1932

Abstract

Diverse research programs employing complementary strategies have been uncovering cellular, molecular, and genetic mechanisms essential to avian beak development and evolution. In reviewing these discoveries, I offer an interdisciplinary perspective on bird beaks that spans their derivation from jaws of dinosaurian reptiles, their anatomical and ecological diversification across major taxonomic groups, their common embryonic origins, their intrinsic patterning processes, and their structural integration. I describe how descriptive and experimental approaches, including gene expression and cell lineage analyses, tissue recombinations, surgical transplants, gain- and loss-of-function methods, geometric morphometrics, comparative genomics, and genome-wide association studies, have identified key constituent parts and putative genes regulating beak morphogenesis and evolution. I focus throughout on neural crest mesenchyme, which generates the beak skeleton and other components, and describe how these embryonic progenitor cells mediate species-specific pattern and link form and function as revealed by 20 years of research using chimeras between quail and duck embryos.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-101929
2024-11-25
2025-04-22
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-101929.html?itemId=/content/journals/10.1146/annurev-genet-111523-101929&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abrahamczyk S, Souto-Vilarós D, Renner SS. 2014.. Escape from extreme specialization: passionflowers, bats and the sword-billed hummingbird. . Proc. R. Soc. B 281::20140888
    [Crossref] [Google Scholar]
  2. 2.
    Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ. 2006.. The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. . Nature 442::56367
    [Crossref] [Google Scholar]
  3. 3.
    Abzhanov A, Tabin CJ. 2004.. Shh and Fgf8 act synergistically to drive cartilage outgrowth during cranial development. . Dev. Biol. 273::13448
    [Crossref] [Google Scholar]
  4. 4.
    Baumel JJ. 1993.. Handbook of Avian Anatomy: Nomina Anatomica Avium. Cambridge, MA:: Nuttall Ornithol. Club
    [Google Scholar]
  5. 5.
    Bhullar BA, Hanson M, Fabbri M, Pritchard A, Bever GS, Hoffman E. 2016.. How to make a bird skull: major transitions in the evolution of the avian cranium, paedomorphosis, and the beak as a surrogate hand. . Integr. Comp. Biol. 56::389403
    [Crossref] [Google Scholar]
  6. 6.
    Bhullar BA, Marugan-Lobon J, Racimo F, Bever GS, Rowe TB, et al. 2012.. Birds have paedomorphic dinosaur skulls. . Nature 487::22326
    [Crossref] [Google Scholar]
  7. 7.
    Bhullar BA, Morris ZS, Sefton EM, Tok A, Tokita M, et al. 2015.. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history. . Evolution 69::166577
    [Crossref] [Google Scholar]
  8. 8.
    Bock WJ. 1999.. Avian cranial kinesis revisited. . Acta Ornithol. 34::11522
    [Google Scholar]
  9. 9.
    Boer EF, Maclary ET, Shapiro MD. 2021.. Complex genetic architecture of three-dimensional craniofacial shape variation in domestic pigeons. . Evol. Dev. 23::47795
    [Crossref] [Google Scholar]
  10. 10.
    Bosse M, Spurgin LG, Laine VN, Cole EF, Firth JA, et al. 2017.. Recent natural selection causes adaptive evolution of an avian polygenic trait. . Science 358::36568
    [Crossref] [Google Scholar]
  11. 11.
    Bout RG, Zweers GA. 2001.. The role of cranial kinesis in birds. . Comp. Biochem. Physiol. A Mol. Integr. Physiol. 131::197205
    [Crossref] [Google Scholar]
  12. 12.
    Brandon AA, Almeida D, Powder KE. 2023.. Neural crest cells as a source of microevolutionary variation. . Semin. Cell Dev. Biol. 145::4251
    [Crossref] [Google Scholar]
  13. 13.
    Braun EL, Kimball RT. 2021.. Data types and the phylogeny of Neoaves. . Birds 2::122
    [Crossref] [Google Scholar]
  14. 14.
    Bright JA, Marugan-Lobon J, Cobb SN, Rayfield EJ. 2016.. The shapes of bird beaks are highly controlled by nondietary factors. . PNAS 113::535257
    [Crossref] [Google Scholar]
  15. 15.
    Brito JM, Teillet MA, Le Douarin NM. 2008.. Induction of mirror-image supernumerary jaws in chicken mandibular mesenchyme by Sonic Hedgehog-producing cells. . Development 135::231119
    [Crossref] [Google Scholar]
  16. 16.
