1932

Abstract

Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics—genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations—has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071719-020506
2021-11-23
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-071719-020506.html?itemId=/content/journals/10.1146/annurev-genet-071719-020506&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahrens CW, Rymer PD, Stow A, Bragg J, Dillon S et al. 2018. The search for loci under selection: trends, biases and progress. Mol. Ecol. 27:61342–56
    [Google Scholar]
  2. 2. 
    Allentoft ME, Bunce M, Scofield RP, Hale ML, Holdaway RN 2010. Highly skewed sex ratios and biased fossil deposition of moa: Ancient DNA provides new insight on New Zealand's extinct megafauna. Quat. Sci. Rev. 29:5753–62
    [Google Scholar]
  3. 3. 
    Alves JM, Carneiro M, Cheng JY, de Matos AL, Rahman MM et al. 2019. Parallel adaptation of rabbit populations to myxoma virus. Science 363:64331319–26
    [Google Scholar]
  4. 4. 
    Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC. 2007. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316:5822280–85
    [Google Scholar]
  5. 5. 
    Assis APA, Patton JL, Hubbe A, Marroig G 2016. Directional selection effects on patterns of phenotypic (co)variation in wild populations. Proc. R. Soc. B 283: 1843.20161615
    [Google Scholar]
  6. 6. 
    Bakker FT, Antonelli A, Clarke JA, Cook JA, Edwards SV et al. 2020. The Global Museum: natural history collections and the future of evolutionary science and public education. PeerJ 8:e8225
    [Google Scholar]
  7. 7. 
    Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B et al. 2011. Has the Earth's sixth mass extinction already arrived?. Nature 471:733651–57
    [Google Scholar]
  8. 8. 
    Barrera-Redondo J, Piñero D, Eguiarte LE 2020. Genomic, transcriptomic and epigenomic tools to study the domestication of plants and animals: a field guide for beginners. Front. Genet. 11:742
    [Google Scholar]
  9. 9. 
    Battey CJ, Ralph PL, Kern AD 2020. Space is the place: effects of continuous spatial structure on analysis of population genetic data. Genetics 215:1193–214
    [Google Scholar]
  10. 10. 
    Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K. 2018. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359:637183–86
    [Google Scholar]
  11. 11. 
    Bell KC, Carlson CJ, Phillips AJ. 2018. Parasite collections: overlooked resources for integrative research and conservation. Trends Parasitol 34:8637–39
    [Google Scholar]
  12. 12. 
    Bergström A, Frantz L, Schmidt R, Ersmark E, Lebrasseur O et al. 2020. Origins and genetic legacy of prehistoric dogs. Science 370:6516557–64
    [Google Scholar]
  13. 13. 
    Bi K, Linderoth T, Singhal S, Vanderpool D, Patton JL et al. 2019. Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change. PLOS Genet 15:5e1008119
    [Google Scholar]
  14. 14. 
    Blaimer BB, Lloyd MW, Guillory WX, Brady SG. 2016. Sequence capture and phylogenetic utility of genomic ultraconserved elements obtained from pinned insect specimens. PLOS ONE 11:8e0161531
    [Google Scholar]
  15. 15. 
    Blom MPK. 2021. Opportunities and challenges for high-quality biodiversity tissue archives in the age of long-read sequencing. Mol. Ecol. In press. https://doi.org/10.1111/mec.15909
    [Crossref] [Google Scholar]
  16. 16. 
    Bono JM, Olesnicky EC, Matzkin LM. 2015. Connecting genotypes, phenotypes and fitness: harnessing the power of CRISPR/Cas9 genome editing. Mol. Ecol. 24:153810–22
    [Google Scholar]
  17. 17. 
    Bravo GA, Schmitt CJ, Edwards SV. 2021. What have we learned from the first 500 avian genomes?. Annu. Rev. Ecol. Evol. Syst. 52:61139
    [Google Scholar]
  18. 18. 
    Brealey JC, Leitão HG, van der Valk T, Xu W, Bougiouri K et al. 2020. Dental calculus as a tool to study the evolution of the mammalian oral microbiome. Mol. Biol. Evol. 37:103003–22
    [Google Scholar]
  19. 19. 
    Buckner JC, Sanders RC, Faircloth BC, Chakrabarty P 2021. The critical importance of vouchers in genomics. eLife 10:e68264
    [Google Scholar]
  20. 20. 
    Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10:121213–18
    [Google Scholar]
  21. 21. 
