1932

Abstract

The first animals arose more than six hundred million years ago, yet they left little impression in the fossil record. Nonetheless, the cell biology and genome composition of the first animal, the Urmetazoan, can be reconstructed through the study of phylogenetically relevant living organisms. Comparisons among animals and their unicellular and colonial relatives reveal that the Urmetazoan likely possessed a layer of epithelium-like collar cells, preyed on bacteria, reproduced by sperm and egg, and developed through cell division, cell differentiation, and invagination. Although many genes involved in development, body patterning, immunity, and cell-type specification evolved in the animal stem lineage or after animal origins, several gene families critical for cell adhesion, signaling, and gene regulation predate the origin of animals. The ancestral functions of these and other genes may eventually be revealed through studies of gene and genome function in early-branching animals and their closest non-animal relatives.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111212-133456
2013-11-23
2025-04-17
Loading full text...

Full text loading...

/deliver/fulltext/genet/47/1/annurev-genet-111212-133456.html?itemId=/content/journals/10.1146/annurev-genet-111212-133456&mimeType=html&fmt=ahah

Literature Cited

  1. Abedin M, King N. 1.  2010. Diverse evolutionary paths to cell adhesion. Trends Cell Biol. 20:12734–42 [Google Scholar]
  2. Abedin M, King N. 2.  2008. The premetazoan ancestry of cadherins. Science 319:5865946–48 [Google Scholar]
  3. Adamska M, Degnan SM, Green KM, Adamski M, Craigie A. 3.  et al. 2007. Wnt and TGF-β expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS ONE 2:10e1031 [Google Scholar]
  4. Adamska M, Larroux C, Adamski M, Green K, Lovas E. 4.  et al. 2010. Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol. Dev. 12:5494–518 [Google Scholar]
  5. Adamska M, Matus DQ, Adamski M, Green K, Rokhsar DS. 5.  et al. 2007. The evolutionary origin of hedgehog proteins. Curr. Biol. 17:19R836–37 [Google Scholar]
  6. Alegado RA, Brown LW, Cao S, Dermenjian RK, Zuzow R. 6.  et al. 2012. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife 1:e00013 [Google Scholar]
  7. Alié A, Manuel M. 7.  2010. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans. BMC Evol. Biol. 10:34 [Google Scholar]
  8. Angst BD, Marcozzi C, Magee AI. 8.  2001. The cadherin superfamily: diversity in form and function. J. Cell Sci. 114:Pt. 4629–41 [Google Scholar]
  9. Baines AJ.9.  2010. Evolution of the spectrin-based membrane skeleton. Transfus. Clin. Biol. 17:395–103 [Google Scholar]
  10. Baldauf S.10.  1999. A search for the origins of animals and fungi: comparing and combining molecular data. Am. Nat. 154:S4S178–88 [Google Scholar]
  11. Borchiellini C, Boury-Esnault N, Vacelet J, Le Parco Y. 11.  1998. Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of Metazoa and specific phylogenetic relationships between animals and fungi. Mol. Biol. Evol. 15:6647–55 [Google Scholar]
  12. Borchiellini C, Manuel M, Alivon E, Boury-Esnault N, Vacelet J, Le Parco Y. 12.  2008. Sponge paraphyly and the origin of Metazoa. J. Evol. Biol. 14:1171–79 [Google Scholar]
  13. Boute N, Exposito J-Y, Boury-Esnault N, Vacelet J, Noro N. 13.  et al. 1996. Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol. Cell 88:1–237–44 [Google Scholar]
  14. Brain CK, Prave AR, Hoffmann K-H, Fallick AE, Botha A. 14.  et al. 2012. The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. S. Afr. J. Sci. 108:1/2 Art. #658 8 http://dx.doi.org/10.4102/sajs.v108i1/2.658 [Google Scholar]
  15. 15. Broad Inst 2013. Origins of Multicellularity Database. Cambridge, MA: Broad Inst http://www.broadinstitute.org/annotation/genome/multicellularity_project/MultiHome.html [Google Scholar]
  16. Brown SJ, Cole MD, Erives AJ. 16.  2008. Evolution of the holozoan ribosome biogenesis regulon. BMC Genomics 9:442 [Google Scholar]
  17. Burkhardt P, Stegmann CM, Cooper B, Kloepper TH, Imig C. 17.  et al. 2011. Primordial neurosecretory apparatus identified in the choanoflagellate Monosiga brevicollis. Proc. Natl. Acad. Sci. USA 108:3715264–69 [Google Scholar]
  18. Byrum C, Martindale MQ. 18.  2004. Gastrulation in the Cnidaria and Ctenophora. Gastrulation: from Cells to Embryo CA Stern 33–50 Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press [Google Scholar]
  19. Cai X.19.  2008. Unicellular Ca2+ signaling “toolkit” at the origin of metazoa. Mol. Biol. Evol. 25:71357–61 [Google Scholar]