    Brugmann SA, Powder KE, Young NM, Goodnough LH, Hahn SM, et al. 2010.. Comparative gene expression analysis of avian embryonic facial structures reveals new candidates for human craniofacial disorders. . Hum. Mol. Genet. 19::92030
    [Crossref] [Google Scholar]
  17. 17.
    Brusatte SL, O'Connor JK, Jarvis ED. 2015.. The origin and diversification of birds. . Curr. Biol. 25::R88898
    [Crossref] [Google Scholar]
  18. 18.
    Campana MG, Corvelo A, Shelton J, Callicrate TE, Bunting KL, et al. 2020.. Adaptive radiation genomics of two ecologically divergent Hawai'ian honeycreepers: the 'akiapōlā'au and the Hawai'i 'amakihi. . J. Hered. 111::2132
    [Google Scholar]
  19. 19.
    Cela P, Buchtova M, Vesela I, Fu K, Bogardi JP, et al. 2016.. BMP signaling regulates the fate of chondro-osteoprogenitor cells in facial mesenchyme in a stage-specific manner. . Dev. Dyn. 245::94762
    [Crossref] [Google Scholar]
  20. 20.
    Chen Y, Zhang Y, Jiang TX, Barlow AJ, St. Amand TR, et al. 2000.. Conservation of early odontogenic signaling pathways in Aves. . PNAS 97::1004449
    [Crossref] [Google Scholar]
  21. 21.
    Cheng Y, Gao B, Wang H, Han N, Shao S, et al. 2017.. Evolution of beak morphology in the Ground Tit revealed by comparative transcriptomics. . Front. Zool. 14::58
    [Crossref] [Google Scholar]
  22. 22.
    Cheng Y, Lei F. 2024.. Avian lower beak is always overlooked: its coordinate role in shaping species-specific beak should not be underestimated. . Integr. Zool. 19::33942
    [Crossref] [Google Scholar]
  23. 23.
    Cooney CR, Bright JA, Capp EJR, Chira AM, Hughes EC, et al. 2017.. Mega-evolutionary dynamics of the adaptive radiation of birds. . Nature 542::34447
    [Crossref] [Google Scholar]
  24. 24.
    Creuzet S, Couly G, Le Douarin NM. 2005.. Patterning the neural crest derivatives during development of the vertebrate head: insights from avian studies. . J. Anat. 207::44759
    [Crossref] [Google Scholar]
  25. 25.
    Dalen L, Heintzman PD, Kapp JD, Shapiro B. 2023.. Deep-time paleogenomics and the limits of DNA survival. . Science 382::4853
    [Crossref] [Google Scholar]
  26. 26.
    Darwin C. 1859.. The Origin of Species. New York:: Crowell-Collier Publ. Co.
    [Google Scholar]
  27. 27.
    Darwin C. 1868.. The Variation of Animals and Plants Under Domestication. London:: J. Murray
    [Google Scholar]
  28. 28.
    Davit-Beal T, Tucker AS, Sire JY. 2009.. Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. . J. Anat. 214::477501
    [Crossref] [Google Scholar]
  29. 29.
    de Souza GA, Soares MB, Weinschutz LC, Wilner E, Lopes RT, et al. 2021.. The first edentulous ceratosaur from South America. . Sci. Rep. 11::22281
    [Crossref] [Google Scholar]
  30. 30.
    Depew MJ, Lufkin T, Rubenstein JL. 2002.. Specification of jaw subdivisions by Dlx genes. . Science 298::38185
    [Crossref] [Google Scholar]
  31. 31.
    Ealba EL, Jheon AH, Hall J, Curantz C, Butcher KD, Schneider RA. 2015.. Neural crest-mediated bone resorption is a determinant of species-specific jaw length. . Dev. Biol. 408::15163
    [Crossref] [Google Scholar]
  32. 32.
    Ealba EL, Schneider RA. 2013.. A simple PCR-based strategy for estimating species-specific contributions in chimeras and xenografts. . Development 140::306268
    [Crossref] [Google Scholar]
  33. 33.
    Eames BF, Schneider RA. 2008.. The genesis of cartilage size and shape during development and evolution. . Development 135::394758
    [Crossref] [Google Scholar]
  34. 34.
    Eames BF, Sharpe PT, Helms JA. 2004.. Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2. . Dev. Biol. 274::188200
    [Crossref] [Google Scholar]
  35. 35.
    Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. 2023.. Analysis of the genetic loci of pigment pattern evolution in vertebrates. . Biol. Rev. Camb. Philos. Soc. 98::125077
    [Crossref] [Google Scholar]
  36. 36.
    Enbody ED, Sprehn CG, Abzhanov A, Bi H, Dobreva MP, et al. 2021.. A multispecies BCO2 beak color polymorphism in the Darwin's finch radiation. . Curr. Biol. 31::5597604.e7
    [Crossref] [Google Scholar]
  37. 37.
