1932

Abstract

Neural stem cells (NSCs) are progenitor cell populations generating glial cells and neurons and endowed with long-lasting self-renewal and differentiation potential. While some neural progenitors (NPs) in the embryonic nervous system are also long-lived and match this definition, the term NSC classically refers to such progenitor types in the adult. With the discovery of extensive NSC populations in the adult brain of (zebrafish) and of their high neurogenic activity, including for neuronal regeneration, this model organism has become a powerful tool to characterize and mechanistically dissect NSC properties. On these bases, this article will consider NSCs in the adult zebrafish brain, with a focus on its most extensively characterized domain, the telencephalon (notably its dorsal part, the pallium). Whenever necessary, we will also refer to other brain subdivisions, embryonic processes, and the mouse adult brain, whether for comparative purposes or because more information is available in these other systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-101949
2024-11-25
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-101949.html?itemId=/content/journals/10.1146/annurev-genet-111523-101949&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adolf B, Chapouton P, Lam CS, Topp S, Tannhäuser B, et al. 2006.. Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. . Dev. Biol. 295:(1):27893
    [Crossref] [Google Scholar]
  2. 2.
    Ali FR, Cheng K, Kirwan P, Metcalfe S, Livesey FJ, et al. 2014.. The phosphorylation status of Ascl1 is a key determinant of neuronal differentiation and maturation in vivo and in vitro. . Development 141:(11):221624
    [Crossref] [Google Scholar]
  3. 3.
    Almada AE, Wagers AJ. 2016.. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. . Nat. Rev. Mol. Cell Biol. 17:(5):26779
    [Crossref] [Google Scholar]
  4. 4.
    Alunni A, Krecsmarik M, Bosco A, Galant S, Pan L, et al. 2013.. Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium. . Development 140:(16):333547
    [Crossref] [Google Scholar]
  5. 5.
    Andersen J, Urbán N, Achimastou A, Ito A, Simic M, et al. 2014.. A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. . Neuron 83:(5):108597
    [Crossref] [Google Scholar]
  6. 6.
    Barbosa JS, Sanchez-Gonzalez R, Di Giaimo R, Baumgart EV, Theis FJ, et al. 2015.. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain. . Science 348:(6236):78993
    [Crossref] [Google Scholar]
  7. 7.
    Barker N, van de Wetering M, Clevers H. 2008.. The intestinal stem cell. . Genes Dev. 22:(14):185664
    [Crossref] [Google Scholar]
  8. 8.
    Basak O, Krieger TG, Muraro MJ, Wiebrands K, Stange DE, et al. 2018.. Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. . PNAS 115:(4):E61019
    [Crossref] [Google Scholar]
  9. 9.
    Baumgart EV, Barbosa JS, Bally-Cuif L, Götz M, Ninkovic J. 2012.. Stab wound injury of the zebrafish telencephalon: a model for comparative analysis of reactive gliosis. . Glia 60:(3):34357
    [Crossref] [Google Scholar]
  10. 10.
    Belenguer G, Duart-Abadia P, Jordán-Pla A, Domingo-Muelas A, Blasco-Chamarro L, et al. 2021.. Adult neural stem cells are alerted by systemic inflammation through TNF-α receptor signaling. . Cell Stem Cell 28:(2):28599.e9
    [Crossref] [Google Scholar]
  11. 11.
    Berberoglu MA, Dong Z, Li G, Zheng J, Trejo Martinez L del CG, et al. 2014.. Heterogeneously expressed fezf2 patterns gradient Notch activity in balancing the quiescence, proliferation, and differentiation of adult neural stem cells. . J. Neurosci. 34:(42):1391123
    [Crossref] [Google Scholar]
  12. 12.
    Bernitz JM, Kim HS, MacArthur B, Sieburg H, Moore K. 2016.. Hematopoietic stem cells count and remember self-renewal divisions. . Cell 167:(5):1296309.e10
    [Crossref] [Google Scholar]
  13. 13.
    Bertrand N, Castro DS, Guillemot F. 2002.. Proneural genes and the specification of neural cell types. . Nat. Rev. Neurosci. 3:(7):51730
    [Crossref] [Google Scholar]
  14. 14.
    Bhattarai P, Thomas AK, Zhang Y, Kizil C. 2017.. The effects of aging on Amyloid-β42-induced neurodegeneration and regeneration in adult zebrafish brain. . Neurogenesis 4:(1):e1322666
    [Crossref] [Google Scholar]
  15. 15.
