1932

Abstract

Microbial pathogens have coevolved with their hosts, often for millions of years, and in the process have developed a variety of virulence mechanisms to ensure their survival, typically at the host's expense. At the center of this host–pathogen warfare are proteins called effectors that are delivered by bacteria into their host where they alter the intracellular environment to promote bacterial proliferation. Many effectors are believed to have been acquired by the bacteria from their host during evolution, explaining why researchers are keen to understand their function, as this information may provide insight into both microbial virulence strategies and biological processes that happen within our own cells. Help for accomplishing this goal has come from the recent development of increasingly powerful genetic approaches, which are the focus of this review.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102030
2024-11-25
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102030.html?itemId=/content/journals/10.1146/annurev-genet-111523-102030&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Akerley BJ, Rubin EJ, Camilli A, Lampe DJ, Robertson HM, Mekalanos JJ. 1998.. Systematic identification of essential genes by in vitro mariner mutagenesis. . PNAS 95::892732
    [Crossref] [Google Scholar]
  2. 2.
    Allen PE, Martinez JJ. 2020.. Modulation of host lipid pathways by pathogenic intracellular bacteria. . Pathogens 9::614
    [Crossref] [Google Scholar]
  3. 3.
    Allombert J, Vianney A, Charpentier X. 2017.. Monitoring effector translocation using the TEM-1 beta-lactamase reporter system. . Methods Mol. Biol. 1615::48999
    [Crossref] [Google Scholar]
  4. 4.
    Antic I, Biancucci M, Zhu Y, Gius DR, Satchell KJF. 2015.. Site-specific processing of Ras and Rap1 Switch I by a MARTX toxin effector domain. . Nat. Commun. 6::7396
    [Crossref] [Google Scholar]
  5. 5.
    Avital G, Avraham R, Fan A, Hashimshony T, Hung DT, Yanai I. 2017.. scDual-Seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNA-sequencing. . Genome Biol. 18::200
    [Crossref] [Google Scholar]
  6. 6.
    Avraham R, Haseley N, Brown D, Penaranda C, Jijon HB, et al. 2015.. Pathogen cell-to-cell variability drives heterogeneity in host immune responses. . Cell 162::130921
    [Crossref] [Google Scholar]
  7. 7.
    Brown NF, Finlay BB. 2011.. Potential origins and horizontal transfer of type III secretion systems and effectors. . Mob. Genet. Elements 1::11821
    [Crossref] [Google Scholar]
  8. 8.
    Bumann D, Valdivia RH. 2007.. Identification of host-induced pathogen genes by differential fluorescence induction reporter systems. . Nat. Protocols 2::77077
    [Crossref] [Google Scholar]
  9. 9.
    Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T. 2020.. A decade of advances in transposon-insertion sequencing. . Nat. Rev. Genet. 21::52640
    [Crossref] [Google Scholar]
  10. 10.
    Chakravarthy S, Huot B, Kvitko BH. 2017.. Effector translocation: Cya reporter assay. . Methods Mol. Biol. 1615::47387
    [Crossref] [Google Scholar]
  11. 11.
    Chang JH, Urbach JM, Law TF, Arnold LW, Hu A, et al. 2005.. A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. . PNAS 102::254954
    [Crossref] [Google Scholar]
  12. 12.
    Chiang SL, Mekalanos JJ, Holden DW. 1999.. In vivo genetic analysis of bacterial virulence. . Annu. Rev. Microbiol. 53::12954
    [Crossref] [Google Scholar]
  13. 13.
    Choudhary E, Thakur P, Pareek M, Agarwal N. 2015.. Gene silencing by CRISPR interference in mycobacteria. . Nat. Commun. 6::6267
    [Crossref] [Google Scholar]
  14. 14.
    Chung M, Bruno VM, Rasko DA, Cuomo CA, Muñoz JF, et al. 2021.. Best practices on the differential expression analysis of multi-species RNA-seq. . Genome Biol. 22::121
    [Crossref] [Google Scholar]
  15. 15.