    Bunce M, Szulkin M, Lerner HRL, Barnes I, Shapiro B et al. 2005. Ancient DNA provides new insights into the evolutionary history of New Zealand's extinct giant eagle. PLOS Biol 3:1e9
    [Google Scholar]
  22. 22. 
    Burrell AS, Disotell TR, Bergey CM. 2015. The use of museum specimens with high-throughput DNA sequencers. J. Hum. Evol. 79:35–44
    [Google Scholar]
  23. 23. 
    Callaway E. 2011. Aboriginal genome analysis comes to grips with ethics. Nature 477:7366522–23
    [Google Scholar]
  24. 24. 
    Campos PF, Craig OE, Turner-Walker G, Peacock E, Willerslev E, Gilbert MTP 2012. DNA in ancient bone—Where is it located and how should we extract it?. Ann. Anat. 194:17–16
    [Google Scholar]
  25. 25. 
    Cappellini E, Gentry A, Palkopoulou E, Ishida Y, Cram D et al. 2014. Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae). Zool. J. Linn. Soc. 170:1222–32
    [Google Scholar]
  26. 26. 
    Carvalho T, Becker CG, Toledo LF. 2017. Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proc. R. Soc. B 284:184820162254
    [Google Scholar]
  27. 27. 
    Cheng S, Melkonian M, Smith SA, Brockington S, Archibald JM et al. 2018. 10KP: A phylodiverse genome sequencing plan. GigaScience 7:giy013
    [Google Scholar]
  28. 28. 
    Cheviron ZA, Carling MD, Brumfield RT. 2011. Effects of postmortem interval and preservation method on RNA isolated from field-preserved avian tissues. Condor 113:3483–89
    [Google Scholar]
  29. 29. 
    Claw KG, Anderson MZ, Begay RL, Tsosie KS, Fox K, Garrison NA 2018. A framework for enhancing ethical genomic research with Indigenous communities. Nat. Commun. 9:12957
    [Google Scholar]
  30. 30. 
    Colella JP, Agwanda BR, Khan FAA, Bates J, Carrion Bonilla CA et al. 2020. Build international biorepository capacity. Science 370:6518773–74
    [Google Scholar]
  31. 31. 
    Colella JP, Bates J, Burneo SF, Camacho MA, Carrion Bonilla C et al. 2021. Leveraging natural history biorepositories as a global, decentralized, pathogen surveillance network. PLOS Pathog. 17:6e1009583
    [Google Scholar]
  32. 32. 
    Colella JP, Tigano A, MacManes MD 2020. A linked-read approach to museomics: higher quality de novo genome assemblies from degraded tissues. Mol. Ecol. Resour. 20:4856–70
    [Google Scholar]
  33. 33. 
    Colwell C. 2016. Collaborative archaeologies and descendant communities. Annu. Rev. Anthropol. 45:113–27
    [Google Scholar]
  34. 34. 
    Constable H, Guralnick R, Wieczorek J, Spencer C, Peterson ATVertNet Steer. Comm 2010. VertNet: a new model for biodiversity data sharing. PLOS Biol 8:2e1000309
    [Google Scholar]
  35. 35. 
    Cook JA, Greiman SE, Agosta SJ, Anderson RP, Arbogast BS et al. 2016. Transformational principles for NEON sampling of mammalian parasites and pathogens: a response to Springer and colleagues. BioScience 66:11917–19
    [Google Scholar]
  36. 36. 
    Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA et al. 2017. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14:10959–62
    [Google Scholar]
  37. 37. 
    Crawford K, Quiroz JFD, Koenig KM, Ahuja N, Albertin CB, Rosenthal JJC. 2020. Highly efficient knockout of a squid pigmentation gene. Curr. Biol. 30:173484–3490.e4
    [Google Scholar]
  38. 38. 
    Crutzen PJ. 2002. Geology of mankind. Nature 415:686723
    [Google Scholar]
  39. 39. 
    Das S, Lowe M. 2018. Nature read in black and white: decolonial approaches to interpreting natural history collections. J. Nat. Sci. Collect. 6:4–14
    [Google Scholar]
  40. 40. 
    Derkarabetian S, Benavides LR, Giribet G. 2019. Sequence capture phylogenomics of historical ethanol-preserved museum specimens: unlocking the rest of the vault. Mol. Ecol. Resour. 19:61531–44
    [Google Scholar]
  41. 41. 
    Dessauer HC, Hafner MS. 1984. Collections of Frozen Tissues: Value, Management, Field and Laboratory Procedures, and Directory of Existing Collections Lawrence, KS: Assoc. Syst. Collect.
  42. 42. 