    Blomfield IM, Rocamonde B, del Mar Masdeu M, Mulugeta E, Vaga S, et al. 2019.. Id4 promotes the elimination of the pro-activation factor Ascl1 to maintain quiescence of adult hippocampal stem cells. . eLife 8::e48561
    [Crossref] [Google Scholar]
  16. 16.
    Boareto M. 2020.. Patterning via local cell-cell interactions in developing systems. . Dev. Biol. 460:(1):7785
    [Crossref] [Google Scholar]
  17. 17.
    Bottes S, Jaeger BN, Pilz G-A, Jörg DJ, Cole JD, et al. 2021.. Long-term self-renewing stem cells in the adult mouse hippocampus identified by intravital imaging. . Nat. Neurosci. 24:(2):22533
    [Crossref] [Google Scholar]
  18. 18.
    Bray SJ. 2006.. Notch signalling: A simple pathway becomes complex. . Nat. Rev. Mol. Cell Biol. 7:(9):67889
    [Crossref] [Google Scholar]
  19. 19.
    Buffo A, Rite I, Tripathi P, Lepier A, Colak D, et al. 2008.. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. . PNAS 105:(9):358186
    [Crossref] [Google Scholar]
  20. 20.
    Capiotti KM, Antonioli R, Kist LW, Bogo MR, Bonan CD, Da Silva RS. 2014.. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. . Comp. Biochem. Physiol. B Biochem. Mol. Biol. 171::5865
    [Crossref] [Google Scholar]
  21. 21.
    Casares-Crespo L, Calatayud-Baselga I, García-Corzo L, Mira H. 2018.. On the role of basal autophagy in adult neural stem cells and neurogenesis. . Front. Cell Neurosci. 12::339
    [Crossref] [Google Scholar]
  22. 22.
    Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, et al. 2011.. A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. . Genes Dev. 25:(9):93045
    [Crossref] [Google Scholar]
  23. 23.
    Chapouton P, Skupien P, Hesl B, Coolen M, Moore JC, et al. 2010.. Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. . J. Neurosci. 30:(23):796174
    [Crossref] [Google Scholar]
  24. 24.
    Chapouton P, Webb KJ, Stigloher C, Alunni A, Adolf B, et al. 2011.. Expression of hairy/enhancer of split genes in neural progenitors and neurogenesis domains of the adult zebrafish brain. . J. Comp. Neurol. 519:(9):174869
    [Crossref] [Google Scholar]
  25. 25.
    Cosacak MI, Bhattarai P, Reinhardt S, Petzold A, Dahl A, et al. 2019.. Single-cell transcriptomics analyses of neural stem cell heterogeneity and contextual plasticity in a zebrafish brain model of amyloid toxicity. . Cell Rep. 27:(4):130718.e3
    [Crossref] [Google Scholar]
  26. 26.
    Costa MR, Ortega F, Brill MS, Beckervordersandforth R, Petrone C, et al. 2011.. Continuous live imaging of adult neural stem cell division and lineage progression in vitro. . Development 138:(6):105768
    [Crossref] [Google Scholar]
  27. 27.
    Cregg JM, DePaul MA, Filous AR, Lang BT, Tran A, Silver J. 2014.. Functional regeneration beyond the glial scar. . Exp. Neurol. 253::197207
    [Crossref] [Google Scholar]
  28. 28.
    Diotel N, Beil T, Strähle U, Rastegar S. 2015.. Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis. . Gene Expr. Patterns 19:(1–2):113
    [Crossref] [Google Scholar]
  29. 29.
    Diotel N, Lübke L, Strähle U, Rastegar S. 2020.. Common and distinct features of adult neurogenesis and regeneration in the telencephalon of zebrafish and mammals. . Front. Neurosci. 14::568930
    [Crossref] [Google Scholar]
  30. 30.
    Diotel N, Rodriguez Viales R, Armant O, März M, Ferg M, et al. 2015.. Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches. . J. Comp. Neurol. 523:(8):120221
    [Crossref] [Google Scholar]
  31. 31.
    Diotel N, Vaillant C, Kah O, Pellegrini E. 2016.. Mapping of brain lipid binding protein (Blbp) in the brain of adult zebrafish, co-expression with aromatase B and links with proliferation. . Gene Expr. Patterns 20:(1):4254
    [Crossref] [Google Scholar]
  32. 32.
