1932

Abstract

Sight is one of our most precious senses. People fear losing their sight more than any other disability. Thus, restoring sight to the blind is an important goal of vision scientists. Proregenerative species, such as zebrafish, provide a system for studying endogenous mechanisms underlying retina regeneration. Nonregenerative species, such as mice, provide a system for testing strategies for stimulating retina regeneration. Key to retina regeneration in zebrafish and mice is the Müller glial cell, a malleable cell type that is amenable to a variety of regenerative strategies. Here, we review cellular and molecular mechanisms used by zebrafish to regenerate a retina, as well as the application of these mechanisms, and other strategies to stimulate retina regeneration in mice. Although our focus is on Müller glia (MG), niche components and their impact on MG reprogramming are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102000
2024-11-25
2025-04-22
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102000.html?itemId=/content/journals/10.1146/annurev-genet-111523-102000&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ail D, Perron M. 2017.. Retinal degeneration and regeneration—lessons from fishes and amphibians. . Curr. Pathobiol. Rep. 5::6778
    [Crossref] [Google Scholar]
  2. 2.
    Alvarez Y, Cederlund ML, Cottell DC, Bill BR, Ekker SC, et al. 2007.. Genetic determinants of hyaloid and retinal vasculature in zebrafish. . BMC Dev. Biol. 7::114
    [Crossref] [Google Scholar]
  3. 3.
    Andersen J, Urban N, Achimastou A, Ito A, Simic M, et al. 2014.. A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. . Neuron 83::108597
    [Crossref] [Google Scholar]
  4. 4.
    Bailey TJ, Fossum SL, Fimbel SM, Montgomery JE, Hyde DR. 2010.. The inhibitor of phagocytosis, O-phospho-l-serine, suppresses Müller glia proliferation and cone cell regeneration in the light-damaged zebrafish retina. . Exp. Eye Res. 91::60112
    [Crossref] [Google Scholar]
  5. 5.
    Bernardos RL, Barthel LK, Meyers JR, Raymond PA. 2007.. Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. . J. Neurosci. 27::702840
    [Crossref] [Google Scholar]
  6. 6.
    GBD 2019 Blind. Vis. Impair. Collab. 2021.. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. . Lancet Glob. Health 9::e14460
    [Crossref] [Google Scholar]
  7. 7.
    Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI. 2007.. The multifunctional nucleolus. . Nat. Rev. Mol. Cell Biol. 8::57485
    [Crossref] [Google Scholar]
  8. 8.
    Bonilla-Pons , Nakagawa S, Bahima EG, Fernández-Blanco A, Pesaresi M, et al. 2022.. Müller glia fused with adult stem cells undergo neural differentiation in human retinal models. . eBioMedicine 77::103914
    [Crossref] [Google Scholar]
  9. 9.
    Boon K, Caron HN, van Asperen R, Valentijn L, Hermus M-C, et al. 2001.. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. . EMBO J. 20::138393
    [Crossref] [Google Scholar]
  10. 10.
    Boudreau-Pinsonneault C, David LA, Lourenço Fernandes JA, Javed A, Fries M, et al. 2023.. Direct neuronal reprogramming by temporal identity factors. . PNAS 120::e2122168120
    [Crossref] [Google Scholar]
  11. 11.
    Boyd P, Campbell LJ, Hyde DR. 2023.. Clcf1/Crlf1a-mediated signaling is neuroprotective and required for Müller glia proliferation in the light-damaged zebrafish retina. . Front. Cell Dev. Biol. 11::1142586
    [Crossref] [Google Scholar]
  12. 12.
    Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, et al. 2009.. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. . Prog. Retin. Eye Res. 28::42351
    [Crossref] [Google Scholar]
  13. 13.
    Brzezinski JA 4th, Prasov L, Glaser T. 2012.. Math5 defines the ganglion cell competence state in a subpopulation of retinal progenitor cells exiting the cell cycle. . Dev. Biol. 365::395413
    [Crossref] [Google Scholar]
  14. 14.
    Campbell LJ, Hobgood JS, Jia M, Boyd P, Hipp RI, Hyde DR. 2021.. Notch3 and DeltaB maintain Müller glia quiescence and act as negative regulators of regeneration in the light-damaged zebrafish retina. . Glia 69::54666
    [Crossref] [Google Scholar]
  15. 15.
    Casas Gimeno G, Paridaen JTML. 2022.. The symmetry of neural stem cell and progenitor divisions in the vertebrate brain. . Front. Cell Dev. Biol. 10::885269
    [Crossref] [Google Scholar]
  16. 16.
    Celotto L, Rost F, Machate A, Blasche J, Dahl A, et al. 2023.. Single-cell RNA sequencing unravels the transcriptional network underlying zebrafish retina regeneration. . eLife 12::RP86507
    [Crossref] [Google Scholar]
  17. 17.
    Cho J, Chang H, Kwon SC, Kim B, Kim Y, et al. 2012.. LIN28A is a suppressor of ER-associated translation in embryonic stem cells. . Cell 151::76577
    [Crossref] [Google Scholar]
  18. 18.
