1932

Abstract

We are entering a new era in genomics where entire centromeric regions are accurately represented in human reference assemblies. Access to these high-resolution maps will enable new surveys of sequence and epigenetic variation in the population and offer new insight into satellite array genomics and centromere function. Here, we focus on the sequence organization and evolution of alpha satellites, which are credited as the genetic and genomic definition of human centromeres due to their interaction with inner kinetochore proteins and their importance in the development of human artificial chromosome assays. We provide an overview of alpha satellite repeat structure and array organization in the context of these high-quality reference data sets; discuss the emergence of variation-based surveys; and provide perspective on the role of this new source of genetic and epigenetic variation in the context of chromosome biology, genome instability, and human disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071719-020519
2021-11-23
2024-05-24
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-071719-020519.html?itemId=/content/journals/10.1146/annurev-genet-071719-020519&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aldrup-MacDonald ME, Kuo ME, Sullivan LL, Chew K, Sullivan BA. 2016. Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles. Genome Res 26:101301–11
    [Google Scholar]
  2. 2. 
    Alexandrov I, Kazakov A, Tumeneva I, Shepelev V, Yurov Y. 2001. Alpha-satellite DNA of primates: old and new families. Chromosoma 110:4253–66
    [Google Scholar]
  3. 3. 
    Alexandrov IA, Medvedev LI, Mashkova TD, Kisselev LL, Romanova LY, Yurov YB. 1993. Definition of a new alpha satellite suprachromosomal family characterized by monomeric organization. Nucleic Acids Res 21:92209–15
    [Google Scholar]
  4. 4. 
    Alexandrov IA, Mitkevich SP, Yurov YB. 1988. The phylogeny of human chromosome specific alpha satellites. Chromosoma 96:6443–53
    [Google Scholar]
  5. 5. 
    Alkan C, Ventura M, Archidiacono N, Rocchi M, Sahinalp SC, Eichler EE. 2007. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data. PLOS Comput. Biol. 3:91807–18
    [Google Scholar]
  6. 6. 
    Altemose N, Logsdon GA, Bzikadze AV, Sidhwani P, Langley SA et al. 2021. Complete genomic and epigenetic maps of human centromeres. bioRxiv 2021.07.12.452052. https://doi.org/10.1101/2021.07.12.452052
    [Crossref]
  7. 7. 
    Altemose N, Miga KH, Maggioni M, Willard HF 2014. Genomic characterization of large heterochromatic gaps in the human genome assembly. PLOS Comput. Biol. 10:5e1003628
    [Google Scholar]
  8. 8. 
    Andronov L, Ouararhni K, Stoll I, Klaholz BP, Hamiche A. 2019. CENP-A nucleosome clusters form rosette-like structures around HJURP during G1. Nat. Commun. 10:14436
    [Google Scholar]
  9. 9. 
    Baicharoen S, Arsaithamkul V, Hirai Y, Hara T, Koga A, Hirai H 2012. In situ hybridization analysis of gibbon chromosomes suggests that amplification of alpha satellite DNA in the telomere region is confined to two of the four genera. Genome 55:11809–12
    [Google Scholar]
  10. 10. 
    Balzano E, Giunta S. 2020. Centromeres under pressure: evolutionary innovation in conflict with conserved function. Genes 11:8912
    [Google Scholar]
  11. 11. 
    Barra V, Fachinetti D. 2018. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat. Commun. 9:14340
    [Google Scholar]
  12. 12. 
    Beadle GW. 1932. A possible influence of the spindle fibre on crossing-over in Drosophila. PNAS 18:2160–65
    [Google Scholar]
  13. 13. 
    Blower MD, Sullivan BA, Karpen GH. 2002. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2:3319–30
    [Google Scholar]
  14. 14. 
    Bury L, Moodie B, Ly J, McKay LS, Miga KHH, Cheeseman IM 2020. Alpha-satellite RNA transcripts are repressed by centromere-nucleolus associations. eLife 9:e59770
    [Google Scholar]
  15. 15. 
    Bzikadze AV, Pevzner PA. 2020. Automated assembly of centromeres from ultra-long error-prone reads. Nat. Biotechnol. 38:111309–16
    [Google Scholar]
  16. 16. 