    Dirian L, Galant S, Coolen M, Chen W, Bedu S, et al. 2014.. Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells. . Dev. Cell 30:(2):12336
    [Crossref] [Google Scholar]
  33. 33.
    Dong Z, Yang N, Yeo S-Y, Chitnis A, Guo S. 2012.. Intralineage directional Notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. . Neuron 74:(1):6578
    [Crossref] [Google Scholar]
  34. 34.
    Dorsemans A-C, Soulé S, Weger M, Bourdon E, Lefebvre d'Hellencourt C, et al. 2017.. Impaired constitutive and regenerative neurogenesis in adult hyperglycemic zebrafish. . J. Comp. Neurol. 525:(3):44258
    [Crossref] [Google Scholar]
  35. 35.
    Dray N, Bedu S, Vuillemin N, Alunni A, Coolen M, et al. 2015.. Large-scale live imaging of adult neural stem cells in their endogenous niche. . Development 142:(20):3592600
    [Google Scholar]
  36. 36.
    Dray N, Mancini L, Binshtok U, Cheysson F, Supatto W, et al. 2021.. Dynamic spatiotemporal coordination of neural stem cell fate decisions occurs through local feedback in the adult vertebrate brain. . Cell Stem Cell 28::145772.e12
    [Crossref] [Google Scholar]
  37. 37.
    Dray N, Than-Trong E, Bally-Cuif L. 2021.. Neural stem cell pools homeostasis in the vertebrate adult brain: cell-autonomous decisions or community rules?. 43(3):e2000228
  38. 38.
    Dyer MA, Cepko CL. 2000.. Control of Müller glial cell proliferation and activation following retinal injury. . Nat. Neurosci. 3:(9):87380
    [Crossref] [Google Scholar]
  39. 39.
    Edelmann K, Glashauser L, Sprungala S, Hesl B, Fritschle M, et al. 2013.. Increased radial glia quiescence, decreased reactivation upon injury and unaltered neuroblast behavior underlie decreased neurogenesis in the aging zebrafish telencephalon. . J. Comp. Neurol. 521:(13):3099115
    [Crossref] [Google Scholar]
  40. 40.
    Ehm O, Göritz C, Covic M, Schäffner I, Schwarz TJ, et al. 2010.. RBPJκ-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. . J. Neurosci. 30:(41):13794807
    [Crossref] [Google Scholar]
  41. 41.
    Engler A, Rolando C, Giachino C, Saotome I, Erni A, et al. 2018.. Notch2 signaling maintains NSC quiescence in the murine ventricular-subventricular zone. . Cell Rep. 22:(4):9921002
    [Crossref] [Google Scholar]
  42. 42.
    Fausett BV, Goldman D. 2006.. A role for α1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. . J. Neurosci. 26:(23):630313
    [Crossref] [Google Scholar]
  43. 43.
    Ferron SR, Pozo N, Laguna A, Aranda S, Porlan E, et al. 2010.. Regulated segregation of kinase Dyrk1A during asymmetric neural stem cell division is critical for EGFR-mediated biased signaling. . Cell Stem Cell 7:(3):36779
    [Crossref] [Google Scholar]
  44. 44.
    Fimbel SM, Montgomery JE, Burket CT, Hyde DR. 2007.. Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. . J. Neurosci. 27:(7):171224
    [Crossref] [Google Scholar]
  45. 45.
    Fitch MT, Silver J. 2008.. CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. . Exp. Neurol. 209:(2):294301
    [Crossref] [Google Scholar]
  46. 46.
    Furlan G, Cuccioli V, Vuillemin N, Dirian L, Muntasell AJ, et al. 2017.. Life-long neurogenic activity of individual neural stem cells and continuous growth establish an outside-in architecture in the teleost pallium. . Curr. Biol. 27:(21):3288301.e3
    [Crossref] [Google Scholar]
  47. 47.
    Gage FH. 2000.. Mammalian neural stem cells. . Science 287:(5457):143338
    [Crossref] [Google Scholar]
  48. 48.
    Galant S, Furlan G, Coolen M, Dirian L, Foucher I, Bally-Cuif L. 2016.. Embryonic origin and lineage hierarchies of the neural progenitor subtypes building the zebrafish adult midbrain. . Dev. Biol. 420:(1):12035
    [Crossref] [Google Scholar]
  49. 49.