    DiEuliis D, Johnson KR, Morse SS, Schindel DE 2016. Specimen collections should have a much bigger role in infectious disease research and response. PNAS 113:14–7
    [Google Scholar]
  43. 43. 
    Droege G, Barker K, Seberg O, Coddington J, Benson E et al. 2016. The Global Genome Biodiversity Network (GGBN) Data Standard specification. Database 2016:baw125
    [Google Scholar]
  44. 44. 
    Dunnum JL, Yanagihara R, Johnson KM, Armien B, Batsaikhan N et al. 2017. Biospecimen repositories and integrated databases as critical infrastructure for pathogen discovery and pathobiology research. PLOS Negl. Trop. Dis. 11:1e0005133
    [Google Scholar]
  45. 45. 
    Edwards SV, Birks S, Brumfield RT, Hanner R. 2005. Future of avian genetic resources collections: archives of evolutionary and environmental history. Auk 122:3979–84
    [Google Scholar]
  46. 46. 
    Eldridge MDB, Deakin JE, MacDonald AJ, Byrne M, Fitzgerald A et al. 2020. The Oz Mammals Genomics (OMG) initiative: developing genomic resources for mammal conservation at a continental scale. Aust. Zool. 40:3505–9
    [Google Scholar]
  47. 47. 
    Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT et al. 1988. Molecular phylogeny of the animal kingdom. Science 239:4841748–53
    [Google Scholar]
  48. 48. 
    Fong JJ, Cheng TL, Bataille A, Pessier AP, Waldman B, Vredenburg VT 2015. Early 1900s detection of Batrachochytrium dendrobatidis in Korean amphibians. PLOS ONE 10:3e0115656
    [Google Scholar]
  49. 49. 
    Fontaine B, Perrard A, Bouchet P. 2012. 21 years of shelf life between discovery and description of new species. Curr. Biol. 22:22R943–44
    [Google Scholar]
  50. 50. 
    Frantz LAF, Bradley DG, Larson G, Orlando L. 2020. Animal domestication in the era of ancient genomics. Nat. Rev. Genet. 21:8449–60
    [Google Scholar]
  51. 51. 
    Friedrich F, Matsumura Y, Pohl H, Bai M, Hörnschemeyer T, Beutel RG. 2014. Insect morphology in the age of phylogenomics: innovative techniques and its future role in systematics. Entomol. Sci. 17:11–24
    [Google Scholar]
  52. 52. 
    Friis G, Fandos G, Zellmer AJ, McCormack JE, Faircloth BC, Milá B. 2018. Genome-wide signals of drift and local adaptation during rapid lineage divergence in a songbird. Mol. Ecol. 27:245137–53
    [Google Scholar]
  53. 53. 
    Gauthier J, Pajkovic M, Neuenshwander S, Kaila L, Schmid S et al. 2020. Museomics identifies genetic erosion in two butterfly species across the 20th century in Finland. Mol. Ecol. Resour. 20:51191–205
    [Google Scholar]
  54. 54. 
    Gemmell NJ, Rutherford K, Prost S, Tollis M, Winter D et al. 2020. The tuatara genome reveals ancient features of amniote evolution. Nature 584:7821403–9
    [Google Scholar]
  55. 55. 
    Gignac PM, Kley NJ, Clarke JA, Colbert MW, Morhardt AC et al. 2016. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. J. Anat. 228:6889–909
    [Google Scholar]
  56. 56. 
    Gilbert MTP, Moore W, Melchior L, Worobey M 2007. DNA extraction from dry museum beetles without conferring external morphological damage. PLOS ONE 2:3e272
    [Google Scholar]
  57. 57. 
    Godden GT, Soltis P 2014. A new iDigBio web feature links DNA banks and genetic resources repositories in the United States. DNA Banking for the 21st Century: Proceedings of the U.S. Workshop on DNA Banking WL Applequist, LM Campbell 173–81 St. Louis, MO: Missouri Botanical Garden
    [Google Scholar]
  58. 58. 
    Gokhman D, Lavi E, Prüfer K, Fraga MF, Riancho JA et al. 2014. Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science 344:6183523–27
    [Google Scholar]
  59. 59. 
    Gokhman D, Nissim-Rafinia M, Agranat-Tamir L, Housman G, García-Pérez R et al. 2020. Differential DNA methylation of vocal and facial anatomy genes in modern humans. Nat. Commun. 11:11189
    [Google Scholar]
  60. 60. 