    Conedera FM, Pousa AMQ, Mercader N, Tschopp M, Enzmann V. 2019.. Retinal microglia signaling affects Müller cell behavior in the zebrafish following laser injury induction. . Glia 67::115066
    [Crossref] [Google Scholar]
  19. 19.
    Conner C, Ackerman KM, Lahne M, Hobgood JS, Hyde DR. 2014.. Repressing notch signaling and expressing TNFα are sufficient to mimic retinal regeneration by inducing Müller glial proliferation to generate committed progenitor cells. . J. Neurocsci. 34::1440319
    [Crossref] [Google Scholar]
  20. 20.
    Craig SE, Thummel R, Ahmed H, Vasta GR, Hyde DR, Hitchcock PF. 2010.. The zebrafish galectin Drgal1-l2 is expressed by proliferating Müller glia and photoreceptor progenitors and regulates the regeneration of rod photoreceptors. . Invest. Ophthalmol. Vis. Sci. 51::324452
    [Crossref] [Google Scholar]
  21. 21.
    Davis RL, Weintraub H, Lassar AB. 1987.. Expression of a single transfected cDNA converts fibroblasts to myoblasts. . Cell 51::9871000
    [Crossref] [Google Scholar]
  22. 22.
    Didiano D, Abner JJ, Hinger SA, Flickinger Z, Kent M, et al. 2020.. Induction of a proliferative response in the zebrafish retina by injection of extracellular vesicles. . Exp. Eye Res. 200::108254
    [Crossref] [Google Scholar]
  23. 23.
    Dyer MA, Cepko CL. 2000.. Control of Müller glial cell proliferation and activation following retinal injury. . Nat. Neurosci. 3::87380
    [Crossref] [Google Scholar]
  24. 24.
    Elsaeidi F, Bemben MA, Zhao XF, Goldman D. 2014.. Jak/Stat signaling stimulates zebrafish optic nerve regeneration and overcomes the inhibitory actions of Socs3 and Sfpq. . J. Neurosci. 34::263244
    [Crossref] [Google Scholar]
  25. 25.
    Elsaeidi F, Macpherson P, Mills EA, Jui J, Flannery JG, Goldman D. 2018.. Notch suppression collaborates with Ascl1 and Lin28 to unleash a regenerative response in fish retina, but not in mice. . J. Neurosci. 38::224661
    [Crossref] [Google Scholar]
  26. 26.
    Fausett BV, Goldman D. 2006.. A role for α1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. . J. Neurosci. 26::630313
    [Crossref] [Google Scholar]
  27. 27.
    Fausett BV, Gumerson JD, Goldman D. 2008.. The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration. . J. Neurosci. 28::110917
    [Crossref] [Google Scholar]
  28. 28.
    Ferraro S, Gomez-Montalvo AI, Olmos R, Ramirez M, Lamas M. 2015.. Primary cilia in rat mature Müller glia: downregulation of IFT20 expression reduces sonic hedgehog-mediated proliferation and dedifferentiation potential of Müller glia primary cultures. . Cell Mol. Neurobiol. 35::53342
    [Crossref] [Google Scholar]
  29. 29.
    Fischer AJ, Bosse JL, El-Hodiri HM. 2013.. The ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. . Exp. Eye Res. 116::199204
    [Crossref] [Google Scholar]
  30. 30.
    Fischer AJ, Reh TA. 2001.. Müller glia are a potential source of neural regeneration in the postnatal chicken retina. . Nat. Neurosci. 4::24752
    [Crossref] [Google Scholar]
  31. 31.
    Fischer AJ, Reh TA. 2003.. Potential of Müller glia to become neurogenic retinal progenitor cells. . Glia 43::7076
    [Crossref] [Google Scholar]
  32. 32.
    Flitsch LJ, Brustle O. 2019.. Evolving principles underlying neural lineage conversion and their relevance for biomedical translation. . F1000Research 8::1548
    [Crossref] [Google Scholar]
  33. 33.
    Fogerty J, Song P, Boyd P, Grabinski SE, Hoang T, et al. 2022.. Notch inhibition promotes regeneration and immunosuppression supports cone survival in a zebrafish model of inherited retinal dystrophy. . J. Neurosci. 42::514458
    [Crossref] [Google Scholar]
  34. 34.
    Forbes-Osborne MA, Wilson SG, Morris AC. 2013.. Insulinoma-associated 1a (Insm1a) is required for photoreceptor differentiation in the zebrafish retina. . Dev. Biol. 380::15771
    [Crossref] [Google Scholar]
  35. 35.
    Fruttiger M. 2007.. Development of the retinal vasculature. . Angiogenesis 10::7788
    [Crossref] [Google Scholar]
  36. 36.
    Goldman D. 2014.. Müller glial cell reprogramming and retina regeneration. . Nat. Rev. Neurosci. 15::43142
    [Crossref] [Google Scholar]
  37. 37.