    Ganz J, Kaslin J, Hochmann S, Freudenreich D, Brand M. 2010.. Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon. . Glia 58:(11):134563
    [Crossref] [Google Scholar]
  50. 50.
    Gao H, Luodan A, Huang X, Chen X, Xu H. 2021.. Müller glia-mediated retinal regeneration. . Mol. Neurobiol. 58:(5):234261
    [Crossref] [Google Scholar]
  51. 51.
    Ghaddar B, Lübke L, Couret D, Rastegar S, Diotel N. 2021.. Cellular mechanisms participating in brain repair of adult zebrafish and mammals after injury. . Cells 10:(2):391
    [Crossref] [Google Scholar]
  52. 52.
    Ghosh S, Hui SP. 2016.. Regeneration of zebrafish CNS: adult neurogenesis. . Neural Plast. 2016::5815439
    [Crossref] [Google Scholar]
  53. 53.
    Gillotin S, Davies JD, Philpott A. 2018.. Subcellular localisation modulates ubiquitylation and degradation of Ascl1. . Sci. Rep. 8:(1):4625
    [Crossref] [Google Scholar]
  54. 54.
    Goldman D. 2014.. Müller glial cell reprogramming and retina regeneration. . Nat. Rev. Neurosci. 15:(7):43142
    [Crossref] [Google Scholar]
  55. 55.
    Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M. 2006.. Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. . Dev. Biol. 295:(1):26377
    [Crossref] [Google Scholar]
  56. 56.
    Guillemot F, Hassan BA. 2017.. Beyond proneural: emerging functions and regulations of proneural proteins. . Curr. Opin. Neurobiol. 42::93101
    [Crossref] [Google Scholar]
  57. 57.
    Haddon C, Smithers L, Schneider-Maunoury S, Coche T, Henrique D, Lewis J. 1998.. Multiple delta genes and lateral inhibition in zebrafish primary neurogenesis. . Development 125:(3):35970
    [Crossref] [Google Scholar]
  58. 58.
    Harris L, Rigo P, Stiehl T, Gaber ZB, Austin SHL, et al. 2021.. Coordinated changes in cellular behavior ensure the lifelong maintenance of the hippocampal stem cell population. . Cell Stem Cell 28::86376.e6
    [Crossref] [Google Scholar]
  59. 59.
    Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, et al. 2002.. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. . Science 298:(5594):84043
    [Crossref] [Google Scholar]
  60. 60.
    Hui SP, Dutta A, Ghosh S. 2010.. Cellular response after crush injury in adult zebrafish spinal cord. . Dev. Dyn. 239:(11):296279
    [Crossref] [Google Scholar]
  61. 61.
    Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, et al. 2013.. Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. . Science 342:(6163):12038
    [Crossref] [Google Scholar]
  62. 62.
    Imayoshi I, Kageyama R. 2011.. The role of Notch signaling in adult neurogenesis. . Mol. Neurobiol. 44:(1):712
    [Crossref] [Google Scholar]
  63. 63.
    Imayoshi I, Kageyama R. 2014.. bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. . Neuron 82:(1):923
    [Crossref] [Google Scholar]
  64. 64.
    Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R. 2010.. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. . J. Neurosci. 30:(9):348998
    [Crossref] [Google Scholar]
  65. 65.
    Ito Y, Tanaka H, Okamoto H, Ohshima T. 2010.. Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. . Dev. Biol. 342:(1):2638
    [Crossref] [Google Scholar]
  66. 66.
    Jurisch-Yaksi N, Yaksi E, Kizil C. 2020.. Radial glia in the zebrafish brain: functional, structural, and physiological comparison with the mammalian glia. . Glia 68:(12):245170
    [Crossref] [Google Scholar]
  67. 67.
    Kaslin J, Ganz J, Geffarth M, Grandel H, Hans S, Brand M. 2009.. Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche. . J. Neurosci. 19:(19):614253
    [Crossref] [Google Scholar]
  68. 68.
    Kaslin J, Kroehne V, Benato F, Argenton F, Brand M. 2013.. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult. . Neural Dev. 8::9
    [Crossref] [Google Scholar]
  69. 69.
    Kaslin J, Kroehne V, Ganz J, Hans S, Brand M. 2017.. Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration. . Development 144:(8):146271
    [Crossref] [Google Scholar]
  70. 70.