    Carlson M, Brutlag D. 1977. Cloning and characterization of a complex satellite DNA from Drosophila melanogaster. Cell 11:2371–81
    [Google Scholar]
  17. 17. 
    Cechova M. 2020. Probably correct: rescuing repeats with short and long reads. Genes 12:148
    [Google Scholar]
  18. 18. 
    Cellamare A, Catacchio CR, Alkan C, Giannuzzi G, Antonacci F et al. 2009. New insights into centromere organization and evolution from the white-cheeked gibbon and marmoset. Mol. Biol. Evol. 26:81889–900
    [Google Scholar]
  19. 19. 
    Dumont M, Gamba R, Gestraud P, Klaasen S, Worrall JT et al. 2020. Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features. EMBO J 39:2e102924
    [Google Scholar]
  20. 20. 
    Durfy SJ, Willard HF. 1989. Patterns of intra- and interarray sequence variation in alpha satellite from the human X chromosome: evidence for short-range homogenization of tandemly repeated DNA sequences. Genomics 5:4810–21
    [Google Scholar]
  21. 21. 
    Dvorkina T, Bzikadze AV, Pevzner PA. 2020. The string decomposition problem and its applications to centromere analysis and assembly. Bioinformatics 36:Suppl. 1i93–101
    [Google Scholar]
  22. 22. 
    Dvorkina T, Kunyavskaya O, Bzikadze AV, Alexandrov I, Pevzner PA 2021. CentromereArchitect: inference and analysis of the architecture of centromeres. Bioinformatics 37:Suppl. 1i196–204
    [Google Scholar]
  23. 23. 
    Erliandri I, Fu H, Nakano M, Kim J-H, Miga KH et al. 2014. Replication of alpha-satellite DNA arrays in endogenous human centromeric regions and in human artificial chromosome. Nucleic Acids Res 42:1811502–16
    [Google Scholar]
  24. 24. 
    Finelli P, Antonacci R, Marzella R, Lonoce A, Archidiacono N, Rocchi M 1996. Structural organization of multiple alphoid subsets coexisting on human chromosomes 1, 4, 5, 7, 9, 15, 18, and 19. Genomics 38:3325–30
    [Google Scholar]
  25. 25. 
    Fishman L, Saunders A. 2008. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322:59071559–62
    [Google Scholar]
  26. 26. 
    Flynn JM, Brown EJ, Clark AG. 2021. Copy number evolution in simple and complex tandem repeats across the C57BL/6 and C57BL/10 inbred mouse lines. G3 Genes Genomes Genet 11:8jkab184 https://doi.org/10.1093/g3journal/jkab184
    [Crossref] [Google Scholar]
  27. 27. 
    Flynn JM, Long M, Wing RA, Clark AG. 2020. Evolutionary dynamics of abundant 7-bp satellites in the genome of Drosophila virilis. Mol. Biol. Evol. 37:51362–75
    [Google Scholar]
  28. 28. 
    Ford JH, Lester P. 1978. Chromosomal variants and nondisjunction. Cytogenet. Cell Genet. 21:5300–3
    [Google Scholar]
  29. 29. 
    Fukagawa T, Earnshaw WC. 2014. The centromere: chromatin foundation for the kinetochore machinery. Dev. Cell 30:5496–508
    [Google Scholar]
  30. 30. 
    Gaff C, du Sart D, Kalitsis P, Iannello R, Nagy A, Choo KHA. 1994. A novel nuclear protein binds centromeric alpha satellite DNA. Hum. Mol. Genet. 3:5711–16
    [Google Scholar]
  31. 31. 
    Ge Y, Wagner MJ, Siciliano M, Wells DE 1992. Sequence, higher order repeat structure, and long-range organization of alpha satellite DNA specific to human chromosome 8. Genomics 13:3585–93
    [Google Scholar]
  32. 32. 
    Giunta S, Funabiki H 2017. Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T. PNAS 114:81928–33
    [Google Scholar]
  33. 33. 
    Giunta S, Hervé S, White RR, Wilhelm T, Dumont M et al. 2021. CENP-A chromatin prevents replication stress at centromeres to avoid structural aneuploidy. PNAS 118:10e2015634118
    [Google Scholar]
  34. 34. 
    Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H et al. 1998. Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol. Phylogenet. Evol. 9:3585–98
    [Google Scholar]
  35. 35. 