    Gorsuch RA, Lahne M, Yarka CE, Petravick ME, Li J, Hyde DR. 2017.. Sox2 regulates Müller glia reprogramming and proliferation in the regenerating zebrafish retina via Lin28 and Ascl1a. . Exp. Eye Res. 161::17492
    [Crossref] [Google Scholar]
  38. 38.
    Gramage E, D'Cruz T, Taylor S, Thummel R, Hitchcock PF. 2015.. Midkine-a protein localization in the developing and adult retina of the zebrafish and its function during photoreceptor regeneration. . PLOS ONE 10::e0121789
    [Crossref] [Google Scholar]
  39. 39.
    Guimarães RPM, Landeira BS, Coelho DM, Golbert DCF, Silveira MS, et al. 2018.. Evidence of Müller glia conversion into retina ganglion cells using neurogenin2. . Front. Cell. Neurosci. 12::410
    [Crossref] [Google Scholar]
  40. 40.
    Guo Q, Zeng Y-X, Huang S-D, Zou T, Yin Z-Q. 2023.. Organoid-derived human retinal progenitor cells promote early dedifferentiation of Müller glia in Royal College of Surgeons rats. . Int. J. Ophthalmol. 16::48398
    [Crossref] [Google Scholar]
  41. 41.
    Gupta S, Sharma P, Chaudhary M, Premraj S, Kaur S, et al. 2023.. Pten associates with important gene regulatory network to fine-tune Müller glia-mediated zebrafish retina regeneration. . Glia 71::25983
    [Crossref] [Google Scholar]
  42. 42.
    Hafler BP, Surzenko N, Beier KT, Punzo C, Trimarchi JM, et al. 2012.. Transcription factor Olig2 defines subpopulations of retinal progenitor cells biased toward specific cell fates. . PNAS 109::788287
    [Crossref] [Google Scholar]
  43. 43.
    Hammer J, Roppenack P, Yousuf S, Schnabel C, Weber A, et al. 2021.. Visual function is gradually restored during retina regeneration in adult zebrafish. . Front. Cell Dev. Biol. 9::831322
    [Crossref] [Google Scholar]
  44. 44.
    Hamon A, García-García D, Ail D, Bitard J, Chesneau A, et al. 2019.. Linking YAP to Müller glia quiescence exit in the degenerative retina. . Cell Rep. 27::171225.e6
    [Crossref] [Google Scholar]
  45. 45.
    Han Y-G, Spassky N, Romaguera-Ros M, Garcia-Verdugo J-M, Aguilar A, et al. 2008.. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. . Nat. Neurosci. 11::27784
    [Crossref] [Google Scholar]
  46. 46.
    Hoang T, Wang J, Boyd P, Wang F, Santiago C, et al. 2020.. Gene regulatory networks controlling vertebrate retinal regeneration. . Science 370::eabb8598
    [Crossref] [Google Scholar]
  47. 47.
    Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, et al. 2013.. The zebrafish reference genome sequence and its relationship to the human genome. . Nature 496::498503
    [Crossref] [Google Scholar]
  48. 48.
    Hui SP, Sheng DZ, Sugimoto K, Gonzalez-Rajal A, Nakagawa S, et al. 2017.. Zebrafish regulatory T cells mediate organ-specific regenerative programs. . Dev. Cell 43::65972.e5
    [Crossref] [Google Scholar]
  49. 49.
    Iribarne M, Hyde DR, Masai I. 2019.. TNFα induces Müller glia to transition from non-proliferative gliosis to a regenerative response in mutant zebrafish presenting chronic photoreceptor degeneration. . Front. Cell Dev. Biol. 7::296
    [Crossref] [Google Scholar]
  50. 50.
    Jopling C, Boue S, Izpisua Belmonte JC. 2011.. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. . Nat. Rev. Mol. Cell Biol. 12::7989
    [Crossref] [Google Scholar]
  51. 51.
    Jorstad NL, Wilken MS, Grimes WN, Wohl SG, VandenBosch LS, et al. 2017.. Stimulation of functional neuronal regeneration from Müller glia in adult mice. . Nature 548::1037
    [Crossref] [Google Scholar]
  52. 52.
    Jorstad NL, Wilken MS, Todd L, Finkbeiner C, Nakamura P, et al. 2020.. STAT signaling modifies Ascl1 chromatin binding and limits neural regeneration from Müller glia in adult mouse retina. . Cell Rep. 30::2195208.e5
    [Crossref] [Google Scholar]
  53. 53.
    Joukov V, De Nicolo A. 2019.. The centrosome and the primary cilium: the yin and yang of a hybrid organelle. . Cells 8::701
    [Crossref] [Google Scholar]
  54. 54.
    Kalargyrou AA, Guilfoyle SE, Smith AJ, Ali RR, Pearson RA. 2022.. Extracellular vesicles in the retina—putative roles in physiology and disease. . Front. Mol. Neurosci. 15::1042469
    [Crossref] [Google Scholar]
  55. 55.
