar]
  158. Yamaguchi S, Ninomiya K. 2000.. Umami and food palatability. . J. Nutr. 130::921S26S
    [Crossref] [Google Scholar]
  159. Yang H, Shi P. 2017.. Bitterness perception in humans: an evolutionary perspective. . In Bitterness: Perception, Chemistry and Food Processing, ed. M Aliani, MNA Eskin , pp. 3750. Hoboken, NJ:: Wiley-Blackwell
    [Google Scholar]
  160. Yang Z, Cheng J, Shang P, Sun J-P, Yu X. 2023.. Emerging roles of olfactory receptors in glucose metabolism. . Trends Cell Biol. 33::46376
    [Crossref] [Google Scholar]
  161. Yu Y, Yu H, Yang B. 2023.. Healthy or tasty: the impact of fresh starts on food preferences. . Curr. Psychol. 42::25292307
    [Crossref] [Google Scholar]
  162. Zhang P. 2022.. Influence of foods and nutrition on the gut microbiome and implications for intestinal health. . Int. J. Mol. Sci. 23:(17):9588
    [Crossref] [Google Scholar]
  163. Zhu Y, Liu J, Liu Y. 2023.. Understanding the relationship between umami taste sensitivity and genetics, food-related behavior, and nutrition. . Curr. Opin. Food Sci. 50::100980
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-111523-122109
Loading
/content/journals/10.1146/annurev-food-111523-122109
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error