  20. Cai X.20.  2012. Evolutionary genomics reveals the premetazoan origin of opposite gating polarity in animal-type voltage-gated ion channels. Genomics 99:4241–45 [Google Scholar]
  21. Canfield DE, Poulton SW, Knoll AH, Narbonne GM, Ross G. 21.  et al. 2008. Ferruginous conditions dominated later neoproterozoic deep-water chemistry. Science 321:5891949–52 [Google Scholar]
  22. Canfield DE, Poulton SW, Narbonne GM. 22.  2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:580892–95 [Google Scholar]
  23. Carr M, Leadbeater BSC, Hassan R, Nelson M, Baldauf SL. 23.  2008. Molecular phylogeny of choanoflagellates, the sister group to Metazoa. Proc. Natl. Acad. Sci. USA 105:4316641–46 [Google Scholar]
  24. Carter H.24.  1871. A description of two new Calcispongiae (Trychogypsia, Leuconia), to which is added confirmation of Prof. James-Clark's discovery of the true form of the sponge cell (animal), and an account of the polype-like pore-area of Cliona coralloides contrasted with Prof. E. Häckel's view on the relationship of the sponges to the corals. Ann. Mag. Nat. Hist. 8:1–28 [Google Scholar]
  25. Cavalier-Smith T, Allsopp MTEP, Chao EE, Boury-Esnault N, Vacelet J. 25.  1996. Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. Can. J. Zool. 74:112031–45 [Google Scholar]
  26. Chu JSC, Baillie DL, Chen N. 26.  2010. Convergent evolution of RFX transcription factors and ciliary genes predated the origin of metazoans. BMC Evol. Biol. 10:130 [Google Scholar]
  27. Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S. 27.  et al. 2013. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol. 14:2R11 [Google Scholar]
  28. Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE. 28.  et al. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:7298617–21 [Google Scholar]
  29. Cock JM, Vanoosthuyse V, Gaude T. 29.  2002. Receptor kinase signalling in plants and animals: distinct molecular systems with mechanistic similarities. Curr. Opin. Cell Biol. 14:2230–36 [Google Scholar]
  30. Davidson EH, Peterson KJ, Cameron RA. 30.  1995. Origin of bilaterian body plans: evolution of developmental regulatory mechanisms. Science 270:52401319–25 [Google Scholar]
  31. Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA. 31.  et al. 2011. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev. Biol. 357:173–82 [Google Scholar]
  32. Degnan BM, Leys SP, Larroux C. 32.  2005. Sponge development and antiquity of animal pattern formation. Integr. Comp. Biol. 45:2335–41 [Google Scholar]
  33. De Mendoza A, Suga H, Ruiz-Trillo I. 33.  2010. Evolution of the MAGUK protein gene family in premetazoan lineages. BMC Evol. Biol. 10:93 [Google Scholar]
  34. De Smet I, Voss U, Jürgens G, Beeckman T. 34.  2009. Receptor-like kinases shape the plant. Nat. Cell Biol. 11:101166–73 [Google Scholar]
  35. Desvignes T, Pontarotti P, Bobe J. 35.  2010. Nme gene family evolutionary history reveals pre-metazoan origins and high conservation between humans and the sea anemone, Nematostella vectensis. PLoS ONE 5:11e15506 [Google Scholar]
  36. Dickinson DJ, Nelson WJ, Weis WI. 36.  2012. An epithelial tissue in Dictyostelium challenges the traditional origin of metazoan multicellularity. BioEssays 34:10833–40 [Google Scholar]
  37. Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal JB. 37.  2011. Thousands of Rab GTPases for the cell biologist. PLoS Comput. Biol. 7:10e1002217 [Google Scholar]
  38. Douzery EJP, Snell EA, Bapteste E, Delsuc F, Philippe H. 38.  2004. The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils?. Proc. Natl. Acad. Sci. USA 101:4315386–91 [Google Scholar]
  39. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE. 39.  et al. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:7188745–49 [Google Scholar]
  40. Eckert C, Hammesfahr B, Kollmar M. 40.  2011. A holistic phylogeny of the coronin gene family reveals an ancient origin of the tandem-coronin, defines a new subfamily, and predicts protein function. BMC Evol. Biol. 11:268 [Google Scholar]
  41. Elias M, Archibald JM. 41.  2009. The RJL family of small GTPases is an ancient eukaryotic invention probably functionally associated with the flagellar apparatus. Gene 442:1–263–72 [Google Scholar]
  42. Eswarappa SM, Fox PL. 42.  2013. Citric acid cycle and the origin of MARS. Trends Biochem. Sci. 38:222–28 [Google Scholar]
  43. Exposito J-Y, Larroux C, Cluzel C, Valcourt U, Lethias C, Degnan BM. 43.  2008. Demosponge and sea anemone fibrillar collagen diversity reveals the early emergence of A/C clades and the maintenance of the modular structure of type V/XI collagens from sponge to human. J. Biol. Chem. 283:4228226–35 [Google Scholar]