    DeCaprio J, Kohl TO. 2020.. Immunoprecipitation. . Cold Spring Harb. Protoc. 2020::098665
    [Google Scholar]
  16. 16.
    Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ. 2013.. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. . PNAS 110::262328
    [Crossref] [Google Scholar]
  17. 17.
    Duncan KD, Fyrestam J, Lanekoff I. 2019.. Advances in mass spectrometry based single-cell metabolomics. . Analyst 144::78293
    [Crossref] [Google Scholar]
  18. 18.
    Ellis NA, Kim B, Tung J, Machner MP. 2021.. A multiplex CRISPR interference tool for virulence gene interrogation in Legionella pneumophila. . Commun. Biol. 4::157
    [Crossref] [Google Scholar]
  19. 19.
    Ellis NA, Myers KS, Tung J, Davidson Ward A, Johnston K, et al. 2023.. A randomized multiplex CRISPRi-Seq approach for the identification of critical combinations of genes. . eLife 12::RP86903
    [Crossref] [Google Scholar]
  20. 20.
    Ensminger AW. 2016.. Legionella pneumophila, armed to the hilt: justifying the largest arsenal of effectors in the bacterial world. . Curr. Opin. Microbiol. 29::7480
    [Crossref] [Google Scholar]
  21. 21.
    Galán JE. 2009.. Common themes in the design and function of bacterial effectors. . Cell Host Microbe 5::57179
    [Crossref] [Google Scholar]
  22. 22.
    Gelsinger DR, Vo PLH, Klompe SE, Ronda C, Wang H, Sternberg SH. 2023.. Bacterial genome engineering using CRISPR RNA-guided transposases. . bioRxiv 10.1101/2023.03.18.533263. https://www.biorxiv.org/content/10.1101/2023.03.18.533263v1.full
  23. 23.
    Gomez-Valero L, Rusniok C, Carson D, Mondino S, Perez-Cobas AE, et al. 2019.. More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. . PNAS 116::226573
    [Crossref] [Google Scholar]
  24. 24.
    Göser V, Kommnick C, Liss V, Hensel M. 2019.. Self-labeling enzyme tags for analyses of translocation of type III secretion system effector proteins. . mBio 10::e00769-19
    [Crossref] [Google Scholar]
  25. 25.
    Göser V, Sander N, Schulte M, Scharte F, Franzkoch R, et al. 2023.. Single molecule analyses reveal dynamics of Salmonella translocated effector proteins in host cell endomembranes. . Nat. Commun. 14::1240
    [Crossref] [Google Scholar]
  26. 26.
    Heidtman M, Chen EJ, Moy MY, Isberg RR. 2009.. Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. . Cell Microbiol. 11::23048
    [Crossref] [Google Scholar]
  27. 27.
    Heyman O, Yehezkel D, Ciolli Mattioli C, Blumberger N, Rosenberg G, et al. 2023.. Paired single-cell host profiling with multiplex-tagged bacterial mutants reveals intracellular virulence-immune networks. . PNAS 120::e2218812120
    [Crossref] [Google Scholar]
  28. 28.
    Hille F, Richter H, Wong SP, Bratovic M, Ressel S, Charpentier E. 2018.. The biology of CRISPR-Cas: backward and forward. . Cell 172::123959
    [Crossref] [Google Scholar]
  29. 29.
    Ho HI, Fang JR, Cheung J, Wang HH. 2020.. Programmable CRISPR-Cas transcriptional activation in bacteria. . Mol. Syst. Biol. 16::e9427
    [Crossref] [Google Scholar]
  30. 30.
    Hsiao A, Zhu J. 2009.. Genetic tools to study gene expression during bacterial pathogen infection. . Adv. Appl. Microbiol. 67::297314
    [Crossref] [Google Scholar]
  31. 31.
    Hubber A, Kubori T, Nagai H. 2013.. Modulation of the ubiquitination machinery by Legionella. . Curr. Top. Microbiol. Immunol. 376::22747
    [Google Scholar]
  32. 32.