    Haaf T, Mater AG, Wienberg J, Ward DC 1995. Presence and abundance of CENP-B box sequences in great ape subsets of primate-specific α-satellite DNA. J. Mol. Evol. 41:4487–91
    [Google Scholar]
  36. 36. 
    Hartley G, O'Neill RJ. 2019. Centromere repeats: hidden gems of the genome. Genes 10:3223
    [Google Scholar]
  37. 37. 
    Hoffmann S, Izquierdo HM, Gamba R, Chardon F, Dumont M et al. 2020. A genetic memory initiates the epigenetic loop necessary to preserve centromere position. EMBO J 39:20e105505
    [Google Scholar]
  38. 38. 
    Hoyt SJ, Storer JM, Hartley GA, Grady PGS, Gershman A et al. 2021. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. bioRxiv 2021.07.12.451456. https://doi.org/10.1101/2021.07.12.451456
    [Crossref]
  39. 39. 
    Int. Hum. Genome Seq. Consort 2004. Finishing the euchromatic sequence of the human genome. Nature 431:7011931–45
    [Google Scholar]
  40. 40. 
    Jain M, Koren S, Miga KH, Quick J, Rand AC et al. 2018. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36:4338–45
    [Google Scholar]
  41. 41. 
    Jain M, Olsen HE, Turner DJ, Stoddart D, Bulazel KV et al. 2018. Linear assembly of a human centromere on the Y chromosome. Nat. Biotechnol. 36:4321–23
    [Google Scholar]
  42. 42. 
    Kazakov AE, Shepelev VA, Tumeneva IG, Alexandrov AA, Yurov YB, Alexandrov IA. 2003. Interspersed repeats are found predominantly in the “old” α satellite families. Genomics 82:6619–27
    [Google Scholar]
  43. 43. 
    Khan H, Smit A, Boissinot S. 2006. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res 16:178–87
    [Google Scholar]
  44. 44. 
    Koga A, Hirai Y, Hara T, Hirai H. 2012. Repetitive sequences originating from the centromere constitute large-scale heterochromatin in the telomere region in the siamang, a small ape. Heredity 109:3180–87
    [Google Scholar]
  45. 45. 
    Kursel LE, Malik HS. 2018. The cellular mechanisms and consequences of centromere drive. Curr. Opin. Cell Biol. 52:58–65
    [Google Scholar]
  46. 46. 
    Lampson MA, Black BE 2017. Cellular and molecular mechanisms of centromere drive. Cold Spring Harb. Symp. Quant. Biol. 82:249–57
    [Google Scholar]
  47. 47. 
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:6822860–921
    [Google Scholar]
  48. 48. 
    Langley SA, Miga KH, Karpen GH, Langley CH 2019. Haplotypes spanning centromeric regions reveal persistence of large blocks of archaic DNA. eLife 8:e42989
    [Google Scholar]
  49. 49. 
    Lee H-R, Hayden KE, Willard HF 2011. Organization and molecular evolution of CENP-A–associated satellite DNA families in a basal primate genome. Genome Biol. Evol. 3:1136–49
    [Google Scholar]
  50. 50. 
    Lee I, Razaghi R, Gilpatrick T, Molnar M, Gershman A et al. 2020. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods 17:121191–99
    [Google Scholar]
  51. 51. 
    Levy S, Sutton G, Ng PC, Feuk L, Halpern AL et al. 2007. The diploid genome sequence of an individual human. PLOS Biol 5:10e254
    [Google Scholar]
  52. 52. 
    Logsdon GA, Vollger MR, Hsieh P, Mao Y, Liskovykh MA et al. 2021. The structure, function and evolution of a complete human chromosome 8. Nature 593:7857101–7
    [Google Scholar]
  53. 53. 
    Loh P-R, Genovese G, Handsaker RE, Finucane HK, Reshef YA et al. 2018. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature 559:7714350–55
    [Google Scholar]
  54. 54. 
    Mahtani MM, Willard HF. 1990. Pulsed-field gel analysis of α-satellite DNA at the human X chromosome centromere: high-frequency polymorphisms and array size estimate. Genomics 7:4607–13
    [Google Scholar]
  55. 55. 
    Mahtani MM, Willard HF. 1998. Physical and genetic mapping of the human X chromosome centromere: repression of recombination. Genome Res 8:2100–10
    [Google Scholar]
  56. 56. 