  44. Fahey B, Degnan BM. 44.  2012. Origin and evolution of laminin gene family diversity. Mol. Biol. Evol. 29:71823–36 [Google Scholar]
  45. Fahey B, Degnan BM. 45.  2010. Origin of animal epithelia: insights from the sponge genome. Evol. Dev. 12:6601–17 [Google Scholar]
  46. Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S. 46.  et al. 2013. Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol. 14:2R15 [Google Scholar]
  47. Fairclough SR, Dayel MJ, King N. 47.  2010. Multicellular development in a choanoflagellate. Curr. Biol. 20:20R875–76 [Google Scholar]
  48. Fjerdingstad EJ.48.  1961. Ultrastructure of the collar of the choanoflagellate Codonosiga botrytis (Ehrenb.). Z. Zellforsch. Mikrosk. Anat. 54:499–510 [Google Scholar]
  49. Frame MC.49.  2002. Src in cancer: deregulation and consequences for cell behaviour. Biochim. Biophys. Acta 1602:2114–30 [Google Scholar]
  50. Funayama N.50.  2010. The stem cell system in demosponges: insights into the origin of somatic stem cells. Dev. Growth Differ. 52:11–14 [Google Scholar]
  51. Gauthier MEA, Du Pasquier L, Degnan BM. 51.  2010. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways. Evol. Dev. 12:5519–33 [Google Scholar]
  52. Gazave E, Lapébie P, Renard E, Bézac C, Boury-Esnault N. 52.  et al. 2008. NK homeobox genes with choanocyte-specific expression in homoscleromorph sponges. Dev. Genes Evol. 218:9479–89 [Google Scholar]
  53. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR. 53.  et al. 2008. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455:72171193–97 [Google Scholar]
  54. Haeckel E.54.  1872. Die Kalkschwämme Berlin: Georg Reimer [Google Scholar]
  55. Haeckel E.55.  1904. Kunstformen der Natur Leipzig, Ger.: Verlag des Bibliographischen Instituts [Google Scholar]
  56. Haeckel E.56.  1873. On the Calciospongiae, their position in the animal kingdom and their relation to the theory of descendence. Ann. Mag. Nat. Hist. 4:241–62 421–31 [Google Scholar]
  57. Haeckel E.57.  1874. The gastrea-theory, the phylogenetic classification of the animal kingdom and the homology of the germ-lamelle. Q. J. Microscop. Sci. 14:142–65 [Google Scholar]
  58. Haeckel E.58.  1869. Uber den Organismus der Schwamme und ihre Verwandtschaft mit der Corallen. Jenaische Z. 5:207–54 [Google Scholar]
  59. Halbleib JM, Nelson WJ. 59.  2006. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20:233199–214 [Google Scholar]
  60. Hall TM, Porter JA, Beachy PA, Leahy DJ. 60.  1995. A potential catalytic site revealed by the 1.7-Å crystal structure of the amino-terminal signalling domain of Sonic hedgehog. Nature 378:6553212–16 [Google Scholar]
  61. Harburger DS, Calderwood DA. 61.  2009. Integrin signalling at a glance. J. Cell Sci. 122:Pt. 2159–63 [Google Scholar]
  62. Hedges SB, Blair JE, Venturi ML, Shoe JL. 62.  2004. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4:2 [Google Scholar]
  63. Hibberd DJ.63.  1975. Observations on the ultrastructure of the choanoflagellate Codosiga botrytis (Ehr.) Saville-Kent with special reference to the flagellar apparatus. J. Cell Sci. 17:1191–219 [Google Scholar]
  64. Hobmayer B, Rentzsch F, Kuhn K, Happel CM, Von Laue CC. 64.  et al. 2000. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407:6801186–89 [Google Scholar]
  65. Hoffman GG, Ellington WR. 65.  2011. Arginine kinase isoforms in the closest protozoan relative of metazoans. Comp. Biochem. Physiol. Part D Genomics Proteomics 6:2171–77 [Google Scholar]
  66. Hoogewijs D, Ebner B, Germani F, Hoffmann FG, Fabrizius A. 66.  et al. 2012. Androglobin: a chimeric globin in metazoans that is preferentially expressed in mammalian testes. Mol. Biol. Evol. 29:41105–14 [Google Scholar]
  67. Hunter T.67.  2009. Tyrosine phosphorylation: thirty years and counting. Curr. Opin. Cell Biol. 21:2140–46 [Google Scholar]
  68. Hyman LH.68.  1940. The Invertebrates: Protozoa through Ctenophora New York: McGraw-Hill726 [Google Scholar]
  69. Hynes RO.69.  2002. Integrins: bidirectional, allosteric signaling machines. Cell 110:6673–87 [Google Scholar]
  70. Irby RB, Yeatman TJ. 70.  2000. Role of Src expression and activation in human cancer. Oncogene 19:495636–42 [Google Scholar]
  71. Jackson DJ, Meyer NP, Seaver E, Pang K, McDougall C. 71.  et al. 2010. Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development. Dev. Genes Evol. 220:7–8221–34 [Google Scholar]