    Iyer S, Das C. 2021.. The unity of opposites: strategic interplay between bacterial effectors to regulate cellular homeostasis. . J. Biol. Chem. 297::101340
    [Crossref] [Google Scholar]
  33. 33.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012.. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. . Science 337::81621
    [Crossref] [Google Scholar]
  34. 34.
    Joseph AM, Shames SR. 2021.. Affecting the effectors: regulation of Legionella pneumophila effector function by metaeffectors. . Pathogens 10::108
    [Crossref] [Google Scholar]
  35. 35.
    Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. 2022.. Single-cell RNA sequencing technologies and applications: a brief overview. . Clin. Transl. Med. 12::e694
    [Crossref] [Google Scholar]
  36. 36.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  37. 37.
    Kampmann M. 2018.. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. . ACS Chem. Biol. 13::40616
    [Crossref] [Google Scholar]
  38. 38.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015.. The Phyre2 web portal for protein modeling, prediction and analysis. . Nat. Protoc. 10::84558
    [Crossref] [Google Scholar]
  39. 39.
    Klein KA, Fukuto HS, Pelletier M, Romanov G, Grabenstein JP, et al. 2012.. A transposon site hybridization screen identifies galU and wecBC as important for survival of Yersinia pestis in murine macrophages. . J. Bacteriol. 194::65362
    [Crossref] [Google Scholar]
  40. 40.
    Koonin EV, Gootenberg JS, Abudayyeh OO. 2023.. Discovery of diverse CRISPR-Cas systems and expansion of the genome engineering toolbox. . Biochemistry 62::346587
    [Crossref] [Google Scholar]
  41. 41.
    Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. 2013.. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. . Nat. Protoc. 8::218096
    [Crossref] [Google Scholar]
  42. 42.
    Lee SH, Camilli A. 2000.. Novel approaches to monitor bacterial gene expression in infected tissue and host. . Curr. Opin. Microbiol. 3::97101
    [Crossref] [Google Scholar]
  43. 43.
    Li X-M, Huang S, Li XD. 2023.. Photo-ANA enables profiling of host–bacteria protein interactions during infection. . Nat. Chem. Biol. 19::61423
    [Crossref] [Google Scholar]
  44. 44.
    Lo HY, Long DR, Holmes EA, Penewit K, Hodgson T, et al. 2023.. Transposon sequencing identifies genes impacting Staphylococcus aureus invasion in a human macrophage model. . Infect. Immun. 91::e0022823
    [Crossref] [Google Scholar]
  45. 45.
    Lührmann A, Newton HJ, Bonazzi M. 2017.. Beginning to understand the role of the type IV secretion system effector proteins in Coxiella burnetii pathogenesis. . In Type IV Secretion in Gram-Negative and Gram-Positive Bacteria, ed. S Backert, E Grohmann , pp. 24368. Cham, Switz:.: Springer
    [Google Scholar]
  46. 46.
    Mahan MJ, Slauch JM, Mekalanos JJ. 1993.. Selection of bacterial virulence genes that are specifically induced in host tissues. . Science 259::68688
    [Crossref] [Google Scholar]
  47. 47.
    Mahdavi A, Szychowski J, Ngo JT, Sweredoski MJ, Graham RL, et al. 2014.. Identification of secreted bacterial proteins by noncanonical amino acid tagging. . PNAS 111::43338
    [Crossref] [Google Scholar]
  48. 48.
    Mak H, Thurston TLM. 2021.. Interesting biochemistries in the structure and function of bacterial effectors. . Front. Cell Infect. Microbiol. 11::608860
    [Crossref] [Google Scholar]
  49. 49.
    Martyn JE, Gomez-Valero L, Buchrieser C. 2022.. The evolution and role of eukaryotic-like domains in environmental intracellular bacteria: the battle with a eukaryotic cell. . FEMS Microbiol. Rev. 46::fuac012
    [Crossref] [Google Scholar]
  50. 50.
    Matsumoto H, Young GM. 2006.. Proteomic and functional analysis of the suite of Ysp proteins exported by the Ysa type III secretion system of Yersinia enterocolitica Biovar 1B. . Mol. Microbiol. 59::689706
    [Crossref] [Google Scholar]
  51. 51.