    Green DW, Watson JA, Jung H-S, Watson GS. 2019. Natural history collections as inspiration for technology. BioEssays 41:2e1700238
    [Google Scholar]
  61. 61. 
    Grinnell J. 1910. The methods and uses of a research museum. Pop. Sci. Mon. 77:163–69
    [Google Scholar]
  62. 62. 
    Hahn EE, Grealy A, Alexander M, Holleley CE 2020. Museum epigenomics: charting the future by unlocking the past. Trends Ecol. Evol. 35:4295–300
    [Google Scholar]
  63. 63. 
    Harvey MG, Bravo GA, Claramunt S, Cuervo AM, Derryberry GE et al. 2020. The evolution of a tropical biodiversity hotspot. Science 370:65221343–48
    [Google Scholar]
  64. 64. 
    Heberling JM, Miller JT, Noesgaard D, Weingart SB, Schigel D. 2021. Data integration enables global biodiversity synthesis. PNAS 118:6e2018093118
    [Google Scholar]
  65. 65. 
    Hedrick BP, Heberling JM, Meineke EK, Turner KG, Grassa CJ et al. 2020. Digitization and the future of natural history collections. BioScience 70:3243–51
    [Google Scholar]
  66. 66. 
    Heindler FM, Christiansen H, Frédérich B, Dettaï A, Lepoint G et al. 2018. Historical DNA metabarcoding of the prey and microbiome of trematomid fishes using museum samples. Front. Ecol. Evol. 6:151
    [Google Scholar]
  67. 67. 
    Heintzman PD, Zazula GD, MacPhee RD, Scott E, Cahill JA et al. 2017. A new genus of horse from Pleistocene North America. eLife 6:e29944
    [Google Scholar]
  68. 68. 
    Hickey JJ, Anderson DW. 1968. Chlorinated hydrocarbons and eggshell changes in raptorial and fish-eating birds. Science 162:3850271–73
    [Google Scholar]
  69. 69. 
    Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. 1984. DNA sequences from the quagga, an extinct member of the horse family. Nature 312:5991282–84
    [Google Scholar]
  70. 70. 
    Hofreiter M 2012. Nondestructive DNA extraction from museum specimens. Ancient DNA: Methods and Protocols B Shapiro, M Hofreiter 93–100 Totowa, NJ: Humana Press
    [Google Scholar]
  71. 71. 
    Holmes MW, Hammond TT, Wogan GOU, Walsh RE, LaBarbera K et al. 2016. Natural history collections as windows on evolutionary processes. Mol. Ecol. 25:4864–81
    [Google Scholar]
  72. 72. 
    Hope AG, Sandercock BK, Malaney JL. 2018. Collection of scientific specimens: benefits for biodiversity sciences and limited impacts on communities of small mammals. BioScience 68:135–42
    [Google Scholar]
  73. 73. 
    Hydeman ME, Longo AV, Velo-Antón G, Rodriguez D, Zamudio KR, Bell RC. 2017. Prevalence and genetic diversity of Batrachochytrium dendrobatidis in Central African island and continental amphibian communities. Ecol. Evol. 7:197729–38
    [Google Scholar]
  74. 74. 
    i5K Consortium 2013. The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. J. Hered. 104:5595–600
    [Google Scholar]
  75. 75. 
    Jackson JA, Laikre L, Baker CS, Kendall KCGenet. Monit. Work. Group 2012. Guidelines for collecting and maintaining archives for genetic monitoring. Conserv. Genet. Resour. 4:2527–36
    [Google Scholar]
  76. 76. 
    Johnson KG, Brooks SJ, Fenberg PB, Glover AG, James KE et al. 2011. Climate change and biosphere response: unlocking the collections vault. BioScience 61:2147–53
    [Google Scholar]
  77. 77. 
    Johnson NK, Zink RM, Barrowclough GF, Marten JA. 1984. Suggested techniques for modern avian systematics. Wilson Bull 96:4543–60
    [Google Scholar]
  78. 78. 
    Jones M. 2017. From personal to public: field books, museums, and the opening of the archives. Arch. Rec. 38:2212–27
    [Google Scholar]
  79. 79. 
    Joseph L. 2011. Museum collections in ornithology: today's record of avian biodiversity for tomorrow's world. Emu Austral. Ornithol. 111:3i–xii
    [Google Scholar]
  80. 80. 
    Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S et al. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. PNAS 86:166196–200
    [Google Scholar]
  81. 81. 
    Kohn MH, Pelz H-J, Wayne RK 2000. Natural selection mapping of the warfarin-resistance gene. PNAS 97:147911–15
    [Google Scholar]
  82. 82. 