  72. Jahn R, Scheller RH. 72.  2006. SNAREs: engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7:9631–43 [Google Scholar]
  73. James-Clark H.73.  1868. On the Spongiae ciliatae as Infusoria flagellata; or, observations on the structure, animality and relationship of Leucosolenia botryoides Bowerbank. Ann. Mag. Nat. Hist. 1:133–42 188–215, 250–64 [Google Scholar]
  74. Jøstensen J-P, Sperstad S, Johansen S, Landfald B. 74.  2002. Molecular-phylogenetic, structural and biochemical features of a cold-adapted, marine ichthyosporean near the animal-fungal divergence, described from in vitro cultures. Eur. J. Protistol. 38:293–104 [Google Scholar]
  75. Judelson HS, Ah-Fong AMV. 75.  2010. The kinome of Phytophthora infestans reveals oomycete-specific innovations and links to other taxonomic groups. BMC Genomics 11:700 [Google Scholar]
  76. Juliano C, Wang J, Lin H. 76.  2011. Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu. Rev. Genet. 45:447–69 [Google Scholar]
  77. Kallberg Y, Segerstolpe Å, Lackmann F, Persson B, Wieslander L. 77.  2012. Evolutionary conservation of the ribosomal biogenesis factor Rbm19/Mrd1: implications for function. PLoS ONE 7:9e43786 [Google Scholar]
  78. Karpov SA, Coupe SJ. 78.  1998. A revision of choanoflagellate genera Kentrosiga Schiller, 1953 and Desmarella Kent, 1880. Acta Protozool. 37:123–27 [Google Scholar]
  79. Kawahara T, Lambeth JD. 79.  2007. Molecular evolution of Phox-related regulatory subunits for NADPH oxidase enzymes. BMC Evol. Biol. 7:178 [Google Scholar]
  80. King N.80.  2004. The unicellular ancestry of animal development. Dev. Cell 7:3313–25 [Google Scholar]
  81. King N, Carroll SB. 81.  2001. A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc. Natl. Acad. Sci. USA 98:2615032–37 [Google Scholar]
  82. King N, Hittinger CT, Carroll SB. 82.  2003. Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301:5631361–63 [Google Scholar]
  83. King N, Westbrook MJ, Young SL, Kuo A, Abedin M. 83.  et al. 2008. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:7180783–88 [Google Scholar]
  84. Kjaer KH, Poulsen JB, Reintamm T, Saby E, Martensen PM. 84.  et al. 2009. Evolution of the 2′-5′-oligoadenylate synthetase family in eukaryotes and bacteria. J. Mol. Evol. 69:6612–24 [Google Scholar]
  85. Knoll AH.85.  2011. The multiple origins of complex multicellularity. Annu. Rev. Earth Planet. Sci. 39:1217–39 [Google Scholar]
  86. Knoll AH, Carroll SB. 86.  1999. Early animal evolution: emerging views from comparative biology and geology. Science 284:54232129–37 [Google Scholar]
  87. Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ. 87.  2004. Microbial factor-mediated development in a host-bacterial mutualism. Science 306:56991186–88 [Google Scholar]
  88. Kreitmeier M, Gerisch G, Heizer C, Müller-Taubenberger A. 88.  1995. A talin homologue of Dictyostelium rapidly assembles at the leading edge of cells in response to chemoattractant. J. Cell Biol. 129:1179–88 [Google Scholar]
  89. Kusch J.89.  1999. Self-recognition as the original function of an amoeban defense-inducing kairomone. Ecology 80:2715–20 [Google Scholar]
  90. Lang BF, O'Kelly C, Nerad T, Gray MW, Burger G. 90.  2002. The closest unicellular relatives of animals. Curr. Biol. 12:201773–78 [Google Scholar]
  91. Lapébie P, Gazave E, Ereskovsky A, Derelle R, Bézac C. 91.  et al. 2009. WNT/β-catenin signalling and epithelial patterning in the homoscleromorph sponge Oscarella. PLoS ONE 4:6e5823 [Google Scholar]
  92. Larroux C, Fahey B, Degnan SM, Adamski M, Rokhsar DS, Degnan BM. 92.  2007. The NK homeobox gene cluster predates the origin of Hox genes. Curr. Biol. 17:8706–10 [Google Scholar]
  93. Larroux C, Fahey B, Liubicich D, Hinman VF, Gauthier M. 93.  et al. 2006. Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evol. Dev. 8:2150–73 [Google Scholar]
  94. Larroux C, Luke GN, Koopman P, Rokhsar DS, Shimeld SM, Degnan BM. 94.  2008. Genesis and expansion of metazoan transcription factor gene classes. Mol. Biol. Evol. 25:5980–96 [Google Scholar]
  95. Leadbeater BSC.95.  1983. Life-history and ultrastructure of a new marine species of Proterospongia (Choanoflagellida). J. Mar. Biol. Assoc. UK 63:1135–60 [Google Scholar]
  96. Leadbeater BS, Karpov SA. 96.  2000. Cyst formation in a freshwater strain of the choanoflagellate Desmarella moniliformis Kent. J. Eukaryot. Microbiol. 47:5433–39 [Google Scholar]
  97. Leadbeater BS, McCready S. 97.  2000. The flagellates: historical perspectives. The Flagellates: Unity, Diversity and Evolution BS Leadbeater, J Green 1–26 London: Taylor & Francis [Google Scholar]