    Mei JM, Nourbakhsh F, Ford CW, Holden DW. 1997.. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. . Mol. Microbiol. 26::399407
    [Crossref] [Google Scholar]
  52. 52.
    Mika-Gospodorz B, Giengkam S, Westermann AJ, Wongsantichon J, Kion-Crosby W, et al. 2020.. Dual RNA-seq of Orientia tsutsugamushi informs on host-pathogen interactions for this neglected intracellular human pathogen. . Nat. Commun. 11::3363
    [Crossref] [Google Scholar]
  53. 53.
    O'Connor TJ, Adepoju Y, Boyd D, Isberg RR. 2011.. Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. . PNAS 108::1473340
    [Crossref] [Google Scholar]
  54. 54.
    O'Connor TJ, Isberg RR. 2014.. iMAD, a genetic screening strategy for dissecting complex interactions between a pathogen and its host. . Nat. Protoc. 9::191630
    [Crossref] [Google Scholar]
  55. 55.
    Orchard RC, Alto NM. 2012.. Mimicking GEFs: a common theme for bacterial pathogens. . Cell Microbiol. 14::1018
    [Crossref] [Google Scholar]
  56. 56.
    Orrell KE, Melnyk RA. 2021.. Large clostridial toxins: mechanisms and roles in disease. . Microbiol. Mol. Biol. Rev. 85::e0006421
    [Crossref] [Google Scholar]
  57. 57.
    Park JM, Ghosh S, O'Connor TJ. 2020.. Combinatorial selection in amoebal hosts drives the evolution of the human pathogen Legionella pneumophila. . Nat. Microbiol. 5::599609
    [Crossref] [Google Scholar]
  58. 58.
    Patrick KL, Wojcechowskyj JA, Bell SL, Riba MN, Jing T, et al. 2018.. Quantitative yeast genetic interaction profiling of bacterial effector proteins uncovers a role for the human retromer in Salmonella infection. . Cell Syst. 7::32338.e6
    [Crossref] [Google Scholar]
  59. 59.
    Penaranda C, Hung DT. 2019.. Single-cell RNA sequencing to understand host–pathogen interactions. . ACS Infect. Dis. 5::33644
    [Crossref] [Google Scholar]
  60. 60.
    Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, et al. 2016.. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. . Cell 165::1493506
    [Crossref] [Google Scholar]
  61. 61.
    Peters JM, Koo BM, Patino R, Heussler GE, Hearne CC, et al. 2019.. Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. . Nat. Microbiol. 4::24450
    [Crossref] [Google Scholar]
  62. 62.
    Pisu D, Huang L, Grenier JK, Russell DG. 2020.. Dual RNA-seq of Mtb-infected macrophages in vivo reveals ontologically distinct host-pathogen interactions. . Cell Rep. 30::33550.e4
    [Crossref] [Google Scholar]
  63. 63.
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, et al. 2013.. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. . Cell 152::117383
    [Crossref] [Google Scholar]
  64. 64.
    Qu J, Prasad NK, Yu MA, Chen S, Lyden A, et al. 2019.. Modulating pathogenesis with Mobile-CRISPRi. . J. Bacteriol. 201::e00304-19
    [Crossref] [Google Scholar]
  65. 65.
    Rucks EA, Olson MG, Jorgenson LM, Srinivasan RR, Ouellette SP. 2017.. Development of a proximity labeling system to map the Chlamydia trachomatis inclusion membrane. . Front. Cell Infect. Microbiol. 7::40
    [Crossref] [Google Scholar]
  66. 66.
    Saliba AE, Li L, Westermann AJ, Appenzeller S, Stapels DA, et al. 2016.. Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella. . Nat. Microbiol. 2::16206
    [Crossref] [Google Scholar]
  67. 67.
    Saliba AE, Santos CS, Vogel J. 2017.. New RNA-seq approaches for the study of bacterial pathogens. . Curr. Opin. Microbiol. 35::7887
    [Crossref] [Google Scholar]
  68. 68.
    Sanchez-Garrido J, Ruano-Gallego D, Choudhary JS, Frankel G. 2022.. The type III secretion system effector network hypothesis. . Trends Microbiol. 30::52433
    [Crossref] [Google Scholar]
  69. 69.
