1932

Abstract

Life activities are supported by the intricate metabolic network that is fueled by nutrients. Nutritional and genetic studies in model organisms have determined that dietary restriction and certain mutations in the insulin signaling pathway lead to lifespan extension. Subsequently, the detailed mechanisms of aging as well as various nutrient signaling pathways and their relationships have been investigated in a wide range of organisms, from yeast to mammals. This review summarizes the roles of nutritional and metabolic signaling in aging and lifespan with a focus on amino acids, the building blocks of organisms. We discuss how lifespan is affected by the sensing, transduction, and metabolism of specific amino acids and consider the influences of life stage, sex, and genetic background on the nutritional control of aging. Our goal is to enhance our understanding of how nutrients affect aging and thus contribute to the biology of aging and lifespan.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102042
2024-11-25
2025-04-22
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102042.html?itemId=/content/journals/10.1146/annurev-genet-111523-102042&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aiello G, Sabino C, Pernici D, Audano M, Antonica F, et al. 2022.. Transient rapamycin treatment during developmental stage extends lifespan in Mus musculus and Drosophila melanogaster. . EMBO Rep. 23:(9):e55299
    [Crossref] [Google Scholar]
  2. 2.
    Ali SS, Xiong C, Lucero J, Behrens MM, Dugan LL, Quick KL. 2006.. Gender differences in free radical homeostasis during aging: shorter-lived female C57BL6 mice have increased oxidative stress. . Aging Cell 5:(6):56574
    [Crossref] [Google Scholar]
  3. 3.
    Almanzar N, Antony J, Baghel AS, Bakerman I, Bansal I, et al. 2020.. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. . Nature 583:(7817):59095
    [Crossref] [Google Scholar]
  4. 4.
    Annibal A, Tharyan RG, Schonewolff MF, Tam H, Latza C, et al. 2021.. Regulation of the one carbon folate cycle as a shared metabolic signature of longevity. . Nat. Commun. 12:(1):3486
    [Crossref] [Google Scholar]
  5. 5.
    Apfeld J, Kenyon C. 1998.. Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. . Cell 95:(2):199210
    [Crossref] [Google Scholar]
  6. 6.
    Austad SN, Fischer KE. 2016.. Sex differences in lifespan. . Cell Metab. 23:(6):102233
    [Crossref] [Google Scholar]
  7. 7.
    Babygirija R, Lamming DW. 2021.. The regulation of healthspan and lifespan by dietary amino acids. . Transl. Med. Aging 5::1730
    [Crossref] [Google Scholar]
  8. 8.
    Bell G. 1980.. The costs of reproduction and their consequences. . Am. Nat. 116:(1):4576
    [Crossref] [Google Scholar]
  9. 9.
    Bitto A, Ito TK, Pineda VV, LeTexier NJ, Huang HZ, et al. 2016.. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. . eLife 5::e16351
    [Crossref] [Google Scholar]
  10. 10.
    Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, et al. 2010.. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. . Cell Metab. 11:(1):3546
    [Crossref] [Google Scholar]
  11. 11.
    Bonduriansky R, Brassil CE. 2002.. Rapid and costly ageing in wild male flies. . Nature 420:(6914):377
    [Crossref] [Google Scholar]
  12. 12.
    Bou Sleiman M, Roy S, Gao AW, Sadler MC, von Alvensleben GVG, et al. 2022.. Sex- and age-dependent genetics of longevity in a heterogeneous mouse population. . Science 377:(6614):eabo3191
    [Crossref] [Google Scholar]
  13. 13.
    Brind J, Malloy V, Augie I, Caliendo N, Vogelman JH, et al. 2011.. Dietary glycine supplementation mimics lifespan extension by dietary methionine restriction in Fisher 344 rats. . FASEB J. 25:(S1):582.2
    [Crossref] [Google Scholar]
  14. 14.
    Brown-Borg HM, Rakoczy SG, Uthus EO. 2005.. Growth hormone alters methionine and glutathione metabolism in Ames dwarf mice. . Mech. Ageing Dev. 126:(3):38998
    [Crossref] [Google Scholar]
  15. 15.