  98. Lechauve C, Jager M, Laguerre L, Kiger L, Correc G. 98.  et al. 2013. Neuroglobins: pivotal proteins associated with emerging neural systems and precursors of metazoan globin diversity. J. Biol. Chem. 288:6957–67 [Google Scholar]
  99. Leys SP, Degnan BM. 99.  2005. Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to choanocytes. Invertebr. Biol. 121:3171–89 [Google Scholar]
  100. Leys SP, Eerkes-Medrano D. 100.  2005. Gastrulation in calcareous sponges: in search of Haeckel's gastraea. Integr. Comp. Biol. 45:2342–51 [Google Scholar]
  101. Leys SP, Ereskovsky AV. 101.  2006. Embryogenesis and larval differentiation in sponges. Can. J. Zool. 84:2262–87 [Google Scholar]
  102. Leys SP, Nichols SA, Adams EDM. 102.  2009. Epithelia and integration in sponges. Integr. Comp. Biol. 49:2167–77 [Google Scholar]
  103. Leys SP, Riesgo A. 103.  2012. Epithelia, an evolutionary novelty of metazoans. J. Exp. Zool. B Mol. Dev. Evol. 318:6438–47 [Google Scholar]
  104. Li W, Scarlata S, Miller WT. 104.  2009. Evidence for convergent evolution in the signaling properties of a choanoflagellate tyrosine kinase. Biochemistry 48:235180–86 [Google Scholar]
  105. Li W, Young SL, King N, Miller WT. 105.  2008. Signaling properties of a non-metazoan Src kinase and the evolutionary history of Src negative regulation. J. Biol. Chem. 283:2215491–501 [Google Scholar]
  106. Liebeskind BJ.106.  2011. Evolution of sodium channels and the new view of early nervous system evolution. Commun. Integr. Biol. 4:6679–83 [Google Scholar]
  107. Liebeskind BJ, Hillis DM, Zakon HH. 107.  2011. Evolution of sodium channels predates the origin of nervous systems in animals. Proc. Natl. Acad. Sci. USA 108:229154–59 [Google Scholar]
  108. Lim WA, Pawson T. 108.  2010. Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142:5661–67 [Google Scholar]
  109. Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD. 109.  2011. The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Sci. Signal. 4:202ra83 [Google Scholar]
  110. Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP. 110.  et al. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:7230718–21 [Google Scholar]
  111. Luporini P, Vallesi A, Alimenti C, Ortenzi C. 111.  2006. The cell type–specific signal proteins (pheromones) of protozoan ciliates. Curr. Pharm. Des. 12:243015–24 [Google Scholar]
  112. Mackiewicz P, Wyroba E. 112.  2009. Phylogeny and evolution of Rab7 and Rab9 proteins. BMC Evol. Biol. 9:101 [Google Scholar]
  113. Maldonado M.113.  2005. Choanoflagellates, choanocytes, and animal multicellularity. Invertebr. Biol. 123:11–22 [Google Scholar]
  114. Maloof AC, Rose CV, Beach R, Samuels BM, Calmet CC. 114.  et al. 2010. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nat. Geosci. 3:9653–59 [Google Scholar]
  115. Manning G, Young SL, Miller WT, Zhai Y. 115.  2008. The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc. Natl. Acad. Sci. USA 105:289674–79 [Google Scholar]
  116. Marín I.116.  2010. Ancient origin of animal U-box ubiquitin ligases. BMC Evol. Biol. 10:331 [Google Scholar]
  117. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. 117.  2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:1107–18 [Google Scholar]
  118. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T. 118.  et al. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110:93229–36 [Google Scholar]
  119. Meeks JC, Elhai J, Thiel T, Potts M, Larimer F. 119.  et al. 2001. An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth. Res. 70:185–106 [Google Scholar]
  120. Miller WT.120.  2012. Tyrosine kinase signaling and the emergence of multicellularity. Biochim. Biophys. Acta 1823:61053–57 [Google Scholar]
  121. Morris SC.121.  1993. The fossil record and the early evolution of the Metazoa. Nature 361:6409219–25 [Google Scholar]
  122. Müller WE.122.  1997. Origin of metazoan adhesion molecules and adhesion receptors as deduced from cDNA analyses in the marine sponge Geodia cydonium: a review. Cell Tissue Res. 289:3383–95 [Google Scholar]
  123. Narbonne GM.123.  2005. The Ediacara biota: neoproterozoic origin of animals and their ecosystems. Annu. Rev. Earth Planet. Sci. 33:1421–42 [Google Scholar]
  124. Nedelcu AM.124.  2009. Comparative genomics of phylogenetically diverse unicellular eukaryotes provide new insights into the genetic basis for the evolution of the programmed cell death machinery. J. Mol. Evol. 68:3256–68 [Google Scholar]