    Sassetti CM, Boyd DH, Rubin EJ. 2001.. Comprehensive identification of conditionally essential genes in mycobacteria. . PNAS 98::1271217
    [Crossref] [Google Scholar]
  70. 70.
    Schmidt H, Hensel M. 2004.. Pathogenicity islands in bacterial pathogenesis. . Clin. Microbiol. Rev. 17::1456
    [Crossref] [Google Scholar]
  71. 71.
    Schweppe DK, Harding C, Chavez JD, Wu X, Ramage E, et al. 2015.. Host-microbe protein interactions during bacterial infection. . Chem. Biol. 22::152130
    [Crossref] [Google Scholar]
  72. 72.
    Sears RM, May DG, Roux KJ. 2019.. BioID as a tool for protein-proximity labeling in living cells. . Methods Mol. Biol. 2012::299313
    [Crossref] [Google Scholar]
  73. 73.
    Shahi P, Kim SC, Haliburton JR, Gartner ZJ, Abate AR. 2017.. Abseq: ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. . Sci. Rep. 7::44447
    [Crossref] [Google Scholar]
  74. 74.
    Shohdy N, Efe JA, Emr SD, Shuman HA. 2005.. Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. . PNAS 102::486671
    [Crossref] [Google Scholar]
  75. 75.
    Siggers KA, Lesser CF. 2008.. The yeast Saccharomyces cerevisiae: a versatile model system for the identification and characterization of bacterial virulence proteins. . Cell Host Microbe 4::815
    [Crossref] [Google Scholar]
  76. 76.
    Singh MK, Kenney LJ. 2024.. Visualizing the invisible: novel approaches to visualizing bacterial proteins and host-pathogen interactions. . Front. Bioeng. Biotechnol. 12::1334503
    [Crossref] [Google Scholar]
  77. 77.
    Sixt BS, Valdivia RH. 2016.. Molecular genetic analysis of Chlamydia species. . Annu. Rev. Microbiol. 70::17998
    [Crossref] [Google Scholar]
  78. 78.
    Slagowski NL, Kramer RW, Morrison MF, LaBaer J, Lesser CF. 2008.. A functional genomic yeast screen to identify pathogenic bacterial proteins. . PLOS Pathog. 4::e9
    [Crossref] [Google Scholar]
  79. 79.
    Slauch JM, Camilli A. 2000.. IVET and RIVET: use of gene fusions to identify bacterial virulence factors specifically induced in host tissues. . Methods Enzymol. 326::7396
    [Crossref] [Google Scholar]
  80. 80.
    Smith V, Botstein D, Brown PO. 1995.. Genetic footprinting: a genomic strategy for determining a gene's function given its sequence. . PNAS 92::647983
    [Crossref] [Google Scholar]
  81. 81.
    St Louis BM, Quagliato SM, Lee PC. 2023.. Bacterial effector kinases and strategies to identify their target host substrates. . Front. Microbiol. 14::1113021
    [Crossref] [Google Scholar]
  82. 82.
    Stapels DAC, Hill PWS, Westermann AJ, Fisher RA, Thurston TL, et al. 2018.. Salmonella persisters undermine host immune defenses during antibiotic treatment. . Science 362::115660
    [Crossref] [Google Scholar]
  83. 83.
    Strassmann JE, Shu L. 2017.. Ancient bacteria-amoeba relationships and pathogenic animal bacteria. . PLOS Biol. 15::e2002460
    [Crossref] [Google Scholar]
  84. 84.
    Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. 2014.. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. . Cell 159::63546
    [Crossref] [Google Scholar]
  85. 85.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, et al. 2009.. mRNA-Seq whole-transcriptome analysis of a single cell. . Nat. Methods 6::37782
    [Crossref] [Google Scholar]
  86. 86.
    Valdivia RH. 2004.. Modeling the function of bacterial virulence factors in Saccharomyces cerevisiae. . Eukaryot. Cell 3::82734
    [Crossref] [Google Scholar]
  87. 87.