    Krell F-T, Wheeler QD. 2014. Specimen collection: Plan for the future.. Science 344:6186815–16
    [Google Scholar]
  83. 83. 
    La Salle J, Williams KJ, Moritz C 2016. Biodiversity analysis in the digital era. Philos. Trans. R. Soc. B 371:20150337
    [Google Scholar]
  84. 84. 
    Lamichhaney S, Card DC, Grayson P, Tonini JFR, Bravo GA et al. 2019. Integrating natural history collections and comparative genomics to study the genetic architecture of convergent evolution. Philos. Trans. R. Soc. B 374: 1777.20180248
    [Google Scholar]
  85. 85. 
    Lappalainen T. 2015. Functional genomics bridges the gap between quantitative genetics and molecular biology. Genome Res 25:101427–31
    [Google Scholar]
  86. 86. 
    Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J et al. 2018. Earth BioGenome Project: sequencing life for the future of life. PNAS 115:174325–33
    [Google Scholar]
  87. 87. 
    Lister AM. 2011. Natural history collections as sources of long-term datasets. Trends Ecol. Evol. 26:4153–54
    [Google Scholar]
  88. 88. 
    Lorenzen ED, Nogués-Bravo D, Orlando L, Weinstock J, Binladen J et al. 2011. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479:7373359–64
    [Google Scholar]
  89. 89. 
    Lotterhos KE, Whitlock MC. 2015. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24:51031–46
    [Google Scholar]
  90. 90. 
    Mack KL, Ballinger MA, Phifer-Rixey M, Nachman MW. 2018. Gene regulation underlies environmental adaptation in house mice. Genome Res 28:111636–45
    [Google Scholar]
  91. 91. 
    Malaney JL, Cook JA. 2018. A perfect storm for mammalogy: declining sample availability in a period of rapid environmental degradation. J. Mammal. 99:4773–88
    [Google Scholar]
  92. 92. 
    Malsagova K, Kopylov A, Stepanov A, Butkova T, Sinitsyna A et al. 2020. Biobanks—a platform for scientific and biomedical research. Diagnostics 10:7485
    [Google Scholar]
  93. 93. 
    Marioni JC, Arendt D. 2017. How single-cell genomics is changing evolutionary and developmental biology. Annu. Rev. Cell Dev. Biol. 33:537–53
    [Google Scholar]
  94. 94. 
    McCormack JE, Tsai WLE, Faircloth BC. 2016. Sequence capture of ultraconserved elements from bird museum specimens. Mol. Ecol. Resour. 16:51189–203
    [Google Scholar]
  95. 95. 
    McGuire JA, Cotoras DD, O'Connell B, Lawalata SZS, Wang-Claypool CY et al. 2018. Squeezing water from a stone: high-throughput sequencing from a 145-year old holotype resolves (barely) a cryptic species problem in flying lizards. PeerJ 6:e4470
    [Google Scholar]
  96. 96. 
    McKenzie JA, Batterham P. 1994. The genetic, molecular and phenotypic consequences of selection for insecticide resistance. Trends Ecol. Evol. 9:5166–69
    [Google Scholar]
  97. 97. 
    Medlin L, Elwood HJ, Stickel S, Sogin ML 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:2491–99
    [Google Scholar]
  98. 98. 
    Meineke EK, Davies TJ, Daru BH, Davis CC. 2019. Biological collections for understanding biodiversity in the Anthropocene. Philos. Trans. R. Soc. B 374: 1763.20170386
    [Google Scholar]
  99. 99. 
    Meyer M, Palkopoulou E, Baleka S, Stiller M, Penkman KEH et al. 2017. Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution. eLife 6:e25413
    [Google Scholar]
  100. 100. 
    Moore G, Tessler M, Cunningham SW, Betancourt J, Harbert R. 2020. Paleo-metagenomics of North American fossil packrat middens: past biodiversity revealed by ancient DNA. Ecol. Evol. 10:52530–44
    [Google Scholar]
  101. 101. 
    Moritz C, Agudo R. 2013. The future of species under climate change: resilience or decline?. Science 341:6145504–8
    [Google Scholar]
  102. 102. 
    Mulcahy DG, Macdonald KS III, Brady SG, Meyer C, Barker KB, Coddington J. 2016. Greater than X kb: a quantitative assessment of preservation conditions on genomic DNA quality, and a proposed standard for genome-quality DNA. PeerJ 4:e2528
    [Google Scholar]
  103. 103. 