  125. Nedelcu AM, Tan C. 125.  2007. Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Dev. Genes Evol. 217:11–12801–6 [Google Scholar]
  126. Neuweiler F, Turner EC, Burdige DJ. 126.  2009. Early Neoproterozoic origin of the metazoan clade recorded in carbonate rock texture. Geology 37:5475–78 [Google Scholar]
  127. Nichols SA, Dayel MJ, King N. 127.  2009. Genomic, phylogenetic and cell biological insights into metazoan origins. Animal Evolution: Genomes, Fossils and Trees MJ Telford, DTJ Littlewood 24–32 Oxford: Oxford Univ. Press [Google Scholar]
  128. Nichols SA, Dirks W, Pearse JS, King N. 128.  2006. Early evolution of animal cell signaling and adhesion genes. Proc. Natl. Acad. Sci. USA 103:3312451–56 [Google Scholar]
  129. Nichols SA, Roberts BW, Richter DJ, Fairclough SR, King N. 129.  2012. Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. Proc. Natl. Acad. Sci. USA 109:3213046–51 [Google Scholar]
  130. Nielsen C.130.  2008. Six major steps in animal evolution: Are we derived sponge larvae?. Evol. Dev. 10:2241–57 [Google Scholar]
  131. Ortutay C, Nore BF, Vihinen M, Smith CIE. 131.  2008. Phylogeny of Tec family kinases: identification of a premetazoan origin of Btk, Bmx, Itk, Tec, Txk, and the Btk regulator SH3BP5. Adv. Genet. 64:51–80 [Google Scholar]
  132. Overduin M, Harvey TS, Bagby S, Tong KI, Yau P. 132.  et al. 1995. Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science 267:5196386–89 [Google Scholar]
  133. Pang K, Ryan JF, Mullikin JC, Baxevanis AD, Martindale MQ. 133.  2010. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. EvoDevo 1:1):10 [Google Scholar]
  134. Parfrey LW, Lahr DJG. 134.  2013. Multicellularity arose several times in the evolution of eukaryotes (Response to DOI 10.1002/bies.201100187). BioEssays 35:339–47 [Google Scholar]
  135. Parfrey LW, Lahr DJG, Knoll AH, Katz LA. 135.  2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl. Acad. Sci. USA 108:3313624–29 [Google Scholar]
  136. Parsons SJ, Parsons JT. 136.  2004. Src family kinases, key regulators of signal transduction. Oncogene 23:487906–9 [Google Scholar]
  137. Peterson KJ, Lyons JB, Nowak KS, Takacs CM, Wargo MJ, McPeek MA. 137.  2004. Estimating metazoan divergence times with a molecular clock. Proc. Natl. Acad. Sci. USA 101:176536–41 [Google Scholar]
  138. Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M. 138.  et al. 2011. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 9:3e1000602 [Google Scholar]
  139. Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C. 139.  et al. 2009. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol. 19:8706–12 [Google Scholar]
  140. Philippe H, Lartillot N, Brinkmann H. 140.  2005. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol. Biol. Evol. 22:51246–53 [Google Scholar]
  141. Piasecki BP, Burghoorn J, Swoboda P. 141.  2010. Regulatory factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals. Proc. Natl. Acad. Sci. USA 107:2912969–74 [Google Scholar]
  142. Pincus D, Letunic I, Bork P, Lim WA. 142.  2008. Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages. Proc. Natl. Acad. Sci. USA 105:289680–84 [Google Scholar]
  143. Pokutta S, Weis WI. 143.  2007. Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu. Rev. Cell Dev. Biol. 23:237–61 [Google Scholar]
  144. Price AL, Patel NH. 144.  2004. The evolution of gastrulation: cellular and molecular aspects. Gastrulation: From Cells to Embryo CD Stern 695–702 Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press [Google Scholar]
  145. Prieto-Echagüe V, Chan PM, Craddock BP, Manser E, Miller WT. 145.  2011. PTB domain-directed substrate targeting in a tyrosine kinase from the unicellular choanoflagellate Monosiga brevicollis. PLoS ONE 6:4e19296 [Google Scholar]
  146. Reitner J, Wörheide G. 146.  2002. Non-lithistid fossil Demospongiae—origins of their palaeobiodiversity and highlights in history of preservation. Systema Porifera: A Guide to the Classification of Sponges J Hooper, R Van Soest 52–70 New York: Kluwer Acad. [Google Scholar]
  147. Richards GS, Simionato E, Perron M, Adamska M, Vervoort M, Degnan BM. 147.  2008. Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr. Biol. 18:151156–61 [Google Scholar]
  148. Robinson AJ, Kunji ERS, Gross A. 148.  2012. Mitochondrial carrier homolog 2 (MTCH2): the recruitment and evolution of a mitochondrial carrier protein to a critical player in apoptosis. Exp. Cell Res. 318:111316–23 [Google Scholar]
  149. Rokas A.149.  2008. The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu. Rev. Genet. 42:235–51 [Google Scholar]