    Erdogan S, Iwasaki S. 2014.. Function-related morphological characteristics and specialized structures of the avian tongue. . Ann. Anat. 196::7587
    [Crossref] [Google Scholar]
  38. 38.
    Erickson GM, Zelenitsky DK, Kay DI, Norell MA. 2017.. Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development. . PNAS 114::54045
    [Crossref] [Google Scholar]
  39. 39.
    Feduccia A. 1999.. The Origin and Evolution of Birds. New Haven, CT:: Yale Univ. Press
    [Google Scholar]
  40. 40.
    Felice RN, Goswami A. 2018.. Developmental origins of mosaic evolution in the avian cranium. . PNAS 115::55560
    [Crossref] [Google Scholar]
  41. 41.
    Felice RN, Tobias JA, Pigot AL, Goswami A. 2019.. Dietary niche and the evolution of cranial morphology in birds. . Proc. R. Soc. B 286::20182677
    [Crossref] [Google Scholar]
  42. 42.
    Felice RN, Watanabe A, Cuff AR, Hanson M, Bhullar BS, et al. 2020.. Decelerated dinosaur skull evolution with the origin of birds. . PLOS Biol. 18::e3000801
    [Crossref] [Google Scholar]
  43. 43.
    Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, et al. 2020.. Dense sampling of bird diversity increases power of comparative genomics. . Nature 587::25257
    [Crossref] [Google Scholar]
  44. 44.
    Ferguson CA, Tucker AS, Sharpe PT. 2000.. Temporospatial cell interactions regulating mandibular and maxillary arch patterning. . Development 127::40312
    [Crossref] [Google Scholar]
  45. 45.
    Fish JL. 2019.. Evolvability of the vertebrate craniofacial skeleton. . Semin. Cell Dev. Biol. 91::1322
    [Crossref] [Google Scholar]
  46. 46.
    Fish JL, Schneider RA. 2014.. Assessing species-specific contributions to craniofacial development using quail-duck chimeras. . J. Vis. Exp. 87::51534
    [Google Scholar]
  47. 47.
    Fish JL, Schneider RA. 2014.. Neural crest-mediated tissue interactions during craniofacial development: the origins of species-specific pattern. . In Neural Crest Cells, ed. PA Trainor , pp. 10124. Boston:: Academic
    [Google Scholar]
  48. 48.
    Fish JL, Sklar RS, Woronowicz KC, Schneider RA. 2014.. Multiple developmental mechanisms regulate species-specific jaw size. . Development 141::67484
    [Crossref] [Google Scholar]
  49. 49.
    Francis-West P, Ladher R, Barlow A, Graveson A. 1998.. Signalling interactions during facial development. . Mech. Dev. 75::328
    [Crossref] [Google Scholar]
  50. 50.
    Fritz JA, Brancale J, Tokita M, Burns KJ, Hawkins MB, et al. 2014.. Shared developmental programme strongly constrains beak shape diversity in songbirds. . Nat. Commun. 5::3700
    [Crossref] [Google Scholar]
  51. 51.
    Gendron-Maguire M, Mallo M, Zhang M, Gridley T. 1993.. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. . Cell 75::131731
    [Crossref] [Google Scholar]
  52. 52.
    Graham A. 2003.. Development of the pharyngeal arches. . Am. J. Med. Genet. A 119::25156
    [Crossref] [Google Scholar]
  53. 53.
    Grammatopoulos GA, Bell E, Toole L, Lumsden A, Tucker AS. 2000.. Homeotic transformation of branchial arch identity after Hoxa2 overexpression. . Development 127::535565
    [Crossref] [Google Scholar]
  54. 54.
    Grant PR, Grant BR, Abzhanov A. 2006.. A developing paradigm for the development of bird beaks. . Biol. J. Linn. Soc. 88::1722
    [Crossref] [Google Scholar]
  55. 55.
    Guillerme T, Bright JA, Cooney CR, Hughes EC, Varley ZK, et al. 2023.. Innovation and elaboration on the avian tree of life. . Sci. Adv. 9::eadg1641
    [Crossref] [Google Scholar]
  56. 56.
    Gussekloo SW, Bout RG. 2005.. Cranial kinesis in palaeognathous birds. . J. Exp. Biol. 208::340919
    [Crossref] [Google Scholar]
  57. 57.
    Hall BK. 2015.. Bones and Cartilage: Developmental and Evolutionary Skeletal Biology. Amsterdam:: Elsevier
    [Google Scholar]
  58. 58.