    Brown-Borg HM, Rakoczy SG, Wonderlich JA, Rojanathammanee L, Kopchick JJ, et al. 2014.. Growth hormone signaling is necessary for lifespan extension by dietary methionine. . Aging Cell 13:(6):101927
    [Crossref] [Google Scholar]
  16. 16.
    Cabreiro F, Au C, Leung K-Y, Vergara-Irigaray N, Cochemé HM, et al. 2013.. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. . Cell 153:(1):22839
    [Crossref] [Google Scholar]
  17. 17.
    Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. 2019.. From discoveries in ageing research to therapeutics for healthy ageing. . Nature 571:(7764):18392
    [Crossref] [Google Scholar]
  18. 18.
    Catterson JH, Khericha M, Dyson MC, Vincent AJ, Callard R, et al. 2018.. Short-term, intermittent fasting induces long-lasting gut health and TOR-independent lifespan extension. . Curr. Biol. 28:(11):171424.e4
    [Crossref] [Google Scholar]
  19. 19.
    Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, et al. 2016.. The CASTOR proteins are arginine sensors for the mTORC1 pathway. . Cell 165:(1):15364
    [Crossref] [Google Scholar]
  20. 20.
    Charlesworth B. 2000.. Fisher, Medawar, Hamilton and the evolution of aging. . Genetics 156:(3):92731
    [Crossref] [Google Scholar]
  21. 21.
    Cheng C, Kirkpatrick M. 2021.. Molecular evolution and the decline of purifying selection with age. . Nat. Commun. 12:(1):2657
    [Crossref] [Google Scholar]
  22. 22.
    Cheng CJ, Gelfond JAL, Strong R, Nelson JF. 2019.. Genetically heterogeneous mice exhibit a female survival advantage that is age- and site-specific: results from a large multi-site study. . Aging Cell 18:(3):e12905
    [Crossref] [Google Scholar]
  23. 23.
    Chou H-J, Donnard E, Gustafsson HT, Garber M, Rando OJ. 2017.. Transcriptome-wide analysis of roles for tRNA modifications in translational regulation. . Mol. Cell 68:(5):97892.e4
    [Crossref] [Google Scholar]
  24. 24.
    D'Angelo MA, Raices M, Panowski SH, Hetzer MW. 2009.. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. . Cell 136:(2):28495
    [Crossref] [Google Scholar]
  25. 25.
    D'Antona G, Ragni M, Cardile A, Tedesco L, Dossena M, et al. 2010.. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. . Cell Metab. 12:(4):36272
    [Crossref] [Google Scholar]
  26. 26.
    Darnell AM, Subramaniam AR, O'Shea EK. 2018.. Translational control through differential ribosome pausing during amino acid limitation in mammalian cells. . Mol. Cell 71:(2):22943.e11
    [Crossref] [Google Scholar]
  27. 27.
    Das R, Melo JA, Thondamal M, Morton EA, Cornwell AB, et al. 2017.. The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans. . PLOS Genet. 13:(10):e1007038
    [Crossref] [Google Scholar]
  28. 28.
    Derisbourg MJ, Wester LE, Baddi R, Denzel MS. 2021.. Mutagenesis screen uncovers lifespan extension through integrated stress response inhibition without reduced mRNA translation. . Nat. Commun. 12:(1):1678
    [Crossref] [Google Scholar]
  29. 29.
    Dewe JM, Whipple JM, Chernyakov I, Jaramillo LN, Phizicky EM. 2012.. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications. . RNA 18:(10):188696
    [Crossref] [Google Scholar]
  30. 30.
    Dhondt I, Petyuk VA, Cai H, Vandemeulebroucke L, Vierstraete A, et al. 2016.. FOXO/DAF-16 activation slows down turnover of the majority of proteins in C. elegans. . Cell Rep. 16:(11):302840
    [Crossref] [Google Scholar]
  31. 31.
    Dobson AJ, Boulton-McDonald R, Houchou L, Svermova T, Ren Z, et al. 2019.. Longevity is determined by ETS transcription factors in multiple tissues and diverse species. . PLOS Genet. 15:(7):e1008212
    [Crossref] [Google Scholar]
  32. 32.
    Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG. 2000.. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. . Mol. Cell 6:(2):26979
    [Crossref] [Google Scholar]
  33. 33.
    Dorling JL, van Vliet S, Huffman KM, Kraus WE, Bhapkar M, et al. 2021.. Effects of caloric restriction on human physiological, psychological, and behavioral outcomes: highlights from CALERIE phase 2. . Nutr. Rev. 79:(1):98113
    [Crossref] [Google Scholar]
  34. 34.
    Ferraz RC, Camara H, De-Souza EA, Pinto S, Pinca APF, et al. 2016.. IMPACT is a GCN2 inhibitor that limits lifespan in Caenorhabditis elegans. . BMC Biol. 14:(1):87
    [Crossref] [Google Scholar]
  35. 35.
    Fontana L, Cummings NE, Arriola Apelo SI, Neuman JC, Kasza I, et al. 2016.. Decreased consumption of branched-chain amino acids improves metabolic health. . Cell Rep. 16:(2):52030
    [Crossref] [Google Scholar]
  36. 36.
    Forster MJ, Morris P, Sohal RS. 2003.. Genotype and age influence the effect of caloric intake on mortality in mice. . FASEB J. 17:(6):69092
    [Crossref] [Google Scholar]
  37. 37.
    Frappaolo A, Giansanti MG. 2023.. Using Drosophila melanogaster to dissect the roles of the mTOR signaling pathway in cell growth. . Cells 12:(22):2622
    [Crossref] [Google Scholar]
  38. 38.
    Friedman DB, Johnson TE. 1988.. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. . Genetics 118:(1):7586
    [Crossref] [Google Scholar]
  39. 39.
    Gems D, Riddle DL. 2000.. Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. . Genetics 154:(4):1597610
    [Crossref] [Google Scholar]
  40. 40.
    Giannakou ME, Goss M, Partridge L. 2008.. Role of dFOXO in lifespan extension by dietary restriction in Drosophila melanogaster : not required, but its activity modulates the response. . Aging Cell 7:(2):18798
    [Crossref] [Google Scholar]
  41. 41.
    Goul C, Peruzzo R, Zoncu R. 2023.. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. . Nat. Rev. Mol. Cell Biol. 24:(12):85775
    [Crossref] [Google Scholar]
  42. 42.
    Grandison RC, Piper MDW, Partridge L. 2009.. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. . Nature 462:(7276):106164
    [Crossref] [Google Scholar]
  43. 43.
    Green CL, Lamming DW, Fontana L. 2022.. Molecular mechanisms of dietary restriction promoting health and longevity. . Nat. Rev. Mol. Cell Biol. 23:(1):5673
    [Crossref] [Google Scholar]
  44. 44.
    Green CL, Pak HH, Richardson NE, Flores V, Yu D, et al. 2022.. Sex and genetic background define the metabolic, physiologic, and molecular response to protein restriction. . Cell Metab. 34:(2):20926.e5
    [Crossref] [Google Scholar]
  45. 45.
    Green CL, Trautman ME, Chaiyakul K, Jain R, Alam YH, et al. 2023.. Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice. . Cell Metab. 35:(11):197695.e6
    [Crossref] [Google Scholar]
  46. 46.
    Greer EL, Brunet A. 2009.. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. . Aging Cell 8:(2):11327
    [Crossref] [Google Scholar]
  47. 47.
    Gu X, Jouandin P, Lalgudi PV, Binari R, Valenstein ML, et al. 2022.. Sestrin mediates detection of and adaptation to low-leucine diets in Drosophila. . Nature 608:(7921):20916
    [Crossref] [Google Scholar]
  48. 48.
    Gu X, Orozco JM, Saxton RA, Condon KJ, Liu GY, et al. 2017.. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. . Science 358:(6364):81318
    [Crossref] [Google Scholar]
  49. 49.
    Haass C, Selkoe DJ. 2007.. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. . Nat. Rev. Mol. Cell Biol. 8:(2):10112
    [Crossref] [Google Scholar]
  50. 50.
    Hahn O, Drews LF, Nguyen A, Tatsuta T, Gkioni L, et al. 2019.. A nutritional memory effect counteracts the benefits of dietary restriction in old mice. . Nat. Metab. 1:(11):105973
    [Crossref] [Google Scholar]
  51. 51.