  150. Rokas A, Krüger D, Carroll SB. 150.  2005. Animal evolution and the molecular signature of radiations compressed in time. Science 310:57561933–38 [Google Scholar]
  151. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR. 151.  et al. 2000. Comparative genomics of the eukaryotes. Science 287:54612204–15 [Google Scholar]
  152. Ruiz-Trillo I, Burger G, Holland PWH, King N, Lang BF. 152.  et al. 2007. The origins of multicellularity: a multi-taxon genome initiative. Trends. Genet. 23:3113–18 [Google Scholar]
  153. Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF. 153.  2008. A phylogenomic investigation into the origin of Metazoa. Mol. Biol. Evol. 25:4664–72 [Google Scholar]
  154. Runnegar B.154.  1982. The Cambrian explosion: animals or fossils?. J. Geol. Soc. Aust. 29:3–4395–411 [Google Scholar]
  155. Saburi S, McNeill H. 155.  2005. Organising cells into tissues: new roles for cell adhesion molecules in planar cell polarity. Curr. Opin. Cell Biol. 17:5482–88 [Google Scholar]
  156. Sakaguchi M, Murakami H, Suzaki T. 156.  2001. Involvement of a 40-kDa glycoprotein in food recognition, prey capture, and induction of phagocytosis in the protozoon Actinophrys sol. Protist 152:133–41 [Google Scholar]
  157. Sakarya O, Armstrong KA, Adamska M, Adamski M, Wang I-F. 157.  et al. 2007. A post-synaptic scaffold at the origin of the animal kingdom. PLoS ONE 2:6e506 [Google Scholar]
  158. Sällman Almén M, Bringeland N, Fredriksson R, Schiöth HB. 158.  2012. The dispanins: a novel gene family of ancient origin that contains 14 human members. PLoS ONE 7:2e31961 [Google Scholar]
  159. Sanderfoot A.159.  2007. Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol. 144:16–17 [Google Scholar]
  160. Saville-Kent W.160.  1880. A Manual of the Infusoria London: David Bogue [Google Scholar]
  161. Schierwater B, Eitel M, Jakob W, Osigus H-J, Hadrys H. 161.  et al. 2009. Concatenated analysis sheds light on early metazoan evolution and fuels a modern “urmetazoon” hypothesis. PLoS Biol. 7:1e20 [Google Scholar]
  162. Schultheiss KP, Craddock BP, Tong M, Seeliger M, Miller WT. 162.  2013. Metazoan-like signaling in a unicellular receptor tyrosine kinase. BMC Biochem. 14:4 [Google Scholar]
  163. Schultheiss KP, Suga H, Ruiz-Trillo I, Miller WT. 163.  2012. Lack of Csk-mediated negative regulation in a unicellular Src kinase. Biochemistry 51:418267–77 [Google Scholar]
  164. Schütze J, Krasko A, Custodio MR, Efremova SM, Müller IM, Müller WE. 164.  1999. Evolutionary relationships of Metazoa within the eukaryotes based on molecular data from Porifera. Proc. R. Soc. B 266:141463–73 [Google Scholar]
  165. Sebé-Pedrós A, De Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I. 165.  2011. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol. Biol. Evol. 28:31241–54 [Google Scholar]
  166. Sebé-Pedrós A, Roger AJ, Lang FB, King N, Ruiz-Trillo I. 166.  2010. Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc. Natl. Acad. Sci. USA 107:2210142–47 [Google Scholar]
  167. Sebé-Pedrós A, Zheng Y, Ruiz-Trillo I, Pan D. 167.  2012. Premetazoan origin of the hippo signaling pathway. Cell Rep. 1:113–20 [Google Scholar]
  168. Segawa Y, Suga H, Iwabe N, Oneyama C, Akagi T. 168.  et al. 2006. Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals. Proc. Natl. Acad. Sci. USA 103:3212021–26 [Google Scholar]
  169. Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T. 169.  et al. 2008. Multigene phylogeny of Choanozoa and the origin of animals. PLoS ONE 3:5e2098 [Google Scholar]
  170. Shiu SH, Bleecker AB. 170.  2001. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 98:1910763–68 [Google Scholar]
  171. Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P. 171.  et al. 2007. Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol. Biol. 7:33 [Google Scholar]
  172. Simons M, Mlodzik M. 172.  2008. Planar cell polarity signaling: from fly development to human disease. Annu. Rev. Genet. 42:517–40 [Google Scholar]
  173. Snell EA, Brooke NM, Taylor WR, Casane D, Philippe H, Holland PWH. 173.  2006. An unusual choanoflagellate protein released by Hedgehog autocatalytic processing. Proc. R. Soc. B 273:1585401–7 [Google Scholar]
  174. Snell EA, Furlong RF, Holland PW. 174.  2001. Hsp70 sequences indicate that choanoflagellates are closely related to animals. Curr. Biol. 11:12967–70 [Google Scholar]
  175. Sperling EA, Peterson KJ, Laflamme M. 175.  2011. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran oceans. Geobiology 9:124–33 [Google Scholar]