    Kara N, Kent MR, Didiano D, Rajaram K, Zhao A, et al. 2019.. The miR-216a-Dot1l regulatory axis is necessary and sufficient for Müller glia reprogramming during retina regeneration. . Cell Rep. 28::203747.e4
    [Crossref] [Google Scholar]
  56. 56.
    Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA. 2008.. Stimulation of neural regeneration in the mouse retina. . PNAS 105::1950813
    [Crossref] [Google Scholar]
  57. 57.
    Kassen SC, Ramanan V, Montgomery JE, Burket CT, Liu C-G, et al. 2007.. Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafish. . Dev. Neurobiol. 67::100931
    [Crossref] [Google Scholar]
  58. 58.
    Kaur S, Gupta S, Chaudhary M, Khursheed MA, Mitra S, et al. 2018.. let-7 microRNA-mediated regulation of Shh signaling and the gene regulatory network is essential for retina regeneration. . Cell Rep. 23::140923
    [Crossref] [Google Scholar]
  59. 59.
    Kei JNC, Currie PD, Jusuf PR. 2017.. Fate bias during neural regeneration adjusts dynamically without recapitulating developmental fate progression. . Neural Dev. 12::12
    [Crossref] [Google Scholar]
  60. 60.
    Kim EJ, Ables JL, Dickel LK, Eisch AJ, Johnson JE. 2011.. Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. . PLOS ONE 6::e18472
    [Crossref] [Google Scholar]
  61. 61.
    Knobloch M, Pilz GA, Ghesquiere B, Kovacs WJ, Wegleiter T, et al. 2017.. A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. . Cell Rep. 20::214455
    [Crossref] [Google Scholar]
  62. 62.
    Kriegstein A, Alvarez-Buylla A. 2009.. The glial nature of embryonic and adult neural stem cells. . Annu. Rev. Neurosci. 32::14984
    [Crossref] [Google Scholar]
  63. 63.
    Krylov A, Yu S, Veen K, Newton A, Ye A, et al. 2023.. Heterogeneity in quiescent Müller glia in the uninjured zebrafish retina drive differential responses following photoreceptor ablation. . Front. Mol. Neurosci. 16::1087136
    [Crossref] [Google Scholar]
  64. 64.
    Lahne M, Brecker M, Jones SE, Hyde DR. 2020.. The regenerating adult zebrafish retina recapitulates developmental fate specification programs. . Front. Cell Dev. Biol. 8::617923
    [Crossref] [Google Scholar]
  65. 65.
    Lahne M, Nagashima M, Hyde DR, Hitchcock PF. 2020.. Reprogramming Müller glia to regenerate retinal neurons. . Annu. Rev. Vis. Sci. 6::17193
    [Crossref] [Google Scholar]
  66. 66.
    Le N, Appel H, Pannullo N, Hoang T, Blackshaw S. 2022.. Ectopic insert-dependent neuronal expression of GFAP promoter-driven AAV constructs in adult mouse retina. . Front. Cell Dev. Biol. 10::914386
    [Crossref] [Google Scholar]
  67. 67.
    Le N, Vu T-D, Palazzo I, Pulya R, Kim Y, et al. 2023.. Robust reprogramming of glia into neurons by inhibition of Notch signaling and NFI factors in adult mammalian retina. . bioRxiv 2023.10.29.560483. https://www.biorxiv.org/content/10.1101/2023.10.29.560483v2
  68. 68.
    Lee J, Lee B-K, Gross JM. 2023.. Brd activity regulates Müller glia-dependent retinal regeneration in zebrafish. . Glia 71::286683
    [Crossref] [Google Scholar]
  69. 69.
    Lee M-S, Wan J, Goldman D. 2020.. Tgfb3 collaborates with PP2A and notch signaling pathways to inhibit retina regeneration. . eLife 9::e55137
    [Crossref] [Google Scholar]
  70. 70.
    Lopez-Virgen V, Gonzalez-Morales O, Gonzalez-Perez O. 2023.. The ventricular-subventricular, subgranular and subcallosal zones: three niches of neural stem cells in the postnatal brain. . Exp. Brain Res. 241::146370
    [Crossref] [Google Scholar]
  71. 71.
    Lourenço R, Brandão AS, Borbinha J, Gorgulho R, Jacinto A. 2021.. Yap regulates Müller glia reprogramming in damaged zebrafish retinas. . Front. Cell Dev. Biol. 9::667796
    [Crossref] [Google Scholar]
  72. 72.
    Lyu P, Iribarne M, Serjanov D, Zhai Y, Hoang T, et al. 2023.. Common and divergent gene regulatory networks control injury-induced and developmental neurogenesis in zebrafish retina. . Nat. Commun. 14::8477
    [Crossref] [Google Scholar]
  73. 73.
    MacDonald RB, Randlett O, Oswald J, Yoshimatsu T, Franze K, Harris WA. 2015.. Müller glia provide essential tensile strength to the developing retina. . J. Cell Biol. 210::107583
    [Crossref] [Google Scholar]
  74. 74.