    Katz S, Cussigh D, Urbán N, Blomfield I, Guillemot F, et al. 2016.. A nuclear role for miR-9 and Argonaute proteins in balancing quiescent and activated neural stem cell states. . Cell Rep. 17:(5):138398
    [Crossref] [Google Scholar]
  71. 71.
    Kawaguchi D, Furutachi S, Kawai H, Hozumi K, Gotoh Y. 2013.. Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis. . Nat. Commun. 4::1880
    [Crossref] [Google Scholar]
  72. 72.
    Kawai H, Kawaguchi D, Kuebrich BD, Kitamoto T, Yamaguchi M, et al. 2017.. Area-specific regulation of quiescent neural stem cells by Notch3 in the adult mouse subependymal zone. . J. Neurosci. 37:(49):1186780
    [Crossref] [Google Scholar]
  73. 73.
    Kim EJ, Ables JL, Dickel LK, Eisch AJ, Johnson JE. 2011.. Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. . PLOS ONE 6:(3):e18472
    [Crossref] [Google Scholar]
  74. 74.
    Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995.. Stages of embryonic development of the zebrafish. . Dev. Dyn. 203:(3):253310
    [Crossref] [Google Scholar]
  75. 75.
    Kishimoto N, Alfaro-Cervello C, Shimizu K, Asakawa K, Urasaki A, et al. 2011.. Migration of neuronal precursors from the telencephalic ventricular zone into the olfactory bulb in adult zebrafish. . J. Comp. Neurol. 519:(17):354965
    [Crossref] [Google Scholar]
  76. 76.
    Kishimoto N, Shimizu K, Sawamoto K. 2012.. Neuronal regeneration in a zebrafish model of adult brain injury. . Dis. Model. Mech. 5:(2):2009
    [Crossref] [Google Scholar]
  77. 77.
    Kizil C, Kaslin J, Kroehne V, Brand M. 2012.. Adult neurogenesis and brain regeneration in zebrafish. . Dev. Neurobiol. 72:(3):42961
    [Crossref] [Google Scholar]
  78. 78.
    Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M. 2011.. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. . Development 138:(22):483141
    [Crossref] [Google Scholar]
  79. 79.
    Labusch M, Mancini L, Morizet D, Bally-Cuif L. 2020.. Conserved and divergent features of adult neurogenesis in zebrafish. . Front. Cell Dev. Biol. 8::525
    [Crossref] [Google Scholar]
  80. 80.
    Labusch M, Thetiot M, Than-Trong E, Morizet D, Coolen M, et al. 2024.. Prosaposin maintains adult neural stem cells in a state associated with deep quiescence. . Stem Cell Rep. 19:(4):51528
    [Crossref] [Google Scholar]
  81. 81.
    Lam CS, März M, Strähle U. 2009.. gfap and nestin reporter lines reveal characteristics of neural progenitors in the adult zebrafish brain. . Dev. Dyn. 238:(2):47586
    [Crossref] [Google Scholar]
  82. 82.
    Lange C, Rost F, Machate A, Reinhardt S, Lesche M, et al. 2020.. Single cell sequencing of radial glia progeny reveals the diversity of newborn neurons in the adult zebrafish brain. . Development 147:(1):dev185595
    [Crossref] [Google Scholar]
  83. 83.
    Lavado A, Oliver G. 2014.. Jagged1 is necessary for postnatal and adult neurogenesis in the dentate gyrus. . Dev. Biol. 388:(1):1121
    [Crossref] [Google Scholar]
  84. 84.
    Lewis J. 2003.. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. . Curr. Biol. 13:(16):1398408
    [Crossref] [Google Scholar]
  85. 85.
    Lindsey BW, Di Donato S, Kaslin J, Tropepe V. 2014.. Sensory-specific modulation of adult neurogenesis in sensory structures is associated with the type of stem cell present in the neurogenic niche of the zebrafish brain. . Eur. J. Neurosci. 40:(11):3591607
    [Crossref] [Google Scholar]
  86. 86.
    Lopez-Ramirez MA, Calvo C-F, Ristori E, Thomas J-L, Nicoli S. 2016.. Isolation and culture of adult zebrafish brain-derived neurospheres. . J. Vis. Exp. 108::53617
    [Google Scholar]
  87. 87.