    Hall J, Jheon AH, Ealba EL, Eames BF, Butcher KD, et al. 2014.. Evolution of a developmental mechanism: species-specific regulation of the cell cycle and the timing of events during craniofacial osteogenesis. . Dev. Biol. 385::38095
    [Crossref] [Google Scholar]
  59. 59.
    Harris MP, Hasso SM, Ferguson MW, Fallon JF. 2006.. The development of archosaurian first-generation teeth in a chicken mutant. . Curr. Biol. 16::37177
    [Crossref] [Google Scholar]
  60. 60.
    Havens BA, Velonis D, Kronenberg MS, Lichtler AC, Oliver B, Mina M. 2008.. Roles of FGFR3 during morphogenesis of Meckel's cartilage and mandibular bones. . Dev. Biol. 316::33649
    [Crossref] [Google Scholar]
  61. 61.
    Haworth KE, Wilson JM, Grevellec A, Cobourne MT, Healy C, et al. 2007.. Sonic hedgehog in the pharyngeal endoderm controls arch pattern via regulation of Fgf8 in head ectoderm. . Dev. Biol. 303::24458
    [Crossref] [Google Scholar]
  62. 62.
    Helms JA, Schneider RA. 2003.. Cranial skeletal biology. . Nature 423::32631
    [Crossref] [Google Scholar]
  63. 63.
    Hieronymus TL, Witmer LM. 2010.. Homology and evolution of avian compound Rhamphothecae. . Auk 127::590604
    [Crossref] [Google Scholar]
  64. 64.
    Houchen CJ, Castro B, Hahn Leat P, Mohammad N, Hall-Glenn F, Bumann EE. 2023.. Treatment with an inhibitor of matrix metalloproteinase 9 or cathepsin K lengthens embryonic lower jaw bone. . Orthod. Craniofac. Res. 26::5009
    [Crossref] [Google Scholar]
  65. 65.
    Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, et al. 2014.. Whole-genome analyses resolve early branches in the tree of life of modern birds. . Science 346::132031
    [Crossref] [Google Scholar]
  66. 66.
    Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. 2012.. The global diversity of birds in space and time. . Nature 491::44448
    [Crossref] [Google Scholar]
  67. 67.
    Jheon AH, Schneider RA. 2009.. The cells that fill the bill: neural crest and the evolution of craniofacial development. . J. Dent. Res. 88::1221
    [Crossref] [Google Scholar]
  68. 68.
    Jung J-Y, Naleway SE, Yaraghi NA, Herrera S, Sherman VR, et al. 2016.. Structural analysis of the tongue and hyoid apparatus in a woodpecker. . Acta Biomater 37::113
    [Crossref] [Google Scholar]
  69. 69.
    Kanai SM, Clouthier DE. 2023.. Endothelin signaling in development. . Development 150::dev201786
    [Crossref] [Google Scholar]
  70. 70.
    Kardon G, Harfe BD, Tabin CJ. 2003.. A Tcf4-positive mesodermal population provides a prepattern for vertebrate limb muscle patterning. . Dev. Cell 5::93744
    [Crossref] [Google Scholar]
  71. 71.
    King AS, McLelland J. 1979.. Form and Function in Birds. London:: Academic
    [Google Scholar]
  72. 72.
    Krishnan A. 2023.. Biomechanics illuminates form–function relationships in bird bills. . J. Exp. Biol. 226:(Suppl. 1):jeb245171
    [Crossref] [Google Scholar]
  73. 73.
    Kulkarni P, Mohanty A, Salgia R, Uversky VN. 2022.. Intrinsically disordered BMP4 morphogen and the beak of the finch: co-option of an ancient axial patterning system. . Int. J. Biol. Macromol. 219::36673
    [Crossref] [Google Scholar]
  74. 74.
    Lainoff AJ, Moustakas-Verho JE, Hu D, Kallonen A, Marcucio RS, Hlusko LJ. 2015.. A comparative examination of odontogenic gene expression in both toothed and toothless amniotes. . J. Exp. Zool. B Mol. Dev. Evol. 324::25569
    [Crossref] [Google Scholar]
  75. 75.
    Lamichhaney S, Berglund J, Almen MS, Maqbool K, Grabherr M, et al. 2015.. Evolution of Darwin's finches and their beaks revealed by genome sequencing. . Nature 518::37175
    [Crossref] [Google Scholar]
  76. 76.
    Lautenschlager S, Witmer LM, Altangerel P, Rayfield EJ. 2013.. Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs. . PNAS 110::2065762
    [Crossref] [Google Scholar]
  77. 77.