    Hansen M, Hsu A-L, Dillin A, Kenyon C. 2005.. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. . PLOS Genet. 1:(1):e17
    [Crossref] [Google Scholar]
  52. 52.
    Hara K, Yonezawa K, Weng Q-P, Kozlowski MT, Belham C, Avruch J. 1998.. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. . J. Biol. Chem. 273:(23):1448494
    [Crossref] [Google Scholar]
  53. 53.
    Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, et al. 2000.. Regulated translation initiation controls stress-induced gene expression in mammalian cells. . Mol. Cell 6:(5):1099108
    [Crossref] [Google Scholar]
  54. 54.
    Harding HP, Ordonez A, Allen F, Parts L, Inglis AJ, et al. 2019.. The ribosomal P-stalk couples amino acid starvation to GCN2 activation in mammalian cells. . eLife 8::e501494
    [Crossref] [Google Scholar]
  55. 55.
    Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, et al. 2014.. Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. . Aging Cell 13:(2):27382
    [Crossref] [Google Scholar]
  56. 56.
    Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, et al. 2009.. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. . Nature 460:(7253):39295
    [Crossref] [Google Scholar]
  57. 57.
    Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, et al. 2006.. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals. . JAMA 295:(13):153948
    [Crossref] [Google Scholar]
  58. 58.
    Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, et al. 2015.. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. . Cell 160:(1–2):13244
    [Crossref] [Google Scholar]
  59. 59.
    Hinnebusch AG. 1984.. Evidence for translational regulation of the activator of general amino acid control in yeast. . PNAS 81:(20):644246
    [Crossref] [Google Scholar]
  60. 60.
    Hooi MYS, Truscott RJW. 2011.. Racemisation and human cataract. d-Ser, d-Asp/Asn and d-Thr are higher in the lifelong proteins of cataract lenses than in age-matched normal lenses. . Age 33:(2):13141
    [Crossref] [Google Scholar]
  61. 61.
    Ingle L, Wood TR, Banta AM. 1937.. A study of longevity, growth, reproduction and heart rate in Daphnia longispina as influenced by limitations in quantity of food. . J. Exp. Zool. 76:(2):32552
    [Crossref] [Google Scholar]
  62. 62.
    Inglis AJ, Masson GR, Shao S, Perisic O, McLaughlin SH, et al. 2019.. Activation of GCN2 by the ribosomal P-stalk. . PNAS 116:(11):494654
    [Crossref] [Google Scholar]
  63. 63.
    Ishimura R, Nagy G, Dotu I, Chuang JH, Ackerman SL. 2016.. Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation. . eLife 5::e14925
    [Crossref] [Google Scholar]
  64. 64.
    Jackson AU, Fornés A, Galecki A, Miller RA, Burke DT. 1999.. Multiple-trait quantitative trait loci analysis using a large mouse sibship. . Genetics 151:(2):78595
    [Crossref] [Google Scholar]
  65. 65.
    Jennings BJ, Ozanne SE, Dorling MW, Hales CN. 1999.. Early growth determines longevity in male rats and may be related to telomere shortening in the kidney. . FEBS Lett. 448:(1):48
    [Crossref] [Google Scholar]
  66. 66.
    Jewell JL, Kim YC, Russell RC, Yu F-X, Park HW, et al. 2015.. Differential regulation of mTORC1 by leucine and glutamine. . Science 347:(6218):19498
    [Crossref] [Google Scholar]
  67. 67.
    Jewell JL, Russell RC, Guan K-L. 2013.. Amino acid signalling upstream of mTOR. . Nat. Rev. Mol. Cell Biol. 14:(3):13339
    [Crossref] [Google Scholar]
  68. 68.
    Jia K, Chen D, Riddle DL. 2004.. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. . Development 131:(16):3897906
    [Crossref] [Google Scholar]
  69. 69.
    Juricic P, Grönke S, Partridge L. 2020.. Branched-chain amino acids have equivalent effects to other essential amino acids on lifespan and aging-related traits in Drosophila. . J. Gerontol. Ser. A 75:(1):2431
    [Crossref] [Google Scholar]
  70. 70.