    Lübke L, Zhang G, Strähle U, Rastegar S. 2022.. mdka expression is associated with quiescent neural stem cells during constitutive and reactive neurogenesis in the adult zebrafish telencephalon. . Brain Sci. 12:(2):284
    [Crossref] [Google Scholar]
  88. 88.
    Luzio A, Figueiredo M, Matos MM, Coimbra AM, Álvaro AR, Monteiro SM. 2021.. Effects of short-term exposure to genistein and overfeeding diet on the neural and retinal progenitor competence of adult zebrafish (Danio rerio). . Neurotoxicol. Teratol. 88::107030
    [Crossref] [Google Scholar]
  89. 89.
    Maeda Y, Isomura A, Masaki T, Kageyama R. 2023.. Differential cell-cycle control by oscillatory versus sustained Hes1 expression via p21. . Cell Rep. 42:(5):112520
    [Crossref] [Google Scholar]
  90. 90.
    Mahler J, Driever W. 2007.. Expression of the zebrafish intermediate neurofilament Nestin in the developing nervous system and in neural proliferation zones at postembryonic stages. . BMC Dev. Biol. 7::89
    [Crossref] [Google Scholar]
  91. 91.
    Makantasi P, Dermon CR. 2014.. Estradiol treatment decreases cell proliferation in the neurogenic zones of adult female zebrafish (Danio rerio) brain. . Neuroscience 277::30620
    [Crossref] [Google Scholar]
  92. 92.
    Mancini L, Guirao B, Ortica S, Labusch M, Cheysson F, et al. 2023.. Apical size and deltaA expression predict adult neural stem cell decisions along lineage progression. . Sci. Adv. 9:(35):eadg7519
    [Crossref] [Google Scholar]
  93. 93.
    März M, Chapouton P, Diotel N, Vaillant C, Hesl B, et al. 2010.. Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon. . Glia 58:(7):87088
    [Crossref] [Google Scholar]
  94. 94.
    März M, Schmidt R, Rastegar S, Strähle U. 2011.. Regenerative response following stab injury in the adult zebrafish telencephalon. . Dev. Dyn. 240:(9):222131
    [Crossref] [Google Scholar]
  95. 95.
    Mazzitelli-Fuentes LS, Román FR, Castillo Elías JR, Deleglise EB, Mongiat LA. 2022.. Spatial learning promotes adult neurogenesis in specific regions of the zebrafish pallium. . Front. Cell Dev. Biol. 10::840964
    [Crossref] [Google Scholar]
  96. 96.
    Meng D, Frank AR, Jewell JL. 2018.. mTOR signaling in stem and progenitor cells. . Development 145:(1):dev152595
    [Crossref] [Google Scholar]
  97. 97.
    Mesa KR, Kawaguchi K, Cockburn K, Gonzalez D, Boucher J, et al. 2018.. Homeostatic epidermal stem cell self-renewal is driven by local differentiation. . Cell Stem Cell 23:(5):67786.e4
    [Crossref] [Google Scholar]
  98. 98.
    Mitic N, Neuschulz A, Spanjaard B, Schneider J, Fresmann N, et al. 2024.. Dissecting the spatiotemporal diversity of adult neural stem cells. . Mol. Syst. Biol. 20::32137
    [Crossref] [Google Scholar]
  99. 99.
    Moore JL, Bhaskar D, Gao F, Matte-Martone C, Du S, et al. 2023.. Cell cycle controls long-range calcium signaling in the regenerating epidermis. . J. Cell Biol. 222:(7):e202302095
    [Crossref] [Google Scholar]
  100. 100.
    Moore R, Alexandre P. 2020.. Delta-Notch signaling: the long and the short of a neuron's influence on progenitor fates. . J. Dev. Biol. 8:(2):8
    [Crossref] [Google Scholar]
  101. 101.
    Morizet D, Foucher I, Alunni A, Bally-Cuif L. 2024.. Reconstruction of macroglia and adult neurogenesis evolution through cross-species single-cell transcriptomic analyses. . Nat. Commun. 15:(1):3306
    [Crossref] [Google Scholar]
  102. 102.
    Nieto M, Schuurmans C, Britz O, Guillemot F. 2001.. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. . Neuron 29:(2):40113
    [Crossref] [Google Scholar]
  103. 103.
    Obermann J, Wagner F, Kociaj A, Zambusi A, Ninkovic J, et al. 2019.. The surface proteome of adult neural stem cells in zebrafish unveils long-range cell-cell connections and age-related changes in responsiveness to IGF. . Stem Cell Rep. 12:(2):25873
    [Crossref] [Google Scholar]
  104. 104.
