1932

Abstract

High-throughput single-cell transcriptomic approaches have revolutionized our view of gene expression at the level of individual cells, providing new insights into their heterogeneity, identities, and functions. Recently, technical challenges to the application of single-cell transcriptomics to plants have been overcome, and many plant organs and tissues have now been subjected to analyses at single-cell resolution. In this review, we describe these studies and their impact on our understanding of the diversity, differentiation, and activities of plant cells. We particularly highlight their impact on plant cell identity, including unprecedented views of cell transitions and definitions of rare and novel cell types. We also point out current challenges and future opportunities for the application and analyses of single-cell transcriptomics in plants.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071719-020453
2021-11-23
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-071719-020453.html?itemId=/content/journals/10.1146/annurev-genet-071719-020453&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adrian J, Chang J, Ballenger CE, Bargmann BO, Alassimone J et al. 2015. Transcriptome dynamics of the stomatal lineage: birth, amplification, and termination of a self-renewing population. Dev. Cell 33:107–18
    [Google Scholar]
  2. 2. 
    Andersen TG, Naseer S, Ursache R, Wybouw B, Smet W et al. 2018. Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells. Nature 555:529–33
    [Google Scholar]
  3. 3. 
    Andrews TS, Hemberg M. 2018. Identifying cell populations with scRNASeq. Mol. Aspects Med. 59:114–22
    [Google Scholar]
  4. 4. 
    Araújo IS, Pietsch JM, Keizer EM, Greese B, Balkunde R et al. 2017. Stochastic gene expression in Arabidopsis thaliana. Nat. Commun. 8:2132
    [Google Scholar]
  5. 5. 
    Arendt D, Bertucci PY, Achim K, Musser JM 2019. Evolution of neuronal types and families. Curr. Opin. Neurobiol. 56:144–52
    [Google Scholar]
  6. 6. 
    Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C et al. 2016. The origin and evolution of cell types. Nat. Rev. Genet. 17:744–57
    [Google Scholar]
  7. 7. 
    Barthelson RA, Lambert GM, Vanier C, Lynch RM, Galbraith DW 2007. Comparison of the contributions of the nuclear and cytoplasmic compartments to global gene expression in human cells. BMC Genom 8:340
    [Google Scholar]
  8. 8. 
    Bezrutczyk M, Zöllner NR, Kruse CPS, Hartwig T, Lautwein T et al. 2021. Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves. Plant Cell 33:531–47
    [Google Scholar]
  9. 9. 
    Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM et al. 2003. A gene expression map of the Arabidopsis root. Science 302:1956–60
    [Google Scholar]
  10. 10. 
    Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J et al. 2007. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–6
    [Google Scholar]
  11. 11. 
    Brandt S, Kehr J, Walz C, Imlau A, Willmitzer L, Fisahn J. 1999. A rapid method for detection of plant gene transcripts from single epidermal, mesophyll and companion cells of intact leaves. Plant J 20:245–50
    [Google Scholar]
  12. 12. 
    Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X et al. 2013. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10:1093–95
    [Google Scholar]
  13. 13. 
    Briggs JA, Weinreb C, Wagner DE, Megason S, Peshkin L et al. 2018. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science 360:eaar5780
    [Google Scholar]
  14. 14. 
    Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C et al. 2012. A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLOS Genet 8:e1002446
    [Google Scholar]
  15. 15. 
    Coate JE, Farmer AD, Schiefelbein JW, Doyle JJ. 2020. Expression partitioning of duplicate genes at single cell resolution in Arabidopsis roots. Front. Genet. 11:596150
    [Google Scholar]
  16. 16. 
    Cortijo S, Locke JCW 2020. Does gene expression noise play a functional role in plants?. Trends Plant Sci 25:1041–51
    [Google Scholar]
  17. 17. 
    Deal RB, Henikoff S. 2010. A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell 18:1030–40
    [Google Scholar]
  18. 18. 
    Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP 2019. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Dev. Cell 48:840–52.e5
    [Google Scholar]
  19. 19. 
    Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC et al. 2020. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38:737–46
    [Google Scholar]
  20. 20. 
    Dinneny JR, Long TA, Wang JY, Jung JW, Mace D et al. 2008. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–45
    [Google Scholar]
  21. 21. 
    Dorrity MW, Alexandre CM, Hamm MO, Vigil A-L, Fields S et al. 2021. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat. Commun. 12:3334
    [Google Scholar]
  22. 22. 