    Murray GGR, Soares AER, Novak BJ, Schaefer NK, Cahill JA et al. 2017. Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science 358:6365951–54
    [Google Scholar]
  104. 104. 
    Nagy ZT. 2010. A hands-on overview of tissue preservation methods for molecular genetic analyses. Org. Divers. Evol. 10:191–105
    [Google Scholar]
  105. 105. 
    Natl. Acad. Sci. Eng. Med 2020. Biological Collections: Ensuring Critical Research and Education for the 21st Century Washington, DC: Natl. Acad. Press
  106. 106. 
    Nordling L. 2021.. ‘ The damage is total’: Fire rips through historic South African library and plant collection. Nature 592:7856672
    [Google Scholar]
  107. 107. 
    Novak BJ. 2018. De-extinction. Genes 9:11548
    [Google Scholar]
  108. 108. 
    Organ CL, Schweitzer MH, Zheng W, Freimark LM, Cantley LC, Asara JM. 2008. Molecular phylogenetics of mastodon and Tyrannosaurus rex. Science 320:5875499
    [Google Scholar]
  109. 109. 
    Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A et al. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:745674–78
    [Google Scholar]
  110. 110. 
    Parejo M, Wragg D, Henriques D, Charrière J-D, Estonba A. 2020. Digging into the genomic past of Swiss honey bees by whole-genome sequencing museum specimens. Genome Biol. Evol. 12:122535–51
    [Google Scholar]
  111. 111. 
    Pasquesi GIM, Adams RH, Card DC, Schield DR, Corbin AB et al. 2018. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat. Commun. 9:12774
    [Google Scholar]
  112. 112. 
    Phifer-Rixey M, Bi K, Ferris KG, Sheehan MJ, Lin D et al. 2018. The genomic basis of environmental adaptation in house mice. PLOS Genet 14:9e1007672
    [Google Scholar]
  113. 113. 
    Poinar HN, Schwarz C, Qi J, Shapiro B, MacPhee RDE et al. 2006. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311:5759392–94
    [Google Scholar]
  114. 114. 
    Poinar HN, Stankiewicz BA. 1999. Protein preservation and DNA retrieval from ancient tissues. PNAS 96:158426–31
    [Google Scholar]
  115. 115. 
    Preisser W. 2019. Latitudinal gradients of parasite richness: a review and new insights from helminths of cricetid rodents. Ecography 42:71315–30
    [Google Scholar]
  116. 116. 
    Prendini L, Hanner R, DeSalle R 2002. Obtaining, storing and archiving specimens and tissue samples for use in molecular studies. Techniques in Molecular Systematics and Evolution R DeSalle, G Giribet, W Wheeler 176–248 Basel, Switz.: Birkhäuser
    [Google Scholar]
  117. 117. 
    Pruvost M, Schwarz R, Correia VB, Champlot S, Braguier S et al. 2007. Freshly excavated fossil bones are best for amplification of ancient DNA. PNAS 104:3739–44
    [Google Scholar]
  118. 118. 
    Rasmussen M, Guo X, Wang Y, Lohmueller KE, Rasmussen S et al. 2011. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334:605294–98
    [Google Scholar]
  119. 119. 
    Rasys AM, Park S, Ball RE, Alcala AJ, Lauderdale JD, Menke DB. 2019. CRISPR-Cas9 gene editing in lizards through microinjection of unfertilized oocytes. Cell Rep 28:92288–2292.e3
    [Google Scholar]
  120. 120. 
    Reich D. 2018. Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past Oxford, UK: Oxford Univ. Press
  121. 121. 
    Riddell EA, Iknayan KJ, Hargrove L, Tremor S, Patton JL et al. 2021. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371:6529633–36
    [Google Scholar]
  122. 122. 
    Robertson T, Döring M, Guralnick R, Bloom D, Wieczorek J et al. 2014. The GBIF Integrated Publishing Toolkit: facilitating the efficient publishing of biodiversity data on the internet. PLOS ONE 9:8e102623
    [Google Scholar]
  123. 123. 
    Rocha LA, Aleixo A, Allen G, Almeda F, Baldwin CC et al. 2014. Specimen collection: an essential tool. Science 344:6186814–15
    [Google Scholar]
  124. 124. 
    Rodriguez D, Becker CG, Pupin NC, Haddad CFB, Zamudio KR. 2014. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol. Ecol. 23:4774–87
    [Google Scholar]
  125. 125. 
    Rodríguez Mega E 2020. Second Brazilian museum fire in two years reignites calls for reform. Nature 583:7815175–76
    [Google Scholar]
  126. 126. 