    Obernier K, Cebrian-Silla A, Thomson M, Parraguez JI, Anderson R, et al. 2018.. Adult neurogenesis is sustained by symmetric self-renewal and differentiation. . Cell Stem Cell 22:(2):22134.e8
    [Crossref] [Google Scholar]
  105. 105.
    Ogino T, Sawada M, Takase H, Nakai C, Herranz-Pérez V, et al. 2016.. Characterization of multiciliated ependymal cells that emerge in the neurogenic niche of the aged zebrafish brain. . J. Comp. Neurol. 524:(15):298292
    [Crossref] [Google Scholar]
  106. 106.
    Ortega F, Costa MR. 2016.. Live imaging of adult neural stem cells in rodents. . Front. Neurosci. 10::78
    [Crossref] [Google Scholar]
  107. 107.
    Pandey S, Moyer AJ, Thyme SB. 2023.. A single-cell transcriptome atlas of the maturing zebrafish telencephalon. . Genome Res. 33:(4):65871
    [Crossref] [Google Scholar]
  108. 108.
    Park H-C, Shin J, Roberts RK, Appel B. 2007.. An olig2 reporter gene marks oligodendrocyte precursors in the postembryonic spinal cord of zebrafish. . Dev. Dyn. 236:(12):34027
    [Crossref] [Google Scholar]
  109. 109.
    Pastrana E, Cheng L-C, Doetsch F. 2009.. Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. . PNAS 106:(15):638792
    [Crossref] [Google Scholar]
  110. 110.
    Pellegrini E, Coumailleau P, Kah O, Diotel N. 2015.. Aromatase and estrogens: involvement in constitutive and regenerative neurogenesis in adult zebrafish. . In Estrogen Effects on Traumatic Brain Injury, ed. KA Duncan , pp. 5171. Cambridge, MA:: Academic
    [Google Scholar]
  111. 111.
    Pérez MR, Pellegrini E, Cano-Nicolau J, Gueguen M-M, Menouer-Le Guillou D, et al. 2013.. Relationships between radial glia progenitors and 5-HT neurons in the paraventricular organ of adult zebrafish—potential effects of serotonin on adult neurogenesis. . Eur. J. Neurosci. 38:(9):3292301
    [Crossref] [Google Scholar]
  112. 112.
    Pilz G-A, Bottes S, Betizeau M, Jörg DJ, Carta S, et al. 2018.. Live imaging of neurogenesis in the adult mouse hippocampus. . Science 359:(6376):65862
    [Crossref] [Google Scholar]
  113. 113.
    Reimer MM, Kuscha V, Wyatt C, Sörensen I, Frank RE, et al. 2009.. Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish. . J. Neurosci. 29:(48):1507382
    [Crossref] [Google Scholar]
  114. 114.
    Reynolds BA, Rietze RL. 2005.. Neural stem cells and neurospheres—re-evaluating the relationship. . Nat. Methods 2:(5):33336
    [Crossref] [Google Scholar]
  115. 115.
    Reynolds BA, Weiss S. 1992.. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. . Science 255:(5052):170710
    [Crossref] [Google Scholar]
  116. 116.
    Rodriguez Viales R, Diotel N, Ferg M, Armant O, Eich J, et al. 2015.. The helix-loop-helix protein Id1 controls stem cell proliferation during regenerative neurogenesis in the adult zebrafish telencephalon. . Stem Cells 33:(3):892903
    [Crossref] [Google Scholar]
  117. 117.
    Rothenaigner I, Krecsmarik M, Hayes JA, Bahn B, Lepier A, et al. 2011.. Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate. . Development 138:(8):145969
    [Crossref] [Google Scholar]
  118. 118.
    Schmidt R, Strähle U, Scholpp S. 2013.. Neurogenesis in zebrafish—from embryo to adult. . Neural Dev. 8::3
    [Crossref] [Google Scholar]
  119. 119.
    Shin J, Poling J, Park H-C, Appel B. 2007.. Notch signaling regulates neural precursor allocation and binary neuronal fate decisions in zebrafish. . Development 134:(10):191120
    [Crossref] [Google Scholar]
  120. 120.