    Le Douarin NM, Creuzet S, Couly G, Dupin E. 2004.. Neural crest cell plasticity and its limits. . Development 131::463750
    [Crossref] [Google Scholar]
  78. 78.
    Lee SH, Fu KK, Hui JN, Richman JM. 2001.. Noggin and retinoic acid transform the identity of avian facial prominences. . Nature 414::90912
    [Crossref] [Google Scholar]
  79. 79.
    Li S, Bai S, Qin X, Zhang J, Irwin DM, et al. 2019.. Comparison of whole embryonic development in the duck (Anas platyrhynchos) and goose (Anser cygnoides) with the chicken (Gallus gallus). . Poult. Sci. 98::327891
    [Crossref] [Google Scholar]
  80. 80.
    Livezey BC, Zusi RL. 2007.. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. . Zool. J. Linn. Soc. 149::195
    [Crossref] [Google Scholar]
  81. 81.
    Louchart A, Buffrenil V, Bourdon E, Dumont M, Viriot L, Sire JY. 2018.. Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed through a response of bone cells to tooth-specific epithelial signals under unique conditions. . Sci. Rep. 8::12952
    [Crossref] [Google Scholar]
  82. 82.
    Louchart A, Viriot L. 2011.. From snout to beak: the loss of teeth in birds. . Trends Ecol. Evol. 26::66373
    [Crossref] [Google Scholar]
  83. 83.
    Louryan S, Choa-Duterre M, Lejong M, Vanmuylder N. 2022.. Evolution and development of parrot pseudoteeth. . J. Morphol. 283::20718
    [Crossref] [Google Scholar]
  84. 84.
    Lucas AM, Stettenheim PR. 1972.. Avian Anatomy: Integument. Washington, DC:: US Dep. of Agric.
    [Google Scholar]
  85. 85.
    Lwigale PY, Schneider RA. 2008.. Other chimeras: quail–duck and mouse–chick. . Methods Cell Biol. 87::5974
    [Crossref] [Google Scholar]
  86. 86.
    Mallarino R, Grant PR, Grant BR, Herrel A, Kuo WP, Abzhanov A. 2011.. Two developmental modules establish 3D beak-shape variation in Darwin's finches. . PNAS 108::405762
    [Crossref] [Google Scholar]
  87. 87.
    Marcucio R, Hallgrimsson B, Young NM. 2015.. Facial morphogenesis: physical and molecular interactions between the brain and the face. . Curr. Top. Dev. Biol. 115::299320
    [Crossref] [Google Scholar]
  88. 88.
    Marcucio RS, Young NM, Hu D, Hallgrimsson B. 2011.. Mechanisms that underlie co-variation of the brain and face. . Genesis 49::17789
    [Crossref] [Google Scholar]
  89. 89.
    Marugan-Lobon J, Nebreda SM, Navalon G, Benson RBJ. 2022.. Beyond the beak: brain size and allometry in avian craniofacial evolution. . J. Anat. 240::197209
    [Crossref] [Google Scholar]
  90. 90.
    McNew SM, Beck D, Sadler-Riggleman I, Knutie SA, Koop JAH, et al. 2017.. Epigenetic variation between urban and rural populations of Darwin's finches. . BMC Evol. Biol. 17::183
    [Crossref] [Google Scholar]
  91. 91.
    Merrill AE, Eames BF, Weston SJ, Heath T, Schneider RA. 2008.. Mesenchyme-dependent BMP signaling directs the timing of mandibular osteogenesis. . Development 135::122334
    [Crossref] [Google Scholar]
  92. 92.
    Mitsiadis TA, Cheraud Y, Sharpe P, Fontaine-Perus J. 2003.. Development of teeth in chick embryos after mouse neural crest transplantations. . PNAS 100::654145
    [Crossref] [Google Scholar]
  93. 93.
    Mosleh S, Choi GPT, Musser GM, James HF, Abzhanov A, Mahadevan L. 2023.. Beak morphometry and morphogenesis across avian radiations. . Proc. R. Soc. B 290::20230420
    [Crossref] [Google Scholar]
  94. 94.
    Navalon G, Bright JA, Marugan-Lobon J, Rayfield EJ. 2019.. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. . Evolution 73::42235
    [Crossref] [Google Scholar]
  95. 95.
    Newton AH, Pask AJ. 2020.. Evolution and expansion of the RUNX2 QA repeat corresponds with the emergence of vertebrate complexity. . Commun. Biol. 3::771
    [Crossref] [Google Scholar]
  96. 96.
    Nguyen TT, Mitchell JM, Kiel MD, Kenny CP, Li H, et al. 2023.. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway. . Development 151::dev202095
    [Crossref] [Google Scholar]
  97. 97.