    Rouhan G, Dorr LJ, Gautier L, Clerc P, Muller S, Gaudeul M. 2017. The time has come for Natural History Collections to claim co-authorship of research articles. Taxon 66:51014–16
    [Google Scholar]
  127. 127. 
    Rowe KC, Rowe KMC, Tingley MW, Koo MS, Patton JL et al. 2015. Spatially heterogeneous impact of climate change on small mammals of montane California. Proc. R. Soc. B 282:179920141857
    [Google Scholar]
  128. 128. 
    Roycroft E, MacDonald AJ, Moritz C, Moussali A, Portela Miguez R, Rowe KC 2021. Museum genomics reveals the rapid decline and extinction of Australian rodents since European settlement. PNAS 118:27e2021390118
    [Google Scholar]
  129. 129. 
    Ruane S, Austin CC. 2017. Phylogenomics using formalin-fixed and 100+ year-old intractable natural history specimens. Mol. Ecol. Resour. 17:51003–8
    [Google Scholar]
  130. 130. 
    Rubi TL, Knowles LL, Dantzer B. 2020. Museum epigenomics: characterizing cytosine methylation in historic museum specimens. Mol. Ecol. Resour. 20:51161–70
    [Google Scholar]
  131. 131. 
    Rubidge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C. 2012. Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat. Clim. Change 2:4285–88
    [Google Scholar]
  132. 132. 
    Ryder OA, Onuma M. 2018. Viable cell culture banking for biodiversity characterization and conservation. Annu. Rev. Anim. Biosci. 6:83–98
    [Google Scholar]
  133. 133. 
    Sackton TB, Grayson P, Cloutier A, Hu Z, Liu JS et al. 2019. Convergent regulatory evolution and loss of flight in paleognathous birds. Science 364:643574–78
    [Google Scholar]
  134. 134. 
    Schindel DE, Cook JA. 2018. The next generation of natural history collections. PLOS Biol 16:7e2006125
    [Google Scholar]
  135. 135. 
    Schmitt CJ, Cook JA, Zamudio KR, Edwards SV. 2019. Museum specimens of terrestrial vertebrates are sensitive indicators of environmental change in the Anthropocene. Philos. Trans. R. Soc. B 374:176320170387
    [Google Scholar]
  136. 136. 
    Schubert M, Jónsson H, Chang D, Sarkissian CD, Ermini L et al. 2014. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. PNAS 111:52E5661–69
    [Google Scholar]
  137. 137. 
    Schweitzer MH, Zheng W, Organ CL, Avci R, Suo Z et al. 2009. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 324:5927626–31
    [Google Scholar]
  138. 138. 
    Secr. Conven. Biol. Divers 2011. Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from Their Utilization to the Convention on Biological Diversity Montreal: Secr. Conven. Biol. Divers https://www.cbd.int/abs/doc/protocol/nagoya-protocol-en.pdf
  139. 139. 
    Shapiro B, Drummond AJ, Rambaut A, Wilson MC, Matheus PE et al. 2004. Rise and fall of the Beringian steppe bison. Science 306:57011561–65
    [Google Scholar]
  140. 140. 
    Shapiro B, Hofreiter M. 2014. A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. Science 343:61691236573
    [Google Scholar]
  141. 141. 
    Shapiro B, Sibthorpe D, Rambaut A, Austin J, Wragg GM et al. 2002. Flight of the dodo. Science 295:55601683
    [Google Scholar]
  142. 142. 
    Shultz AJ, Adams BJ, Bell KC, Ludt WB, Pauly GB, Vendetti JE 2021. Natural history collections are critical resources for contemporary and future studies of urban evolution. Evol. Appl. 14:1233–47
    [Google Scholar]
  143. 143. 
    Shultz AJ, Baker AJ, Hill GE, Nolan PM, Edwards SV 2016. SNPs across time and space: population genomic signatures of founder events and epizootics in the house finch (Haemorhous mexicanus). Ecol. Evol. 6:207475–89
    [Google Scholar]
  144. 144. 
    Smith BT, Gehara M, Harvey MG 2021. The demography of extinction in eastern North American birds. Proc. R. Soc. B 2881944:20201945
    [Google Scholar]
  145. 145. 
    Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N et al. 2021. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590:344–50
    [Google Scholar]
  146. 146. 
    Termignoni-Garcia F, Louder MIM, Balakrishnan CN, O'Connell L, Edwards SV. 2020. Prospects for sociogenomics in avian cooperative breeding and parental care. Curr. Zool. 66:3293–306
    [Google Scholar]
  147. 147. 