    Malik HS, Henikoff S. 2001. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:31293–98
    [Google Scholar]
  57. 57. 
    Maloney KA, Sullivan LL, Matheny JE, Strome ED, Merrett SL et al. 2012. Functional epialleles at an endogenous human centromere. PNAS 109:3413704–9
    [Google Scholar]
  58. 58. 
    Manuelidis L. 1976. Repeating restriction fragments of human DNA. Nucleic Acids Res 3:113063–76
    [Google Scholar]
  59. 59. 
    Manuelidis L, Wu JC. 1978. Homology between human and simian repeated DNA. Nature 276:568392–94
    [Google Scholar]
  60. 60. 
    Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T 1989. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 109:51963–73
    [Google Scholar]
  61. 61. 
    Masumoto H, Yoda K, Ikeno M, Kitagawa K, Muro Y, Okazaki T. 1993. Properties of CENP-B and its target sequence in a satellite DNA. Chromosome Segregation and Aneuploidy BK Vig 31–43 Berlin: Springer
    [Google Scholar]
  62. 62. 
    Mather K. 1939. Crossing over and heterochromatin in the X chromosome of Drosophila melanogaster. Genetics 24:3413–35
    [Google Scholar]
  63. 63. 
    McNulty SM, Sullivan BA. 2018. Alpha satellite DNA biology: finding function in the recesses of the genome. Chromosome Res 26:3115–38
    [Google Scholar]
  64. 64. 
    Miga KH. 2019. Centromeric satellite DNAs: hidden sequence variation in the human population. Genes 10:5352
    [Google Scholar]
  65. 65. 
    Miga KH. 2020. Centromere studies in the era of “telomere-to-telomere” genomics. Exp. Cell Res. 394:2112127
    [Google Scholar]
  66. 66. 
    Miga KH, Eisenhart C, Kent WJ. 2015. Utilizing mapping targets of sequences underrepresented in the reference assembly to reduce false positive alignments. Nucleic Acids Res 43:20e133
    [Google Scholar]
  67. 67. 
    Miga KH, Koren S, Rhie A, Vollger MR, Gershman A et al. 2020. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585:782379–84
    [Google Scholar]
  68. 68. 
    Miga KH, Newton Y, Jain M, Altemose N, Willard HF, Kent WJ 2014. Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res 24:4697–707
    [Google Scholar]
  69. 69. 
    Mikheenko A, Bzikadze AV, Gurevich A, Miga KH, Pevzner PA. 2020. TandemTools: mapping long reads and assessing/improving assembly quality in extra-long tandem repeats. Bioinformatics 36:Suppl. 1i75–83
    [Google Scholar]
  70. 70. 
    Müller CA, Boemo MA, Spingardi P, Kessler BM, Kriaucionis S et al. 2019. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads. Nat. Methods 16:5429–36
    [Google Scholar]
  71. 71. 
    Murillo-Pineda M, Valente LP, Dumont M, Mata JF, Fachinetti D, Jansen LET 2021. Induction of spontaneous human neocentromere formation and long-term maturation. J. Cell Biol. 220:3e202007210
    [Google Scholar]
  72. 72. 
    Nechemia-Arbely Y, Fachinetti D, Miga KH, Sekulic N, Soni GV et al. 2017. Human centromeric CENP-A chromatin is a homotypic, octameric nucleosome at all cell cycle points. J. Cell Biol. 216:3607–21
    [Google Scholar]
  73. 73. 
    Nechemia-Arbely Y, Miga KH, Shoshani O, Aslanian A, McMahon MA et al. 2019. DNA replication acts as an error correction mechanism to maintain centromere identity by restricting CENP-A to centromeres. Nat. Cell Biol. 21:6743–54
    [Google Scholar]
  74. 74. 
    Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA et al. 2020. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 30:91291–305
    [Google Scholar]
  75. 75. 
    Osoegawa K, Vessere GM, Li Shu C, Hoskins RA, Abad JP et al. 2007. BAC clones generated from sheared DNA. Genomics 89:2291–99
    [Google Scholar]
  76. 76. 
    Reich D, Patterson N, De Jager PL, McDonald GJ, Waliszewska A et al. 2005. A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat. Genet. 37:101113–18
    [Google Scholar]
  77. 77. 