    Mao W, Yan R-T, Wang S-Z. 2009.. Proneural gene ash1 promotes amacrine cell production in the chick retina. . Dev. Neurobiol. 69::88104
    [Crossref] [Google Scholar]
  75. 75.
    Masland RH. 2012.. The neuronal organization of the retina. . Neuron 76::26680
    [Crossref] [Google Scholar]
  76. 76.
    McGinn TE, Mitchell DM, Meighan PC, Partington N, Leoni DC, et al. 2018.. Restoration of dendritic complexity, functional connectivity, and diversity of regenerated retinal bipolar neurons in adult zebrafish. . J. Neurosci. 38::12036
    [Crossref] [Google Scholar]
  77. 77.
    Meyer A, Schartl M. 1999.. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. . Curr. Opin. Cell Biol. 11::699704
    [Crossref] [Google Scholar]
  78. 78.
    Meyers JR, Hu L, Moses A, Kaboli K, Papandrea A, Raymond PA. 2012.. β-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina. . Neural Dev. 7::30
    [Crossref] [Google Scholar]
  79. 79.
    Mitchell DM, Lovel AG, Stenkamp DL. 2018.. Dynamic changes in microglial and macrophage characteristics during degeneration and regeneration of the zebrafish retina. . J. Neuroinflamm. 15::163
    [Crossref] [Google Scholar]
  80. 80.
    Mitchell DM, Sun C, Hunter SS, New DD, Stenkamp DL. 2019.. Regeneration associated transcriptional signature of retinal microglia and macrophages. . Sci. Rep. 9::4768
    [Crossref] [Google Scholar]
  81. 81.
    Mitra S, Devi S, Lee M-S, Jui J, Sahu A, Goldman D. 2022.. Vegf signaling between Müller glia and vascular endothelial cells is regulated by immune cells and stimulates retina regeneration. . PNAS 119::e2211690119
    [Crossref] [Google Scholar]
  82. 82.
    Mitra S, Sharma P, Kaur S, Khursheed MA, Gupta S, et al. 2018.. Histone deacetylase-mediated Müller glia reprogramming through Her4.1-Lin28a axis is essential for retina regeneration in zebrafish. . iScience 7::6884
    [Crossref] [Google Scholar]
  83. 83.
    Mitra S, Sharma P, Kaur S, Khursheed MA, Gupta S, et al. 2019.. Dual regulation of lin28a by Myc is necessary during zebrafish retina regeneration. . J. Cell Biol. 218::489507
    [Crossref] [Google Scholar]
  84. 84.
    Montgomery JE, Parsons MJ, Hyde DR. 2010.. A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors. . J. Comp. Neurol. 518::80014
    [Crossref] [Google Scholar]
  85. 85.
    Morrison SJ, Kimble J. 2006.. Asymmetric and symmetric stem-cell divisions in development and cancer. . Nature 441::106874
    [Crossref] [Google Scholar]
  86. 86.
    Nagashima M, Barthel LK, Raymond PA. 2013.. A self-renewing division of zebrafish Müller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons. . Development 140::451021
    [Crossref] [Google Scholar]
  87. 87.
    Nagashima M, D'Cruz TS, Danku AE, Hesse D, Sifuentes C, et al. 2020.. Midkine-a is required for cell cycle progression of Müller glia during neuronal regeneration in the vertebrate retina. . J. Neurosci. 40::123247
    [Crossref] [Google Scholar]
  88. 88.
    Nelson CM, Ackerman KM, O'Hayer P, Bailey TJ, Gorsuch RA, Hyde DR. 2013.. Tumor necrosis factor-alpha is produced by dying retinal neurons and is required for Müller glia proliferation during zebrafish retinal regeneration. . J. Neurosci. 33::652439
    [Crossref] [Google Scholar]
  89. 89.
    Nelson CM, Gorsuch RA, Bailey TJ, Ackerman KM, Kassen SC, Hyde DR. 2012.. Stat3 defines three populations of Müller glia and is required for initiating maximal Müller glia proliferation in the regenerating zebrafish retina. . J. Comp. Neurol. 520::4294311
    [Crossref] [Google Scholar]
  90. 90.
    Newman EA. 2013.. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. . J. Cereb. Blood Flow Metab. 33::168595
    [Crossref] [Google Scholar]
  91. 91.
    Niu L, Fang Y, Yao X, Zhang Y, Wu J, et al. 2021.. TNFα activates MAPK and Jak-Stat pathways to promote mouse Müller cell proliferation. . Exp. Eye Res. 202::108353
    [Crossref] [Google Scholar]
  92. 92.
    Ochocinska MJ, Hitchcock PF. 2009.. NeuroD regulates proliferation of photoreceptor progenitors in the retina of the zebrafish. . Mech. Dev. 126::12841
    [Crossref] [Google Scholar]
  93. 93.
    Otteson DC, Cirenza PF, Hitchcock PF. 2002.. Persistent neurogenesis in the teleost retina: evidence for regulation by the growth-hormone/insulin-like growth factor-I axis. . Mech. Dev. 117::13749
    [Crossref] [Google Scholar]
  94. 94.