    Efroni I. 2018. A conceptual framework for cell identity transitions in plants. Plant Cell Physiol 59:696–706
    [Google Scholar]
  23. 23. 
    Efroni I, Ip P-L, Nawy T, Mello A, Birnbaum KD. 2015. Quantification of cell identity from single-cell gene expression profiles. Genome Biol 16:9
    [Google Scholar]
  24. 24. 
    Efroni I, Mello A, Nawy T, Ip PL, Rahni R et al. 2016. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165:1721–33
    [Google Scholar]
  25. 25. 
    Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N et al. 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568:235–39
    [Google Scholar]
  26. 26. 
    Evert RF. 2006. Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development Hoboken, NJ: John Wiley & Sons, Inc. , 3rd ed..
    [Google Scholar]
  27. 27. 
    Farmer A, Thibivilliers S, Ryu KH, Schiefelbein J, Libault M. 2021. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Mol. Plant 14:372–83
    [Google Scholar]
  28. 28. 
    Feng C, Liu S, Zhang H, Guan R, Li D et al. 2020. Dimension reduction and clustering models for single-cell RNA sequencing data: a comparative study. Int. J. Mol. Sci. 21:2181
    [Google Scholar]
  29. 29. 
    Frank MH, Scanlon MJ. 2015. Cell-specific transcriptomic analyses of three-dimensional shoot development in the moss Physcomitrella patens. Plant J 83:743–51
    [Google Scholar]
  30. 30. 
    Gala HP, Lanctot A, Jean-Baptiste K, Guiziou S, Chu JC et al. 2021. A single-cell view of the transcriptome during lateral root initiation in Arabidopsis thaliana. Plant Cell 33:2197–220
    [Google Scholar]
  31. 31. 
    Giacomello S, Salmén F, Terebieniec BK, Vickovic S, Navarro JF et al. 2017. Spatially resolved transcriptome profiling in model plant species. Nat. Plants 3:17061
    [Google Scholar]
  32. 32. 
    Giolai M, Verweij W, Lister A, Heavens D, Macaulay I, Clark MD. 2019. Spatially resolved transcriptomics reveals plant host responses to pathogens. Plant Methods 15:114
    [Google Scholar]
  33. 33. 
    Gonzalez JM, Puerta-Fernández E, Santana MM, Rekadwad B 2020. On a non-discrete concept of prokaryotic species. Microorganisms 8:1723
    [Google Scholar]
  34. 34. 
    Gurazada SGR, Cox KL Jr., Czymmek KJ, Meyers BC. 2021. Space: the final frontier—achieving single-cell, spatially resolved transcriptomics in plants. Emerg. Top. Life Sci. 5:179–88
    [Google Scholar]
  35. 35. 
    Han Y, Chu X, Yu H, Ma Y-K, Wang X-J et al. 2017. Single-cell transcriptome analysis reveals widespread monoallelic gene expression in individual rice mesophyll cells. Sci. Bull. 62:1304–14
    [Google Scholar]
  36. 36. 
    Huang L, Schiefelbein J. 2015. Conserved gene expression programs in developing roots from diverse plants. Plant Cell 27:2119–32
    [Google Scholar]
  37. 37. 
    Huang L, Shi X, Wang W, Ryu KH, Schiefelbein J 2017. Diversification of root hair development genes in vascular plants. Plant Physiol 174:1697–712
    [Google Scholar]
  38. 38. 
    Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F et al. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–79
    [Google Scholar]
  39. 39. 
    Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L et al. 2019. Dynamics of gene expression in single root cells of Arabidopsis thaliana. Plant Cell 31:993–1011
    [Google Scholar]
  40. 40. 
    Jiao Y, Tausta SL, Gandotra N, Sun N, Liu T et al. 2009. A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat. Genet. 41:258–63
    [Google Scholar]
  41. 41. 
    Kamalay JC, Goldberg RB. 1980. Regulation of structural gene expression in tobacco. Cell 19:935–46
    [Google Scholar]
  42. 42. 
    Kim J-Y, Symeonidi E, Pang TY, Denyer T, Weidauer D et al. 2021. Distinct identities of leaf phloem cells revealed by single cell transcriptomics. Plant Cell 33:511–30
    [Google Scholar]
  43. 43. 