    Juricic P, Lu Y-X, Leech T, Drews LF, Paulitz J, et al. 2022.. Long-lasting geroprotection from brief rapamycin treatment in early adulthood by persistently increased intestinal autophagy. . Nat. Aging 2:(9):82436
    [Crossref] [Google Scholar]
  71. 71.
    Kabil H, Kabil O, Banerjee R, Harshman LG, Pletcher SD. 2011.. Increased transsulfuration mediates longevity and dietary restriction in Drosophila. . PNAS 108:(40):1683136
    [Crossref] [Google Scholar]
  72. 72.
    Kaeberlein M, Powers RW, Steffen KK, Westman EA, Hu D, et al. 2005.. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. . Science 310:(5751):119396
    [Crossref] [Google Scholar]
  73. 73.
    Kang M-J, Vasudevan D, Kang K, Kim K, Park J-E, et al. 2017.. 4E-BP is a target of the GCN2-ATF4 pathway during Drosophila development and aging. . J. Cell Biol. 216:(1):11529
    [Crossref] [Google Scholar]
  74. 74.
    Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. 2004.. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. . Curr. Biol. 14:(10):88590
    [Crossref] [Google Scholar]
  75. 75.
    Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. 1993.. A C. elegans mutant that lives twice as long as wild type. . Nature 366:(6454):46164
    [Crossref] [Google Scholar]
  76. 76.
    Kim HS, Parker DJ, Hardiman MM, Munkácsy E, Jiang N, et al. 2023.. Early-adulthood spike in protein translation drives aging via juvenile hormone/germline signaling. . Nat. Commun. 14:(1):5021
    [Crossref] [Google Scholar]
  77. 77.
    Kim HS, Pickering AM. 2023.. Protein translation paradox: implications in translational regulation of aging. . Front. Cell Dev. Biol. 11::1129281
    [Crossref] [Google Scholar]
  78. 78.
    Kosakamoto H, Obata F, Kuraishi J, Aikawa H, Okada R, et al. 2023.. Early-adult methionine restriction reduces methionine sulfoxide and extends lifespan in Drosophila. . Nat. Commun. 14:(1):7832
    [Crossref] [Google Scholar]
  79. 79.
    Kosakamoto H, Okamoto N, Aikawa H, Sugiura Y, Suematsu M, et al. 2022.. Sensing of the non-essential amino acid tyrosine governs the response to protein restriction in Drosophila. . Nat. Metab. 4:(7):94459
    [Crossref] [Google Scholar]
  80. 80.
    Laxman S, Sutter BM, Wu X, Kumar S, Guo X, et al. 2013.. Sulfur amino acids regulate translational capacity and metabolic homeostasis through modulation of tRNA thiolation. . Cell 154:(2):41629
    [Crossref] [Google Scholar]
  81. 81.
    Lee BC, Kaya A, Ma S, Kim G, Gerashchenko MV, et al. 2014.. Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. . Nat. Commun. 5:(1):3592
    [Crossref] [Google Scholar]
  82. 82.
    Lee MB, Hill CM, Bitto A, Kaeberlein M. 2021.. Antiaging diets: separating fact from fiction. . Science 374:(6570):eabe7365
    [Crossref] [Google Scholar]
  83. 83.
    Levine ME, Suarez JA, Brandhorst S, Balasubramanian P, Cheng C-W, et al. 2014.. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. . Cell Metab. 19:(3):40717
    [Crossref] [Google Scholar]
  84. 84.
    Libina N, Berman JR, Kenyon C. 2003.. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. . Cell 115:(4):489502
    [Crossref] [Google Scholar]
  85. 85.
    Liu GY, Jouandin P, Bahng RE, Perrimon N, Sabatini DM. 2024.. An evolutionary mechanism to assimilate new nutrient sensors into the mTORC1 pathway. . Nat. Commun. 15::2517
    [Crossref] [Google Scholar]
  86. 86.
    Liu YJ, Janssens GE, McIntyre RL, Molenaars M, Kamble R, et al. 2019.. Glycine promotes longevity in Caenorhabditis elegans in a methionine cycle-dependent fashion. . PLOS Genet. 15:(3):e1007633
    [Crossref] [Google Scholar]
  87. 87.
    Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR, et al. 2018.. Aging and neurodegeneration are associated with increased mutations in single human neurons. . Science 359:(6375):55559
    [Crossref] [Google Scholar]
  88. 88.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2023.. Hallmarks of aging: an expanding universe. . Cell 186:(2):24378
    [Crossref] [Google Scholar]
  89. 89.
    Lu J, Temp U, Müller-Hartmann A, Esser J, Grönke S, Partridge L. 2020.. Sestrin is a key regulator of stem cell function and lifespan in response to dietary amino acids. . Nat. Aging 1:(1):6072
    [Crossref] [Google Scholar]
  90. 90.
    Lu T-C, Brbić M, Park Y-J, Jackson T, Chen J, et al. 2023.. Aging Fly Cell Atlas identifies exhaustive aging features at cellular resolution. . Science 380:(6650):eadg0934
    [Crossref] [Google Scholar]
  91. 91.
    Lu Y-X, Regan JC, Eßer J, Drews LF, Weinseis T, et al. 2021.. A TORC1-histone axis regulates chromatin organisation and non-canonical induction of autophagy to ameliorate ageing. . eLife 10::e62233
    [Crossref] [Google Scholar]
  92. 92.
    Lyons B, Kwan AH, Jamie J, Truscott RJW. 2013.. Age-dependent modification of proteins: N-terminal racemization. . FEBS J. 280:(9):198090
    [Crossref] [Google Scholar]
  93. 93.
    Mannick JB, Lamming DW. 2023.. Targeting the biology of aging with mTOR inhibitors. . Nat. Aging 3:(6):64260
    [Crossref] [Google Scholar]
  94. 94.
    Mansfeld J, Urban N, Priebe S, Groth M, Frahm C, et al. 2015.. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing. . Nat. Commun. 6:(1):10043
    [Crossref] [Google Scholar]
  95. 95.
    Martínez Corrales G, Li M, Svermova T, Goncalves A, Voicu D, et al. 2022.. Transcriptional memory of dFOXO activation in youth curtails later-life mortality through chromatin remodeling and Xbp1. . Nat. Aging 2:(12):117690
    [Crossref] [Google Scholar]
  96. 96.
    McCay CM, Crowell MF, Maynard LA. 1935.. The effect of retarded growth upon the length of life span and upon the ultimate body size. . Nutrition 5:(3):15571
    [Google Scholar]
  97. 97.
    Medawar PB. 1952.. An Unsolved Problem of Biology. London:: H.K. Lewis & Co.
    [Google Scholar]
  98. 98.
    Meng D, Yang Q, Wang H, Melick CH, Navlani R, et al. 2020.. Glutamine and asparagine activate mTORC1 independently of Rag GTPases. . J. Biol. Chem. 295:(10):289099
    [Crossref] [Google Scholar]
  99. 99.
    Mihaylova MM, Chaix A, Delibegovic M, Ramsey JJ, Bass J, et al. 2023.. When a calorie is not just a calorie: diet quality and timing as mediators of metabolism and healthy aging. . Cell Metab. 35:(7):111431
    [Crossref] [Google Scholar]
  100. 100.
    Miller RA, Austad S, Burke D, Chrisp C, Dysko R, et al. 1999.. Exotic mice as models for aging research: polemic and prospectus. . Neurobiol. Aging 20:(2):21731
    [Crossref] [Google Scholar]
  101. 101.
    Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. 2005.. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. . Aging Cell 4:(3):11925
    [Crossref] [Google Scholar]
  102. 102.
    Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, et al. 2011.. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. . J. Gerontol. Ser. A 66A:(2):191201
    [Crossref] [Google Scholar]
  103. 103.
    Miller RA, Harrison DE, Astle CM, Bogue MA, Brind J, et al. 2019.. Glycine supplementation extends lifespan of male and female mice. . Aging Cell 18:(3):e12953
    [Crossref] [Google Scholar]
  104. 104.
    Miller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, et al. 2014.. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. . Aging Cell 13:(3):46877
    [Crossref] [Google Scholar]
  105. 105.