    Nimmagadda S, Buchtova M, Fu K, Geetha-Loganathan P, Hosseini-Farahabadi S, et al. 2015.. Identification and functional analysis of novel facial patterning genes in the duplicated beak chicken embryo. . Dev. Biol. 407::27588
    [Crossref] [Google Scholar]
  98. 98.
    Noden DM, Schneider RA. 2006.. Neural crest cells and the community of plan for craniofacial development: historical debates and current perspectives. . Adv. Exp. Med. Biol. 589::123
    [Crossref] [Google Scholar]
  99. 99.
    Orkney A, Bjarnason A, Tronrud BC, Benson RBJ. 2021.. Patterns of skeletal integration in birds reveal that adaptation of element shapes enables coordinated evolution between anatomical modules. . Nat. Ecol. Evol. 5::125058
    [Crossref] [Google Scholar]
  100. 100.
    Ostrom JH. 1976.. Archaeopteryx and the origin of birds. . Biol. J. Linn. Soc. 8::91118
    [Crossref] [Google Scholar]
  101. 101.
    Parsons KJ, Albertson RC. 2009.. Roles for Bmp4 and CaM1 in shaping the jaw: evo-devo and beyond. . Annu. Rev. Genet. 43::36988
    [Crossref] [Google Scholar]
  102. 102.
    Pereira SL, Baker AJ. 2006.. A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of DNA substitutions across lineages and sites. . Mol. Phylogenet. Evol. 38::499509
    [Crossref] [Google Scholar]
  103. 103.
    Podos J. 2001.. Correlated evolution of morphology and vocal signal structure in Darwin's finches. . Nature 409::18588
    [Crossref] [Google Scholar]
  104. 104.
    Podos J, Southall JA, Rossi-Santos MR. 2004.. Vocal mechanics in Darwin's finches: correlation of beak gape and song frequency. . J. Exp. Biol. 207::60719
    [Crossref] [Google Scholar]
  105. 105.
    Powder KE, Ku YC, Brugmann SA, Veile RA, Renaud NA, et al. 2012.. A cross-species analysis of microRNAs in the developing avian face. . PLOS ONE 7::e35111
    [Crossref] [Google Scholar]
  106. 106.
    Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, et al. 2015.. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. . Nature 526::56973
    [Crossref] [Google Scholar]
  107. 107.
    Richman JM, Lee SH. 2003.. About face: signals and genes controlling jaw patterning and identity in vertebrates. . Bioessays 25::55468
    [Crossref] [Google Scholar]
  108. 108.
    Richman JM, Tickle C. 1989.. Epithelia are interchangeable between facial primordia of chick embryos and morphogenesis is controlled by the mesenchyme. . Dev. Biol. 136::20110
    [Crossref] [Google Scholar]
  109. 109.
    Rico-Guevara A, Hurme KJ, Rubega MA, Cuban D. 2023.. Nectar feeding beyond the tongue: hummingbirds drink using phase-shifted bill opening, flexible tongue flaps and wringing at the tips. . J. Exp. Biol. 226:(Suppl. 1):jeb245074
    [Crossref] [Google Scholar]
  110. 110.
    Rijli FM, Mark M, Lakkaraju S, Dierich A, Dolle P, Chambon P. 1993.. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. . Cell 75::133349
    [Crossref] [Google Scholar]
  111. 111.
    Rubin CJ, Enbody ED, Dobreva MP, Abzhanov A, Davis BW, et al. 2022.. Rapid adaptive radiation of Darwin's finches depends on ancestral genetic modules. . Sci. Adv. 8::eabm5982
    [Crossref] [Google Scholar]
  112. 112.
    Sanchez-Villagra MR, Geiger M, Schneider RA. 2016.. The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals. . R. Soc. Open Sci. 3::160107
    [Crossref] [Google Scholar]
  113. 113.
    Sandell LL, Trainor PA. 2006.. Neural crest cell plasticity: Size matters. . Adv. Exp. Med. Biol. 589::7895
    [Crossref] [Google Scholar]
  114. 114.
    Saranathan V, Finet C. 2021.. Cellular and developmental basis of avian structural coloration. . Curr. Opin Genet. Dev. 69::5664
    [Crossref] [Google Scholar]
  115. 115.
    Schneider RA. 1999.. Neural crest can form cartilages normally derived from mesoderm during development of the avian head skeleton. . Dev. Biol. 208::44155
    [Crossref] [Google Scholar]
  116. 116.
    Schneider RA. 2005.. Developmental mechanisms facilitating the evolution of bills and quills. . J. Anat. 207::56373
    [Crossref] [Google Scholar]
  117. 117.