    Otteson DC, Hitchcock PF. 2003.. Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. . Vis. Res. 43::92736
    [Crossref] [Google Scholar]
  95. 95.
    Pardue MT, Allen RS. 2018.. Neuroprotective strategies for retinal disease. . Prog. Retin. Eye Res. 65::5076
    [Crossref] [Google Scholar]
  96. 96.
    Pavlou M, Reh TA. 2023.. Cell-based therapies: strategies for regeneration. . Cold Spring Harb. Perspect. Med. 13::a041306
    [Crossref] [Google Scholar]
  97. 97.
    Pearson RA, Gonzalez-Cordero A, West EL, Ribeiro JR, Aghaizu N, et al. 2016.. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. . Nat. Commun. 7::13029
    [Crossref] [Google Scholar]
  98. 98.
    Pellissier LP, Hoek RM, Vos RM, Aartsen WM, Klimczak RR, et al. 2014.. Specific tools for targeting and expression in Müller glial cells. . Mol. Ther. Methods Clin. Dev. 1::14009
    [Crossref] [Google Scholar]
  99. 99.
    Powell C, Cornblath E, Elsaeidi F, Wan J, Goldman D. 2016.. Zebrafish Müller glia-derived progenitors are multipotent, exhibit proliferative biases and regenerate excess neurons. . Sci. Rep. 6::24851
    [Crossref] [Google Scholar]
  100. 100.
    Powell C, Grant AR, Cornblath E, Goldman D. 2013.. Analysis of DNA methylation reveals a partial reprogramming of the Müller glia genome during retina regeneration. . PNAS 110::1981419
    [Crossref] [Google Scholar]
  101. 101.
    Rajaram K, Harding RL, Hyde DR, Patton JG. 2014.. miR-203 regulates progenitor cell proliferation during adult zebrafish retina regeneration. . Dev. Biol. 392::393403
    [Crossref] [Google Scholar]
  102. 102.
    Ramachandran R, Fausett BV, Goldman D. 2010.. Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. . Nat. Cell Biol. 12::11017
    [Crossref] [Google Scholar]
  103. 103.
    Ramachandran R, Reifler A, Parent JM, Goldman D. 2010.. Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration. . J. Comp. Neurol. 518::4196212
    [Crossref] [Google Scholar]
  104. 104.
    Ramachandran R, Zhao XF, Goldman D. 2011.. Ascl1a/Dkk/β-catenin signaling pathway is necessary and glycogen synthase kinase-3β inhibition is sufficient for zebrafish retina regeneration. . PNAS 108::1585863
    [Crossref] [Google Scholar]
  105. 105.
    Ramachandran R, Zhao X-F, Goldman D. 2012.. Insm1a-mediated gene repression is essential for the formation and differentiation of Müller glia-derived progenitors in the injured retina. . Nat. Cell Biol. 14::101323
    [Crossref] [Google Scholar]
  106. 106.
    Rao MB, Didiano D, Patton JG. 2017.. Neurotransmitter-regulated regeneration in the zebrafish retina. . Stem Cell Rep. 8::83142
    [Crossref] [Google Scholar]
  107. 107.
    Reichenbach A, Bringmann A. 2013.. New functions of Müller cells. . Glia 61::65178
    [Crossref] [Google Scholar]
  108. 108.
    Reichman S, Slembrouck A, Gagliardi G, Chaffiol A, Terray A, et al. 2017.. Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in xeno-free and feeder-free conditions. . Stem Cells 35::117688
    [Crossref] [Google Scholar]
  109. 109.
    Rueda EM, Hall BM, Hill MC, Swinton PG, Tong X, et al. 2019.. The Hippo pathway blocks mammalian retinal Müller glial cell reprogramming. . Cell Rep. 27::163749.e6
    [Crossref] [Google Scholar]
  110. 110.
    Sahu A, Devi S, Jui J, Goldman D. 2021.. Notch signaling via Hey1 and Id2b regulates Müller glia's regenerative response to retinal injury. . Glia 69::288298
    [Crossref] [Google Scholar]
  111. 111.
    Sansom SN, Griffiths DS, Faedo A, Kleinjan D-J, Ruan Y, et al. 2009.. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. . PLOS Genet. 5::e1000511
    [Crossref] [Google Scholar]
  112. 112.
    Sapkota D, Mu X. 2015.. Onecut transcription factors in retinal development and maintenance. . Neural Regen. Res. 10::899900
    [Crossref] [Google Scholar]
  113. 113.
    Sharma P, Gupta S, Chaudhary M, Mitra S, Chawla B, et al. 2019.. Oct4 mediates Müller glia reprogramming and cell cycle exit during retina regeneration in zebrafish. . Life Sci. Alliance 2::e201900548
    [Crossref] [Google Scholar]
  114. 114.
    Shin J, Berg DA, Zhu Y, Shin JY, Song J, et al. 2015.. Single-cell RNA-seq with Waterfall reveals molecular cascades underlying adult neurogenesis. . Cell Stem Cell 17::36072
    [Crossref] [Google Scholar]
  115. 115.