  176. Sperling EA, Peterson KJ, Pisani D. 176.  2009. Phylogenetic-signal dissection of nuclear housekeeping genes supports the paraphyly of sponges and the monophyly of Eumetazoa. Mol. Biol. Evol. 26:102261–74 [Google Scholar]
  177. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U. 177.  et al. 2008. The Trichoplax genome and the nature of placozoans. Nature 454:7207955–60 [Google Scholar]
  178. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA. 178.  et al. 2010. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:7307720–26 [Google Scholar]
  179. Stanley SM.179.  1973. An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proc. Natl. Acad. Sci. USA 70:51486–89 [Google Scholar]
  180. Steenkamp ET, Wright J, Baldauf SL. 180.  2006. The protistan origins of animals and fungi. Mol. Biol. Evol. 23:193–106 [Google Scholar]
  181. Stover NA, Dixon TA, Cavalcanti ARO. 181.  2011. Multiple independent fusions of glucose-6-phosphate dehydrogenase with enzymes in the pentose phosphate pathway. PLoS ONE 6:8e22269 [Google Scholar]
  182. Suga H, Dacre M, De Mendoza A, Shalchian-Tabrizi K, Manning G, Ruiz-Trillo I. 182.  2012. Genomic survey of premetazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases. Sci. Signal. 5:222ra35 [Google Scholar]
  183. Suga H, Katoh K, Miyata T. 183.  2001. Sponge homologs of vertebrate protein tyrosine kinases and frequent domain shufflings in the early evolution of animals before the parazoan–eumetazoan split. Gene 280:1–2195–201 [Google Scholar]
  184. Suga H, Ruiz-Trillo I. 184.  2013. Development of ichthyosporeans sheds light on the origin of metazoan multicellularity. Dev. Biol. 377:284–92 [Google Scholar]
  185. Suga H, Sasaki G, Kuma K-I, Nishiyori H, Hirose N. 185.  et al. 2008. Ancient divergence of animal protein tyrosine kinase genes demonstrated by a gene family tree including choanoflagellate genes. FEBS Lett. 582:5815–18 [Google Scholar]
  186. Traut W, Szczepanowski M, Vítková M, Opitz C, Marec F, Zrzavý J. 186.  2007. The telomere repeat motif of basal Metazoa. Chromosome Res. 15:3371–82 [Google Scholar]
  187. Tucker RP, Beckmann J, Leachman NT, Schöler J, Chiquet-Ehrismann R. 187.  2012. Phylogenetic analysis of the teneurins: conserved features and premetazoan ancestry. Mol. Biol. Evol. 29:31019–29 [Google Scholar]
  188. Tyler S.188.  2003. Epithelium: the primary building block for metazoan complexity. Integr. Comp. Biol. 43:155–63 [Google Scholar]
  189. Villalobo E, Moch C, Fryd-Versavel G, Fleury-Aubusson A, Morin L. 189.  2003. Cysteine proteases and cell differentiation: excystment of the ciliated protist Sterkiella histriomuscorum. Eukaryot. Cell 2:61234–45 [Google Scholar]
  190. Wainright PO, Hinkle G, Sogin ML, Stickel SK. 190.  1993. Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science 260:5106340–42 [Google Scholar]
  191. Watari A.191.  2012. Nature of cancer explored from the perspective of the functional evolution of proto-oncogenes. Yakugaku Zasshi 132:101165–70 [Google Scholar]
  192. Watari A, Iwabe N, Masuda H, Okada M. 192.  2010. Functional transition of Pak proto-oncogene during early evolution of metazoans. Oncogene 29:263815–26 [Google Scholar]
  193. Weiss MS, Anderson DH, Raffioni S, Bradshaw RA, Ortenzi C. 193.  et al. 1995. A cooperative model for receptor recognition and cell adhesion: evidence from the molecular packing in the 1.6-Å crystal structure of the pheromone Er-1 from the ciliated protozoan Euplotes raikovi. Proc. Natl. Acad. Sci. USA 92:2210172–76 [Google Scholar]
  194. Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW. 194.  et al. 2009. The deep evolution of metazoan microRNAs. Evol. Dev. 11:150–68 [Google Scholar]
  195. Wiens M, Korzhev M, Krasko A, Thakur NL, Perović-Ottstadt S. 195.  et al. 2005. Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway. Induction of a perforin-like molecule. J. Biol. Chem. 280:3027949–59 [Google Scholar]
  196. Young SL, Diolaiti D, Conacci-Sorrell M, Ruiz-Trillo I, Eisenman RN, King N. 196.  2011. Premetazoan ancestry of the Myc-Max network. Mol. Biol. Evol. 28:102961–71 [Google Scholar]
  197. Zhang D, Xi Y, Coccimiglio ML, Mennigen JA, Jonz MG. 197.  et al. 2012. Functional prediction and physiological characterization of a novel short trans-membrane protein 1 as a subunit of mitochondrial respiratory complexes. Physiol. Genomics 44:231133–40 [Google Scholar]
/content/journals/10.1146/annurev-genet-111212-133456
Loading
/content/journals/10.1146/annurev-genet-111212-133456
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error