    Silver J, Miller JH. 2004.. Regeneration beyond the glial scar. . Nat. Rev. Neurosci. 5:(2):14656
    [Crossref] [Google Scholar]
  121. 121.
    Skaggs K, Goldman D, Parent JM. 2014.. Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long-distance neuronal integration. . Glia 62:(12):206179
    [Crossref] [Google Scholar]
  122. 122.
    Sofroniew MV. 2009.. Molecular dissection of reactive astrogliosis and glial scar formation. . Trends Neurosci. 32:(12):63847
    [Crossref] [Google Scholar]
  123. 123.
    Stankiewicz AJ, Mortazavi F, Kharchenko PV, McGowan EM, Kharchenko V, Zhdanova IV. 2019.. Cell kinetics in the adult neurogenic niche and impact of diet-induced accelerated aging. . J. Neurosci. 39:(15):281022
    [Crossref] [Google Scholar]
  124. 124.
    Sueda R, Imayoshi I, Harima Y, Kageyama R. 2019.. High Hes1 expression and resultant Ascl1 suppression regulate quiescent versus active neural stem cells in the adult mouse brain. . Genes Dev. 33:(9–10):51123
    [Crossref] [Google Scholar]
  125. 125.
    Sueda R, Kageyama R. 2020.. Regulation of active and quiescent somatic stem cells by Notch signaling. . Dev. Growth Differ. 62:(1):5966
    [Crossref] [Google Scholar]
  126. 126.
    Than-Trong E, Kiani B, Dray N, Ortica S, Simons B, et al. 2020.. Lineage hierarchies and stochasticity ensure the long-term maintenance of adult neural stem cells. . Sci. Adv. 6:(18):eaaz5424
    [Crossref] [Google Scholar]
  127. 127.
    Than-Trong E, Ortica-Gatti S, Mella S, Nepal C, Alunni A, Bally-Cuif L. 2018.. Neural stem cell quiescence and stemness are molecularly distinct outputs of the Notch3 signalling cascade in the vertebrate adult brain. . Development 145:(10):dev161034
    [Crossref] [Google Scholar]
  128. 128.
    Topp S, Stigloher C, Komisarczuk AZ, Adolf B, Becker TS, Bally-Cuif L. 2008.. Fgf signaling in the zebrafish adult brain: association of Fgf activity with ventricular zones but not cell proliferation. . J. Comp. Neurol. 510:(4):42239
    [Crossref] [Google Scholar]
  129. 129.
    Urbán N, Blomfield IM, Guillemot F. 2019.. Quiescence of adult mammalian neural stem cells: a highly regulated rest. . Neuron 104:(5):83448
    [Crossref] [Google Scholar]
  130. 130.
    Urbán N, van den Berg DLC, Forget A, Andersen J, Demmers JAA, et al. 2016.. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. . Science 353:(6296):29295
    [Crossref] [Google Scholar]
  131. 131.
    Walker SE, Echeverri K. 2022.. Spinal cord regeneration—the origins of progenitor cells for functional rebuilding. . Curr. Opin. Genet. Dev. 75::101917
    [Crossref] [Google Scholar]
  132. 132.
    Zhang G, Ferg M, Lübke L, Takamiya M, Beil T, et al. 2020.. Bone morphogenetic protein signaling regulates Id1-mediated neural stem cell quiescence in the adult zebrafish brain via a phylogenetically conserved enhancer module. . Stem Cells 38::87589
    [Crossref] [Google Scholar]
  133. 133.
    Zhang G, Lübke L, Chen F, Beil T, Takamiya M, et al. 2021.. Neuron-radial glial cell communication via BMP/Id1 signaling is key to long-term maintenance of the regenerative capacity of the adult zebrafish telencephalon. . Cells 10:(10):2794
    [Crossref] [Google Scholar]
  134. 134.
    Zhang R, Boareto M, Engler A, Louvi A, Giachino C, et al. 2019.. Id4 downstream of Notch2 maintains neural stem cell quiescence in the adult hippocampus. . Cell Rep. 28:(6):148598.e6
    [Crossref] [Google Scholar]
  135. 135.
    Zhou Y, Bond AM, Shade JE, Zhu Y, Davis CO, et al. 2018.. Autocrine Mfge8 signaling prevents developmental exhaustion of the adult neural stem cell pool. . Cell Stem Cell 23:(3):44452.e4
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-101949
Loading
/content/journals/10.1146/annurev-genet-111523-101949
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error