    Rice WR. 2019. A game of thrones at human centromeres II. A new molecular/evolutionary model. bioRxiv 731471. https://doi.org/10.1101/731471
    [Crossref]
  78. 78. 
    Romanova LY, Deriagin GV, Mashkova TD, Tumeneva IG, Mushegian AR et al. 1996. Evidence for selection in evolution of alpha satellite DNA: the central role of CENP-B/pJα binding region. J. Mol. Biol. 261:3334–40
    [Google Scholar]
  79. 79. 
    Rosandić M, Paar V, Basar I, Glunčić M, Pavin N, Pilaš I 2006. CENP-B box and pJα sequence distribution in human alpha satellite higher-order repeats (HOR). Chromosome Res 14:7735–53
    [Google Scholar]
  80. 80. 
    Rudd MK, Willard HF. 2004. Analysis of the centromeric regions of the human genome assembly. Trends Genet 20:11529–33
    [Google Scholar]
  81. 81. 
    Rudd MK, Wray GA, Willard HF. 2006. The evolutionary dynamics of α-satellite. Genome Res 16:188–96
    [Google Scholar]
  82. 82. 
    Scelfo A, Fachinetti D. 2019. Keeping the centromere under control: a promising role for DNA methylation. Cells 8:8e202007210
    [Google Scholar]
  83. 83. 
    Schindelhauer D, Schwarz T. 2002. Evidence for a fast, intrachromosomal conversion mechanism from mapping of nucleotide variants within a homogeneous α-satellite DNA array. Genome Res 12:121815–26
    [Google Scholar]
  84. 84. 
    Schueler MG, Dunn JM, Bird CP, Ross MT, Viggiano L et al. 2005. Progressive proximal expansion of the primate X chromosome centromere. PNAS 102:3010563–68
    [Google Scholar]
  85. 85. 
    Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF 2001. Genomic and genetic definition of a functional human centromere. Science 294:5540109–15
    [Google Scholar]
  86. 86. 
    Schueler MG, Swanson W, Thomas PJNISC Comp. Seq. Program, Green ED 2010. Adaptive evolution of foundation kinetochore proteins in primates. Mol. Biol. Evol. 27:71585–97
    [Google Scholar]
  87. 87. 
    Sevim V, Bashir A, Chin C-S, Miga KH. 2016. Alpha-CENTAURI: assessing novel centromeric repeat sequence variation with long read sequencing. Bioinformatics 32:131921–24
    [Google Scholar]
  88. 88. 
    She X, Horvath JE, Jiang Z, Liu G, Furey TS et al. 2004. The structure and evolution of centromeric transition regions within the human genome. Nature 430:7002857–64
    [Google Scholar]
  89. 89. 
    Shepelev VA, Alexandrov AA, Yurov YB, Alexandrov IA. 2009. The evolutionary origin of man can be traced in the layers of defunct ancestral alpha satellites flanking the active centromeres of human chromosomes. PLOS Genet 5:9e1000641
    [Google Scholar]
  90. 90. 
    Shepelev VA, Uralsky LI, Alexandrov AA, Yurov YB, Rogaev EI, Alexandrov IA. 2015. Annotation of suprachromosomal families reveals uncommon types of alpha satellite organization in pericentromeric regions of hg38 human genome assembly. Genom. Data 5:139–46
    [Google Scholar]
  91. 91. 
    Singer MF. 1982. Highly repeated sequences in mammalian genomes. Int. Rev. Cytol. 76:67–112
    [Google Scholar]
  92. 92. 
    Smith GP. 1976. Evolution of repeated DNA sequences by unequal crossover. Science 191:4227528–35
    [Google Scholar]
  93. 93. 
    Smith GR, Nambiar M. 2020. New solutions to old problems: molecular mechanisms of meiotic crossover control. Trends Genet 36:5337–46
    [Google Scholar]
  94. 94. 
    Steinberg KM, Schneider VA, Graves-Lindsay TA, Fulton RS, Agarwala R et al. 2014. Single haplotype assembly of the human genome from a hydatidiform mole. Genome Res 24:122066–76
    [Google Scholar]
  95. 95. 
    Stephan W. 1989. Tandem-repetitive noncoding DNA: forms and forces. Mol. Biol. Evol. 6:2198–212
    [Google Scholar]
  96. 96. 