    Schneider RA. 2007.. How to tweak a beak: molecular techniques for studying the evolution of size and shape in Darwin's finches and other birds. . Bioessays 29::16
    [Crossref] [Google Scholar]
  118. 118.
    Schneider RA. 2015.. Regulation of jaw length during development, disease, and evolution. . Curr. Top. Dev. Biol. 115::27198
    [Crossref] [Google Scholar]
  119. 119.
    Schneider RA. 2018.. Cellular control of time, size, and shape in development and evolution. . In Cells in Evolutionary Biology: Translating Genotypes into PhenotypesPast, Present, Future, ed. BK Hall, SA Moody , pp. 167212. Boca Raton, FL:: CRC Press
    [Google Scholar]
  120. 120.
    Schneider RA. 2018.. Neural crest and the origin of species-specific pattern. . Genesis 56::e23219
    [Crossref] [Google Scholar]
  121. 121.
    Schneider RA, Helms JA. 2003.. The cellular and molecular origins of beak morphology. . Science 299::56568
    [Crossref] [Google Scholar]
  122. 122.
    Schneider RA, Hu D, Rubenstein JL, Maden M, Helms JA. 2001.. Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. . Development 128::275567
    [Crossref] [Google Scholar]
  123. 123.
    Selleri L, Rijli FM. 2023.. Shaping faces: genetic and epigenetic control of craniofacial morphogenesis. . Nat. Rev. Genet. 24::61026
    [Crossref] [Google Scholar]
  124. 124.
    Sheard C, Street SE, Evans C, Lala KN, Healy SD, Sugasawa S. 2023.. Beak shape and nest material use in birds. . Philos. Trans. R. Soc. B 378::20220147
    [Crossref] [Google Scholar]
  125. 125.
    Shigetani Y, Nobusada Y, Kuratani S. 2000.. Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: epithelial-mesenchymal interactions in the specification of the craniofacial ectomesenchyme. . Dev. Biol. 228::7385
    [Crossref] [Google Scholar]
  126. 126.
    Sinervo B. 2005.. Darwin's finch beaks, Bmp4, and the developmental origins of novelty. . Heredity 94::14142
    [Crossref] [Google Scholar]
  127. 127.
    Smith FJ, Percival CJ, Young NM, Hu D, Schneider RA, et al. 2015.. Divergence of craniofacial developmental trajectories among avian embryos. . Dev. Dyn. 244::115867
    [Crossref] [Google Scholar]
  128. 128.
    Smith KK. 1993.. The form of the feeding apparatus in terrestrial vertebrates: studies of adaptation and constraint. . In The Skull, ed. J Hanken, BK Hall , pp. 15096. Chicago:: Univ. Chicago Press
    [Google Scholar]
  129. 129.
    Smith KK, Schneider RA. 1998.. Have gene knockouts caused evolutionary reversals in the mammalian first arch?. BioEssays 20::24555
    [Crossref] [Google Scholar]
  130. 130.
    Smith SS, Chu D, Qu T, Aggleton JA, Schneider RA. 2022.. Species-specific sensitivity to TGFβ signaling and changes to the Mmp13 promoter underlie avian jaw development and evolution. . eLife 11::e66005
    [Crossref] [Google Scholar]
  131. 131.
    Solem RC, Eames BF, Tokita M, Schneider RA. 2011.. Mesenchymal and mechanical mechanisms of secondary cartilage induction. . Dev. Biol. 356::2839
    [Crossref] [Google Scholar]
  132. 132.
    Starck JM, Ricklefs RE. 1998.. Avian Growth and Development: Evolution Within the Altricial-Precocial Spectrum. New York:: Oxford Univ. Press
    [Google Scholar]
  133. 133.
    Stiller J, Feng S, Chowdhury A-A, Rivas-González I, Duchêne DA, et al. 2024.. Complexity of avian evolution revealed by family-level genomes. . Nature 629::85160
    [Crossref] [Google Scholar]
  134. 134.
    Szabo-Rogers HL, Geetha-Loganathan P, Nimmagadda S, Fu KK, Richman JM. 2008.. FGF signals from the nasal pit are necessary for normal facial morphogenesis. . Dev. Biol. 318::289302
    [Crossref] [Google Scholar]
  135. 135.
    Tokita M. 2003.. The skull development of parrots with special reference to the emergence of a morphologically unique cranio-facial hinge. . Zool. Sci. 20::74958
    [Crossref] [Google Scholar]
  136. 136.