    Van Criekinge W, Beyaert R. 1999.. Yeast two-hybrid: state of the art. . Biol. Proced. Online 2::138
    [Crossref] [Google Scholar]
  88. 88.
    van der Meer-Janssen YP, van Galen J, Batenburg JJ, Helms JB. 2010.. Lipids in host–pathogen interactions: Pathogens exploit the complexity of the host cell lipidome. . Prog. Lipid Res. 49::126
    [Crossref] [Google Scholar]
  89. 89.
    van Opijnen T, Bodi KL, Camilli A. 2009.. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. . Nat. Methods 6::76772
    [Crossref] [Google Scholar]
  90. 90.
    Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, et al. 2021.. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. . Nucleic Acids Res. 50::D43944
    [Crossref] [Google Scholar]
  91. 91.
    Vo PLH, Ronda C, Klompe SE, Chen EE, Acree C, et al. 2021.. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. . Nat. Biotechnol. 39::48089
    [Crossref] [Google Scholar]
  92. 92.
    Wang J, Li J, Stubenrauch CJ. 2024.. Use of Bastion for the identification of secreted substrates. . Methods Mol. Biol. 2715::51931
    [Crossref] [Google Scholar]
  93. 93.
    Weigele BA, Orchard RC, Jimenez A, Cox GW, Alto NM. 2017.. A systematic exploration of the interactions between bacterial effector proteins and host cell membranes. . Nat. Commun. 8::532
    [Crossref] [Google Scholar]
  94. 94.
    Westermann AJ, Barquist L, Vogel J. 2017.. Resolving host–pathogen interactions by dual RNA-seq. . PLOS Pathog. 13::e1006033
    [Crossref] [Google Scholar]
  95. 95.
    Wiley DJ, Rosqvist R, Schesser K. 2007.. Induction of the Yersinia type 3 secretion system as an all-or-none phenomenon. . J. Mol. Biol. 373::2737
    [Crossref] [Google Scholar]
  96. 96.
    Wu F-L, Liu Y, Zhang H-N, Jiang H-W, Cheng L, et al. 2018.. Global profiling of PknG interactions using a human proteome microarray reveals novel connections with CypA. . Proteomics 18::e1800265
    [Crossref] [Google Scholar]
  97. 97.
    Xie Y, Zhang Y, Wang Y, Feng Y. 2023.. Mechanism and modulation of SidE family proteins in the pathogenesis of Legionella pneumophila. . Pathogens 12::629
    [Crossref] [Google Scholar]
  98. 98.
    You Y, Koczyk G, Nuc M, Morbitzer R, Holmes DR, et al. 2023.. The eINTACT system dissects bacterial exploitation of plant osmosignalling to enhance virulence. . Nat. Plants 9::12841
    [Crossref] [Google Scholar]
  99. 99.
    Yu MA, Banta AB, Ward RD, Prasad NK, Kwon MS, et al. 2024.. Investigating Pseudomonas aeruginosa gene function during pathogenesis using Mobile-CRISPRi. . Methods Mol. Biol. 2721::1332
    [Crossref] [Google Scholar]
  100. 100.
    Yu X, Decker KB, Barker K, Neunuebel MR, Saul J, et al. 2015.. Host–pathogen interaction profiling using self-assembling human protein arrays. . J. Proteome Res. 14::192036
    [Crossref] [Google Scholar]
  101. 101.
    Zhang B, Liu B, Zhou Y, Zhang X, Zou Q, Liu X. 2020.. Contributions of mass spectrometry-based proteomics to understanding Salmonella-host interactions. . Pathogens 9::581
    [Crossref] [Google Scholar]
  102. 102.
    Zhao Z, Hu Y, Hu Y, White AP, Wang Y. 2023.. Features and algorithms: facilitating investigation of secreted effectors in Gram-negative bacteria. . Trends Microbiol. 31::116278
    [Crossref] [Google Scholar]
  103. 103.
    Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, et al. 2018.. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. . J. Mol. Biol. 430::223743
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102030
Loading
/content/journals/10.1146/annurev-genet-111523-102030
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error