    Miller RA, Harrison DE, Astle CM, Floyd RA, Flurkey K, et al. 2007.. An Aging Interventions Testing Program: study design and interim report. . Aging Cell 6:(4):56575
    [Crossref] [Google Scholar]
  106. 106.
    Min K, Yamamoto R, Buch S, Pankratz M, Tatar M. 2008.. Drosophila lifespan control by dietary restriction independent of insulin-like signaling. . Aging Cell 7:(2):199206
    [Crossref] [Google Scholar]
  107. 107.
    Morris JZ, Tissenbaum HA, Ruvkun G. 1996.. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. . Nature 382:(6591):53639
    [Crossref] [Google Scholar]
  108. 108.
    Nekooki-Machida Y, Kurosawa M, Nukina N, Ito K, Oda T, Tanaka M. 2009.. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. . PNAS 106:(24):967984
    [Crossref] [Google Scholar]
  109. 109.
    Nuzhdin SV, Pasyukova EG, Dilda CL, Zeng ZB, Mackay TF. 1997.. Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. . PNAS 94:(18):973439
    [Crossref] [Google Scholar]
  110. 110.
    Obata F, Miura M. 2015.. Enhancing S-adenosyl-methionine catabolism extends Drosophila lifespan. . Nat. Commun. 6:(1):8332
    [Crossref] [Google Scholar]
  111. 111.
    Obata F, Tsuda-Sakurai K, Yamazaki T, Nishio R, Nishimura K, et al. 2018.. Nutritional control of stem cell division through S-adenosylmethionine in Drosophila intestine. . Dev. Cell 44:(6):74151.e3
    [Crossref] [Google Scholar]
  112. 112.
    Ozanne SE, Hales CN. 2004.. Catch-up growth and obesity in male mice. . Nature 427:(6973):41112
    [Crossref] [Google Scholar]
  113. 113.
    Palii SS, Kays CE, Deval C, Bruhat A, Fafournoux P, Kilberg MS. 2009.. Specificity of amino acid regulated gene expression: analysis of genes subjected to either complete or single amino acid deprivation. . Amino Acids 37:(1):7988
    [Crossref] [Google Scholar]
  114. 114.
    Parkhitko AA, Binari R, Zhang N, Asara JM, Demontis F, Perrimon N. 2016.. Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in Drosophila. . Genes Dev. 30:(12):140922
    [Crossref] [Google Scholar]
  115. 115.
    Paukštytė J, López Cabezas RM, Feng Y, Tong K, Schnyder D, et al. 2023.. Global analysis of aging-related protein structural changes uncovers enzyme-polymerization-based control of longevity. . Mol. Cell 83:(18):336076.e11
    [Crossref] [Google Scholar]
  116. 116.
    Powers RW, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S. 2006.. Extension of chronological life span in yeast by decreased TOR pathway signaling. . Genes Dev. 20:(2):17484
    [Crossref] [Google Scholar]
  117. 117.
    Promislow DEL, Flatt T, Bonduriansky R. 2022.. The biology of aging in insects: from Drosophila to other insects and back. . Annu. Rev. Entomol. 67::83103
    [Crossref] [Google Scholar]
  118. 118.
    Ravussin E, Redman LM, Rochon J, Das SK, Fontana L, et al. 2015.. A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. . J. Gerontol. Ser. A 70:(9):1097104
    [Crossref] [Google Scholar]
  119. 119.
    Richardson NE, Konon EN, Schuster HS, Mitchell AT, Boyle C, et al. 2021.. Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and life span in mice. . Nat. Aging 1:(1):7386
    [Crossref] [Google Scholar]
  120. 120.
    Richie JP, Leutzinger Y, Parthasarathy S, Maixoy V, Orentreich N, Zimmerman JA. 1994.. Methionine restriction increases blood glutathione and longevity in F344 rats. . FASEB J. 8:(15):13027
    [Crossref] [Google Scholar]
  121. 121.