    Tokita M, Nakayama T, Schneider RA, Agata K. 2013.. Molecular and cellular changes associated with the evolution of novel jaw muscles in parrots. . Proc. R. Soc. B 280::20122319
    [Crossref] [Google Scholar]
  137. 137.
    Tokita M, Schneider RA. 2009.. Developmental origins of species-specific muscle pattern. . Dev. Biol. 331::31125
    [Crossref] [Google Scholar]
  138. 138.
    Trainor PA, Ariza-McNaughton L, Krumlauf R. 2002.. Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. . Science 295::128891
    [Crossref] [Google Scholar]
  139. 139.
    Tucker AS, Lumsden A. 2004.. Neural crest cells provide species-specific patterning information in the developing branchial skeleton. . Evol. Dev. 6::3240
    [Crossref] [Google Scholar]
  140. 140.
    Van Otterloo E, Milanda I, Pike H, Thompson JA, Li H, et al. 2022.. AP-2α and AP-2β cooperatively function in the craniofacial surface ectoderm to regulate chromatin and gene expression dynamics during facial development. . eLife 11::e70511
    [Crossref] [Google Scholar]
  141. 141.
    Wang S, Stiegler J, Wu P, Chuong CM, Hu D, et al. 2017.. Heterochronic truncation of odontogenesis in theropod dinosaurs provides insight into the macroevolution of avian beaks. . PNAS 114::1093035
    [Crossref] [Google Scholar]
  142. 142.
    Wilson J, Tucker AS. 2004.. Fgf and Bmp signals repress the expression of Bapx1 in the mandibular mesenchyme and control the position of the developing jaw joint. . Dev. Biol. 266::13850
    [Crossref] [Google Scholar]
  143. 143.
    Woronowicz KC, Gline SE, Herfat ST, Fields AJ, Schneider RA. 2018.. FGF and TGFβ signaling link form and function during jaw development and evolution. . Dev. Biol. 444:(Suppl. 1):S21936
    [Crossref] [Google Scholar]
  144. 144.
    Woronowicz KC, Schneider RA. 2019.. Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. . EvoDevo 10::17
    [Crossref] [Google Scholar]
  145. 145.
    Wu L, Jiao X, Zhang D, Cheng Y, Song G, et al. 2021.. Comparative genomics and evolution of avian specialized traits. . Curr. Genom. 22::496511
    [Crossref] [Google Scholar]
  146. 146.
    Wu P, Jiang TX, Shen JY, Widelitz RB, Chuong CM. 2006.. Morphoregulation of avian beaks: comparative mapping of growth zone activities and morphological evolution. . Dev. Dyn. 235::140012
    [Crossref] [Google Scholar]
  147. 147.
    Wu P, Jiang TX, Suksaweang S, Widelitz RB, Chuong CM. 2004.. Molecular shaping of the beak. . Science 305::146566
    [Crossref] [Google Scholar]
  148. 148.
    Yang TR, Sander PM. 2018.. The origin of the bird's beak: new insights from dinosaur incubation periods. . Biol. Lett. 14::20180090
    [Crossref] [Google Scholar]
  149. 149.
    Young MW, Wilken AT, Manafzadeh AR, Schurr AF, Bastian A, et al. 2023.. The dual function of prokinesis in the feeding and locomotor systems of parrots. . J. Exp. Biol. 226::jeb246659
    [Crossref] [Google Scholar]
  150. 150.
    Young NM, Hu D, Lainoff AJ, Smith FJ, Diaz R, et al. 2014.. Embryonic bauplans and the developmental origins of facial diversity and constraint. . Development 141::105963
    [Crossref] [Google Scholar]
  151. 151.
    Young NM, Linde-Medina M, Fondon JW, Hallgrimsson B, Marcucio RS. 2017.. Craniofacial diversification in the domestic pigeon and the evolution of the avian skull. . Nat. Ecol. Evol. 1::95
    [Crossref] [Google Scholar]
  152. 152.
    Yusuf L, Heatley MC, Palmer JPG, Barton HJ, Cooney CR, Gossmann TI. 2020.. Noncoding regions underpin avian bill shape diversification at macroevolutionary scales. . Genome Res. 30::55365
    [Crossref] [Google Scholar]
  153. 153.
    Zhang G, Li C, Li Q, Li B, Larkin DM, et al. 2014.. Comparative genomics reveals insights into avian genome evolution and adaptation. . Science 346::131120
    [Crossref] [Google Scholar]
  154. 154.
    Zusi RL. 1993.. Patterns of diversity in the avian skull. . In The Skull, ed. J Hanken, BK Hall , pp. 391437. Chicago:: Univ. Chicago Press
    [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-101929
Loading
/content/journals/10.1146/annurev-genet-111523-101929
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error