    Kiselev VY, Andrews TS, Hemberg M. 2019. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20:273–82
    [Google Scholar]
  44. 44. 
    Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A et al. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–201
    [Google Scholar]
  45. 45. 
    Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. 2015. The technology and biology of single-cell RNA sequencing. Mol. Cell 58:610–20
    [Google Scholar]
  46. 46. 
    Kubo M, Nishiyama T, Tamada Y, Sano R, Ishikawa M et al. 2019. Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation. Nucleic Acids Res 47:4539–53
    [Google Scholar]
  47. 47. 
    Kulkarni A, Anderson AG, Merullo DP, Konopka G. 2019. Beyond bulk: a review of single cell transcriptomics methodologies and applications. Curr. Opin. Biotechnol. 58:129–36
    [Google Scholar]
  48. 48. 
    La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H et al. 2018. RNA velocity of single cells. Nature 560:494–98
    [Google Scholar]
  49. 49. 
    Li GW, Xie XS. 2011. Central dogma at the single-molecule level in living cells. Nature 475:308–15
    [Google Scholar]
  50. 50. 
    Li S, Yamada M, Han X, Ohler U, Benfey PN. 2016. High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. Dev. Cell 39:508–22
    [Google Scholar]
  51. 51. 
    Lieckfeldt E, Simon-Rosin U, Kose F, Zoeller D, Schliep M, Fisahn J. 2008. Gene expression profiling of single epidermal, basal and trichome cells of Arabidopsis thaliana. J. Plant Physiol. 165:1530–44
    [Google Scholar]
  52. 52. 
    Liew LC, Narsai R, Wang Y, Berkowitz O, Whelan J, Lewsey MG. 2020. Temporal tissue-specific regulation of transcriptomes during barley (Hordeum vulgare) seed germination. Plant J 101:700–15
    [Google Scholar]
  53. 53. 
    Liu Q, Liang Z, Feng D, Jiang S, Wang Y et al. 2020. Transcriptional landscape of rice roots at the single-cell resolution. Mol. Plant 14:384–94
    [Google Scholar]
  54. 54. 
    Liu Z, Zhou Y, Guo J, Li J, Tian Z et al. 2020. Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing. Mol. Plant 13:1178–93
    [Google Scholar]
  55. 55. 
    Long Y, Liu Z, Jia J, Mo W, Fang L et al. 2021. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biol. 22:66
    [Google Scholar]
  56. 56. 
    Lopez-Anido CB, Vatén A, Smoot NK, Sharma N, Guo V et al. 2021. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf. Dev. Cell 56:1043–1055.e4
    [Google Scholar]
  57. 57. 
    Lukassen S, Bosch E, Ekici AB, Winterpacht A. 2018. Characterization of germ cell differentiation in the male mouse through single-cell RNA sequencing. Sci. Rep. 8:6521
    [Google Scholar]
  58. 58. 
    Ma A, McDermaid A, Xu J, Chang Y, Ma Q 2020. Integrative methods and practical challenges for single-cell multi-omics. Trends Biotechnol 38:1007–22
    [Google Scholar]
  59. 59. 
    Ma L, Sun N, Liu X, Jiao Y, Zhao H, Deng XW. 2005. Organ-specific expression of Arabidopsis genome during development. Plant Physiol 138:80–91
    [Google Scholar]
  60. 60. 
    Macaulay IC, Ponting CP, Voet T. 2017. Single-cell multiomics: multiple measurements from single cells. Trends Genet 33:155–68
    [Google Scholar]
  61. 61. 
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–14
    [Google Scholar]
  62. 62. 
    Malamy JE, Benfey PN. 1997. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44
    [Google Scholar]
  63. 63. 
    Marand AP, Chen Z, Galavotti A, Schmitz RJ 2021. A cis-regulatory atlas in maize at single-cell resolution. Cell 184:3041–55.e21
    [Google Scholar]
  64. 64. 
    Marks MD, Wenger JP, Gilding E, Jilk R, Dixon RA 2009. Transcriptome analysis of Arabidopsis wild-type and gl3–sst sim trichomes identifies four additional genes required for trichome development. Mol. Plant 2:803–22
    [Google Scholar]
  65. 65. 
    Márquez-Zacarías P, Pineau RM, Gomez M, Veliz-Cuba A, Murrugarra D et al. 2021. Evolution of cellular differentiation: from hypotheses to models. Trends Ecol. Evol. 36:49–60
    [Google Scholar]
  66. 66. 