    Sifuentes CJ, Kim J-W, Swaroop A, Raymond PA. 2016.. Rapid, dynamic activation of Müller glial stem cell responses in zebrafish. . Invest. Ophthalmol. Vis. Sci. 57::514860
    [Crossref] [Google Scholar]
  116. 116.
    Silva NJ, Nagashima M, Li J, Kakuk-Atkins L, Ashrafzadeh M, et al. 2020.. Inflammation and matrix metalloproteinase 9 (Mmp-9) regulate photoreceptor regeneration in adult zebrafish. . Glia 68::144565
    [Crossref] [Google Scholar]
  117. 117.
    Soares DS, Homem CCF, Castro DS. 2022.. Function of proneural genes Ascl1 and Asense in neurogenesis: How similar are they?. Front. Cell Dev. Biol. 10::838431
    [Crossref] [Google Scholar]
  118. 118.
    Song K, Lin Z, Cao L, Lu B, Chen Y, et al. 2023.. Sox11b regulates the migration and fate determination of Müller glia–derived progenitors during retina regeneration in zebrafish. . Neural Regen. Res. 18::44550
    [Google Scholar]
  119. 119.
    Stefanov A, Flannery JG. 2022.. A systematic review of optogenetic vision restoration: history, challenges, and new inventions from bench to bedside. . Cold Spring Harb. Perspect. Med. 13::a041304
    [Crossref] [Google Scholar]
  120. 120.
    Takahashi K, Yamanaka S. 2006.. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. . Cell 126::66376
    [Crossref] [Google Scholar]
  121. 121.
    Tanaka EM, Ferretti P. 2009.. Considering the evolution of regeneration in the central nervous system. . Nat. Rev. Neurosci. 10::71323
    [Crossref] [Google Scholar]
  122. 122.
    Taylor SM, Alvarez-Delfin K, Saade CJ, Thomas JL, Thummel R, et al. 2015.. The bHLH transcription factor NeuroD governs photoreceptor genesis and regeneration through Delta-Notch signaling. . Invest. Ophthalmol. Vis. Sci. 56::7496515
    [Crossref] [Google Scholar]
  123. 123.
    Thomas GE, Egan G, García-Prat L, Botham A, Voisin V, et al. 2022.. The metabolic enzyme hexokinase 2 localizes to the nucleus in AML and normal haematopoietic stem and progenitor cells to maintain stemness. . Nat. Cell Biol. 24::87284
    [Crossref] [Google Scholar]
  124. 124.
    Thomas JL, Morgan GW, Dolinski KM, Thummel R. 2018.. Characterization of the pleiotropic roles of Sonic Hedgehog during retinal regeneration in adult zebrafish. . Exp. Eye Res. 166::10615
    [Crossref] [Google Scholar]
  125. 125.
    Thomas JL, Ochocinska MJ, Hitchcock PF, Thummel R. 2012.. Using the Tg(nrd:egfp)/albino zebrafish line to characterize in vivo expression of neurod. . PLOS ONE 7::e29128
    [Crossref] [Google Scholar]
  126. 126.
    Thomas JL, Ranski AH, Morgan GW, Thummel R. 2016.. Reactive gliosis in the adult zebrafish retina. . Exp. Eye Res. 143::98109
    [Crossref] [Google Scholar]
  127. 127.
    Thummel R, Enright JM, Kassen SC, Montgomery JE, Bailey TJ, Hyde DR. 2010.. Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration. . Exp. Eye Res. 90::57282
    [Crossref] [Google Scholar]
  128. 128.
    Todd L, Finkbeiner C, Wong CK, Hooper MJ, Reh TA. 2020.. Microglia suppress Ascl1-induced retinal regeneration in mice. . Cell Rep. 33::108507
    [Crossref] [Google Scholar]
  129. 129.
    Todd L, Hooper MJ, Haugan AK, Finkbeiner C, Jorstad N, et al. 2021.. Efficient stimulation of retinal regeneration from Müller glia in adult mice using combinations of proneural bHLH transcription factors. . Cell Rep. 37::109857
    [Crossref] [Google Scholar]
  130. 130.
    Todd L, Jenkins W, Finkbeiner C, Hooper MJ, Donaldson PC, et al. 2022.. Reprogramming Müller glia to regenerate ganglion-like cells in adult mouse retina with developmental transcription factors. . Sci. Adv. 8::eabq7219
    [Crossref] [Google Scholar]
  131. 131.
    Todd L, Squires N, Suarez L, Fischer AJ. 2016.. Jak/Stat signaling regulates the proliferation and neurogenic potential of Müller glia-derived progenitor cells in the avian retina. . Sci. Rep. 6::35703
    [Crossref] [Google Scholar]
  132. 132.