    Stephan W, Cho S 1994. Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. Genetics 136:1333–41
    [Google Scholar]
  97. 97. 
    Stimpson KM, Matheny JE, Sullivan BA. 2012. Dicentric chromosomes: unique models to study centromere function and inactivation. Chromosome Res 20:5595–605
    [Google Scholar]
  98. 98. 
    Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A et al. 2015. An integrated map of structural variation in 2,504 human genomes. Nature 526:757175–81
    [Google Scholar]
  99. 99. 
    Sullivan BA, Willard HF. 1998. Stable dicentric X chromosomes with two functional centromeres. Nat. Genet. 20:3227–28
    [Google Scholar]
  100. 100. 
    Sullivan LL, Sullivan BA. 2020. Genomic and functional variation of human centromeres. Exp. Cell Res. 389:2111896
    [Google Scholar]
  101. 101. 
    Suzuki Y, Myers EW, Morishita S. 2020. Rapid and ongoing evolution of repetitive sequence structures in human centromeres. Sci. Adv. 6:50eabd9230
    [Google Scholar]
  102. 102. 
    Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S et al. 2011. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331:6017593–96
    [Google Scholar]
  103. 103. 
    Ulahannan N, Pendleton M, Deshpande A, Schwenk S, Behr JM et al. 2019. Nanopore sequencing of DNA concatemers reveals higher-order features of chromatin structure. . bioRxiv 833590. https://doi.org/10.1101/833590
    [Crossref]
  104. 104. 
    Uralsky LI, Shepelev VA, Alexandrov AA, Yurov YB, Rogaev EI, Alexandrov IA. 2019. Classification and monomer-by-monomer annotation dataset of suprachromosomal family 1 alpha satellite higher-order repeats in hg38 human genome assembly. Data Brief 24:103708
    [Google Scholar]
  105. 105. 
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al. 2001. The sequence of the human genome. Science 291:55071304–51
    [Google Scholar]
  106. 106. 
    Waye JS, Willard HF. 1985. Chromosome-specific alpha satellite DNA: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human X chromosome. Nucleic Acids Res 13:82731–43
    [Google Scholar]
  107. 107. 
    Wei KH-C, Grenier JK, Barbash DA, Clark AG. 2014. Correlated variation and population differentiation in satellite DNA abundance among lines of Drosophila melanogaster. PNAS 111:5218793–98
    [Google Scholar]
  108. 108. 
    Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ et al. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37:101155–62
    [Google Scholar]
  109. 109. 
    Wevrick R, Willard HF. 1989. Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. PNAS 86:239394–98
    [Google Scholar]
  110. 110. 
    Wevrick R, Willard HF. 1991. Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. Nucleic Acids Res 19:92295–2301
    [Google Scholar]
  111. 111. 
    Willard HF. 1985. Chromosome-specific organization of human alpha satellite DNA. Am. J. Hum. Genet. 37:3524–32
    [Google Scholar]
  112. 112. 
    Willard HF, Waye JS. 1987. Chromosome-specific subsets of human alpha satellite DNA: analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat. J. Mol. Evol. 25:3207–14
    [Google Scholar]
  113. 113. 
    Willard HF, Waye JS. 1987. Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet 3:192–98
    [Google Scholar]
  114. 114. 
    Williamson SH, Hubisz MJ, Clark AG, Payseur BA, Bustamante CD, Nielsen R. 2007. Localizing recent adaptive evolution in the human genome. PLOS Genet 3:6e90
    [Google Scholar]
  115. 115. 
    Workman RE, Tang AD, Tang PS, Jain M, Tyson JR et al. 2019. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16:121297–305
    [Google Scholar]
  116. 116. 
    Wyandt HE, Tonk VS. 2012. Human Chromosome Variation: Heteromorphism and Polymorphism Dordrecht, Neth: Springer
  117. 117. 
    Yurov YB, Mitkevich SP, Alexandrov IA. 1987. Application of cloned satellite DNA sequences to molecular-cytogenetic analysis of constitutive heterochromatin heteromorphisms in man. Hum. Genet. 76:2157–64
    [Google Scholar]
  118. 118. 
    Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N et al. 2011. BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477:7363179–84
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071719-020519
Loading
/content/journals/10.1146/annurev-genet-071719-020519
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error