    McFaline-Figueroa JL, Trapnell C, Cuperus JT 2020. The promise of single-cell genomics in plants. Curr. Opin. Plant Biol. 54:114–21
    [Google Scholar]
  67. 67. 
    Mironova V, Xu J. 2019. A single-cell view of tissue regeneration in plants. Curr. Opin. Plant Biol. 52:149–54
    [Google Scholar]
  68. 68. 
    Morris SA. 2019. The evolving concept of cell identity in the single cell era. Development 146:dev169748
    [Google Scholar]
  69. 69. 
    Nelms B, Walbot V. 2019. Defining the developmental program leading to meiosis in maize. Science 364:52–56
    [Google Scholar]
  70. 70. 
    Picard CL, Povilus RA, Williams BP, Gehring M 2020. Single nucleus analysis of Arabidopsis seeds reveals new cell types and imprinting dynamics. bioRxiv 2020.08.25.267476. https://doi.org/10.1101/2020.08.25.267476
    [Crossref]
  71. 71. 
    Pirrello J, Deluche C, Frangne N, Gévaudant F, Maza E et al. 2018. Transcriptome profiling of sorted endoreduplicated nuclei from tomato fruits: how the global shift in expression ascribed to DNA ploidy influences RNA-Seq data normalization and interpretation. Plant J 93:387–98
    [Google Scholar]
  72. 72. 
    Qiao Z, Libault M. 2013. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology. Front. Plant Sci. 4:484
    [Google Scholar]
  73. 73. 
    Qiu X, Mao Q, Tang Y, Wang L, Chawla R et al. 2017. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14:979–82
    [Google Scholar]
  74. 74. 
    Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. 2006. Stochastic mRNA synthesis in mammalian cells. PLOS Biol 4:e309
    [Google Scholar]
  75. 75. 
    Reynoso MA, Pauluzzi GC, Kajala K, Cabanlit S, Velasco J et al. 2018. Nuclear transcriptomes at high resolution using retooled INTACT. Plant Physiol 176:270–81
    [Google Scholar]
  76. 76. 
    Rhee SY, Birnbaum KD, Ehrhardt DW. 2019. Towards building a plant cell atlas. Trends Plant Sci 24:303–10
    [Google Scholar]
  77. 77. 
    Rich-Griffin C, Stechemesser A, Finch J, Lucas E, Ott S, Schäfer P 2020. Single-cell transcriptomics: a high-resolution avenue for plant functional genomics. Trends Plant Sci 25:186–97
    [Google Scholar]
  78. 78. 
    Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. PNAS 106:19126–31
    [Google Scholar]
  79. 79. 
    Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E et al. 2019. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363:1463–67
    [Google Scholar]
  80. 80. 
    Roszak P, Heo J-O, Blob B, Toyokura K, Balaguer MAL et al. 2021. Analysis of phloem trajectory links tissue maturation to cell specialization. bioRxiv 2021.01.18.427084. https://doi.org/10.1101/2021.01.18.427084
    [Crossref]
  81. 81. 
    Ryu KH, Huang L, Kang HM, Schiefelbein J. 2019. Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiol 179:1444–56
    [Google Scholar]
  82. 82. 
    Sachkova M, Burkhardt P 2019. Exciting times to study the identity and evolution of cell types. Development 146:dev178996
    [Google Scholar]
  83. 83. 
    Saelens W, Cannoodt R, Todorov H, Saeys Y. 2019. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37:547–54
    [Google Scholar]
  84. 84. 
    Satterlee JW, Strable J, Scanlon MJ. 2020. Plant stem-cell organization and differentiation at single-cell resolution. PNAS 117:33689–99
    [Google Scholar]
  85. 85. 
    Shafer MER. 2019. Cross-species analysis of single-cell transcriptomic data. Front. Cell Dev. Biol. 7:175
    [Google Scholar]
  86. 86. 
    Shahan R, Hsu C-W, Nolan TM, Cole BJ, Taylor IW et al. 2020. A single cell Arabidopsis root atlas reveals developmental trajectories in wild type and cell identity mutants. bioRxiv 2020.06.29.178863. https://doi.org/10.1101/2020.06.29.178863
    [Crossref]
  87. 87. 