    Todd L, Volkov LI, Zelinka C, Squires N, Fischer AJ. 2015.. Heparin-binding EGF-like growth factor (HB-EGF) stimulates the proliferation of Müller glia-derived progenitor cells in avian and murine retinas. . Mol. Cell. Neurosci. 69::5464
    [Crossref] [Google Scholar]
  133. 133.
    Tsuruma K, Saito Y, Okuyoshi H, Yamaguchi A, Shimazawa M, et al. 2018.. Granulin 1 promotes retinal regeneration in zebrafish. . Invest. Ophthalmol. Vis. Sci. 59::605766
    [Crossref] [Google Scholar]
  134. 134.
    Ueki Y, Wilken MS, Cox KE, Chipman L, Jorstad N, et al. 2015.. Transgenic expression of the proneural transcription factor Ascl1 in Müller glia stimulates retinal regeneration in young mice. . PNAS 112::1371722
    [Crossref] [Google Scholar]
  135. 135.
    Van Gelder RN, Chiang MF, Dyer MA, Greenwell TN, Levin LA, et al. 2022.. Regenerative and restorative medicine for eye disease. . Nat. Med. 28::114956
    [Crossref] [Google Scholar]
  136. 136.
    Wan J, Goldman D. 2016.. Retina regeneration in zebrafish. . Curr. Opin. Genet. Dev. 40::4147
    [Crossref] [Google Scholar]
  137. 137.
    Wan J, Goldman D. 2017.. Opposing actions of Fgf8a on Notch signaling distinguish two Müller glial cell populations that contribute to retina growth and regeneration. . Cell Rep. 19::84962
    [Crossref] [Google Scholar]
  138. 138.
    Wan J, Ramachandran R, Goldman D. 2012.. HB-EGF is necessary and sufficient for Müller glia dedifferentiation and retina regeneration. . Dev. Cell 22::33447
    [Crossref] [Google Scholar]
  139. 139.
    Wan J, Zhao X-F, Vojtek A, Goldman D. 2014.. Retinal injury, growth factors, and cytokines converge on β-catenin and pStat3 signaling to stimulate retina regeneration. . Cell Rep. 9::28597
    [Crossref] [Google Scholar]
  140. 140.
    Wang V, Kuriyan AE. 2020.. Optoelectronic devices for vision restoration. . Curr. Ophthalmol. Rep. 8::6977
    [Crossref] [Google Scholar]
  141. 141.
    Wani GA, Sprenger H-G, Ndoci K, Chandragiri S, Acton RJ, et al. 2022.. Metabolic control of adult neural stem cell self-renewal by the mitochondrial protease YME1L. . Cell Rep. 38::110370
    [Crossref] [Google Scholar]
  142. 142.
    Wapinski OL, Lee QY, Chen AC, Li R, Corces MR, et al. 2017.. Rapid chromatin switch in the direct reprogramming of fibroblasts to neurons. . Cell Rep. 20::323647
    [Crossref] [Google Scholar]
  143. 143.
    Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, et al. 2022.. Solving neurodegeneration: common mechanisms and strategies for new treatments. . Mol. Neurodegener. 17::23
    [Crossref] [Google Scholar]
  144. 144.
    Webster MK, Barnett BJ, Stanchfield ML, Paris JR, Webster SE, et al. 2019.. Stimulation of retinal pigment epithelium with an α7 nAChR agonist leads to Müller glia dependent neurogenesis in the adult mammalian retina. . Invest. Ophthalmol. Vis. Sci. 60::57079
    [Crossref] [Google Scholar]
  145. 145.
    White DT, Sengupta S, Saxena MT, Xu Q, Hanes J, et al. 2017.. Immunomodulation-accelerated neuronal regeneration following selective rod photoreceptor cell ablation in the zebrafish retina. . PNAS 114::E371928
    [Google Scholar]
  146. 146.
    Yang S, Zhou J, Li D. 2021.. Functions and diseases of the retinal pigment epithelium. . Front. Pharmacol. 12::727870
    [Crossref] [Google Scholar]
  147. 147.
    Yao K, Qiu S, Tian L, Snider WD, Flannery JG, et al. 2016.. Wnt regulates proliferation and neurogenic potential of Müller glial cells via a Lin28/let-7 miRNA-dependent pathway in adult mammalian retinas. . Cell Rep. 17::16578
    [Crossref] [Google Scholar]
  148. 148.
    Yao K, Qiu S, Wang YV, Park SJH, Mohns EJ, et al. 2018.. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. . Nature 560::48488
    [Crossref] [Google Scholar]
  149. 149.
    Zhang Z, Hou H, Yu S, Zhou C, Zhang X, et al. 2020.. Inflammation-induced mammalian target of rapamycin signaling is essential for retina regeneration. . Glia 68::11127
    [Crossref] [Google Scholar]
  150. 150.
    Zhao X-F, Wan J, Powell C, Ramachandran R, Myers MG Jr., Goldman D. 2014.. Leptin and IL-6 family cytokines synergize to stimulate Müller glia reprogramming and retina regeneration. . Cell Rep. 9::27284
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102000
Loading
/content/journals/10.1146/annurev-genet-111523-102000
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error