    Tingley MW, Monahan WB, Beissinger SR, Moritz C. 2009. Birds track their Grinnellian niche through a century of climate change. PNAS 106:Suppl. 219637–43
    [Google Scholar]
  148. 148. 
    Toews DPL, Kramer GR, Jones AW, Brennan CL, Cloud BE et al. 2020. Genomic identification of intergeneric hybrids in New World wood-warblers (Aves: Parulidae). Biol. J. Linn. Soc. 131:1183–91
    [Google Scholar]
  149. 149. 
    Totoiu CA, Phillips JM, Reese AT, Majumdar S, Girguis PR et al. 2020. Vortex fluidics-mediated DNA rescue from formalin-fixed museum specimens. PLOS ONE 15:1e0225807
    [Google Scholar]
  150. 150. 
    van der Valk T, Pečnerová P, Díez-del-Molino D, Bergström A, Oppenheimer J et al. 2021. Million-year-old DNA unravels the genomic history of mammoths. Nature 591:265–69
    [Google Scholar]
  151. 151. 
    Vershinina AO, Kapp JD, Baryshnikov GF, Shapiro B. 2020. The case of an arctic wild ass highlights the utility of ancient DNA for validating problematic identifications in museum collections. Mol. Ecol. Resour. 20:51182–90
    [Google Scholar]
  152. 152. 
    Vo A-TE, Bank MS, Shine JP, Edwards SV. 2011. Temporal increase in organic mercury in an endangered pelagic seabird assessed by century-old museum specimens. PNAS 108:187466–71
    [Google Scholar]
  153. 153. 
    Wallis EJ. 2006. Online Zoological Collections of Australian Museums (OZCAM): a national approach to making zoological data available on the web. Integr. Zool. 1:278–79
    [Google Scholar]
  154. 154. 
    Warinner C, Hendy J, Speller C, Cappellini E, Fischer R et al. 2014. Direct evidence of milk consumption from ancient human dental calculus. Sci. Rep. 4:17104
    [Google Scholar]
  155. 155. 
    Welker F, Collins MJ, Thomas JA, Wadsley M, Brace S et al. 2015. Ancient proteins resolve the evolutionary history of Darwin's South American ungulates. Nature 522:755481–84
    [Google Scholar]
  156. 156. 
    Wilson MC, Hills LV, Shapiro B. 2008. Late Pleistocene northward-dispersing Bison antiquus from the Bighill Creek Formation, Gallelli Gravel Pit, Alberta, Canada, and the fate of Bison occidentalis. Can. J. Earth Sci. 45:7827–59
    [Google Scholar]
  157. 157. 
    Wisely SM, Ryder OA, Santymire RM, Engelhardt JF, Novak BJ. 2015. A road map for 21st century genetic restoration: gene pool enrichment of the black-footed ferret. J. Hered. 106:5581–92
    [Google Scholar]
  158. 158. 
    Yan J, Qiu Y, Ribeiro dos Santos AM, Yin Y, Li YE et al. 2021. Systematic analysis of binding of transcription factors to noncoding variants. Nature 591:147–51
    [Google Scholar]
  159. 159. 
    Yang T, Miller M, Forgacs D, Derr J, Stothard P. 2020. Development of SNP-based genomic tools for the Canadian Bison Industry: parentage verification and subspecies composition. Front. Genet. 11:585999
    [Google Scholar]
  160. 160. 
    Yates TL, Mills JN, Parmenter CA, Ksiazek TG, Parmenter RR et al. 2002. The ecology and evolutionary history of an emergent disease: hantavirus pulmonary syndrome: Evidence from two El Niño episodes in the American Southwest suggests that El Niño–driven precipitation, the initial catalyst of a trophic cascade that results in a delayed density-dependent rodent response, is sufficient to predict heightened risk for human contraction of hantavirus pulmonary syndrome. BioScience 52:11989–98
    [Google Scholar]
  161. 161. 
    Zhao M, Wu X, Liao H-T, Liu Y. 2020. Exploring research fronts and topics of Big Data and Artificial Intelligence application for cultural heritage and museum research. IOP Conf. Ser. Mater. Sci. Eng. 806:1012036
    [Google Scholar]
  162. 162. 
    Zimkus BM, Ford LS. 2014. Best practices for genetic resources associated with natural history collections: recommendations for practical implementation. Collect. Forum. 28:1–277–112
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071719-020506
Loading
/content/journals/10.1146/annurev-genet-071719-020506
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error