    Shaw R, Tian X, Xu J. 2020. Single-cell transcriptome analysis in plants: advances and challenges. Mol. Plant 14:115–26
    [Google Scholar]
  88. 88. 
    Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM et al. 2006. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–64
    [Google Scholar]
  89. 89. 
    Shulse CN, Cole BJ, Ciobanu D, Lin J, Yoshinaga Y et al. 2019. High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep 27:2241–47.e4
    [Google Scholar]
  90. 90. 
    Slane D, Kong J, Schmid M, Jurgens G, Bayer M 2015. Profiling of embryonic nuclear versus cellular RNA in Arabidopsis thaliana. Genom. Data 4:96–98
    [Google Scholar]
  91. 91. 
    Somssich M, Khan GA, Persson S. 2016. Cell wall heterogeneity in root development of Arabidopsis. Front. Plant Sci 7:1242
    [Google Scholar]
  92. 92. 
    Stuart T, Satija R. 2019. Integrative single-cell analysis. Nat. Rev. Genet. 20:257–72
    [Google Scholar]
  93. 93. 
    Sunaga-Franze DY, Muino JM, Braeuning C, Xu X, Zong M et al. 2020. Single-nuclei RNA-sequencing of plants. bioRxiv 2020.11.14.382812. https://doi.org/10.1101/2020.11.14.382812
    [Crossref]
  94. 94. 
    Thibivilliers S, Anderson D, Libault M 2020. Isolation of plant root nuclei for single cell RNA sequencing. Curr. Protoc. Plant Biol. 5:e20120
    [Google Scholar]
  95. 95. 
    Tian C, Du Q, Xu M, Du F, Jiao Y. 2020. Single-nucleus RNA-seq resolves spatiotemporal developmental trajectories in the tomato shoot apex. bioRxiv 2020.09.20.305029. https://doi.org/10.1101/2020.09.20.305029
    [Crossref]
  96. 96. 
    Trapnell C. 2015. Defining cell types and states with single-cell genomics. Genome Res 25:1491–98
    [Google Scholar]
  97. 97. 
    Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S et al. 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32:381–86
    [Google Scholar]
  98. 98. 
    Vickaryous MK, Hall BK. 2006. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol. Rev. Camb. Philos. Soc. 81:425–55
    [Google Scholar]
  99. 99. 
    Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM. 2018. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360:981–87
    [Google Scholar]
  100. 100. 
    Wang Y, Huan Q, Li K, Qian W 2020. Single-cell transcriptome atlas of the leaf and root of rice seedlings. J. Genet. Genomics. In press. https://doi.org/10.1016/j.jgg.2021.06.001
    [Crossref] [Google Scholar]
  101. 101. 
    Wendrich JR, Yang BJ, Vandamme N, Verstaen K, Smet W et al. 2020. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science 370:eaay4970
    [Google Scholar]
  102. 102. 
    What is your conceptual definition of “cell type” in the context of a mature organism? 2017. Cell Syst 4:255–59
    [Google Scholar]
  103. 103. 
    Xia B, Yanai I 2019. A periodic table of cell types. Development 146:dev169854
    [Google Scholar]
  104. 104. 
    Yan H, Song Q, Lee J, Schiefelbein J, Li S 2020. Identification of cell-type marker genes from plant single-cell RNA-seq data using machine learning. bioRxiv 2020.11.22.393165. https://doi.org/10.1101/2020.11.22.393165
    [Crossref]
  105. 105. 
    Yang W, Schuster C, Prunet N, Dong Q, Landrein B et al. 2020. Visualization of protein coding, long noncoding, and nuclear RNAs by fluorescence in situ hybridization in sections of shoot apical meristems and developing flowers. Plant Physiol 182:147–58
    [Google Scholar]
  106. 106. 
    Yuan M, Yang X, Lin J, Cao X, Chen F et al. 2020. Alignment of cell lineage trees elucidates genetic programs for the development and evolution of cell types. iScience 23:101273
    [Google Scholar]
  107. 107. 
    Zhang T-Q, Xu Z-G, Shang G-D, Wang J-W. 2019. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Mol. Plant 12:648–60
    [Google Scholar]
  108. 108. 
    Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW et al. 2017. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8:14049
    [Google Scholar]
  109. 109. 
    Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A et al. 2017. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65:631–43.e4
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071719-020453
Loading
/content/journals/10.1146/annurev-genet-071719-020453
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error