    Robbins CE, Patel B, Sawyer DL, Wilkinson B, Kennedy BK, McCormick MA. 2022.. Cytosolic and mitochondrial tRNA synthetase inhibitors increase lifespan in a GCN4/atf-4-dependent manner. . iScience 25:(11):105410
    [Crossref] [Google Scholar]
  122. 122.
    Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, et al. 2012.. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. . Cell Metab. 15:(5):71324
    [Crossref] [Google Scholar]
  123. 123.
    Rochon J, Bales CW, Ravussin E, Redman LM, Holloszy JO, et al. 2011.. Design and conduct of the CALERIE study: Comprehensive assessment of the long-term effects of reducing intake of energy. . J. Gerontol. Ser. A 66A:(1):97108
    [Crossref] [Google Scholar]
  124. 124.
    Rodríguez JA, Marigorta UM, Hughes DA, Spataro N, Bosch E, Navarro A. 2017.. Antagonistic pleiotropy and mutation accumulation influence human senescence and disease. . Nat. Ecol. Evol. 1:(3):0055
    [Crossref] [Google Scholar]
  125. 125.
    Ruckenstuhl C, Netzberger C, Entfellner I, Carmona-Gutierrez D, Kickenweiz T, et al. 2014.. Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification. . PLOS Genet. 10:(5):e1004347
    [Crossref] [Google Scholar]
  126. 126.
    Ryu S, Sidorov S, Ravussin E, Artyomov M, Iwasaki A, et al. 2022.. The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. . Immunity 55:(9):160926.e7
    [Crossref] [Google Scholar]
  127. 127.
    Samuelson AV, Carr CE, Ruvkun G. 2007.. Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. . Genes Dev. 21:(22):297694
    [Crossref] [Google Scholar]
  128. 128.
    Sanz A, Hiona A, Kujoth GC, Seo AY, Hofer T, et al. 2007.. Evaluation of sex differences on mitochondrial bioenergetics and apoptosis in mice. . Exp. Gerontol. 42:(3):17382
    [Crossref] [Google Scholar]
  129. 129.
    Savas JN, Toyama BH, Xu T, Yates JR 3rd, Hetzer MW. 2012.. Extremely long-lived nuclear pore proteins in the rat brain. . Science 335:(6071):942
    [Crossref] [Google Scholar]
  130. 130.
    Saxton RA, Chantranupong L, Knockenhauer KE, Schwartz TU, Sabatini DM. 2016.. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. . Nature 536:(7615):22933
    [Crossref] [Google Scholar]
  131. 131.
    Shimokawa I, Komatsu T, Hayashi N, Kim S, Kawata T, et al. 2015.. The life-extending effect of dietary restriction requires Foxo3 in mice. . Aging Cell 14:(4):7079
    [Crossref] [Google Scholar]
  132. 132.
    Shindyapina AV, Cho Y, Kaya A, Tyshkovskiy A, Castro JP, et al. 2022.. Rapamycin treatment during development extends life span and health span of male mice and Daphnia magna. . Sci. Adv. 8:(37):eabo5482
    [Crossref] [Google Scholar]
  133. 133.
    Solon-Biet SM, McMahon AC, Ballard JWO, Ruohonen K, Wu LE, et al. 2014.. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. . Cell Metab. 19:(3):41830
    [Crossref] [Google Scholar]
  134. 134.
    Spadaro O, Youm Y, Shchukina I, Ryu S, Sidorov S, et al. 2022.. Caloric restriction in humans reveals immunometabolic regulators of health span. . Science 375:(6581):67177
    [Crossref] [Google Scholar]
  135. 135.
    Srivastava A, Lu J, Gadalla DS, Hendrich O, Grönke S, Partridge L. 2022.. The role of GCN2 kinase in mediating the effects of amino acids on longevity and feeding behaviour in Drosophila. . Front. Aging 3::944466
    [Crossref] [Google Scholar]
  136. 136.
    Statzer C, Meng J, Venz R, Bland M, Robida-Stubbs S, et al. 2022.. ATF-4 and hydrogen sulfide signalling mediate longevity in response to inhibition of translation or mTORC1. . Nat. Commun. 13:(1):967
    [Crossref] [Google Scholar]
  137. 137.
    Stefana MI, Driscoll PC, Obata F, Pengelly AR, Newell CL, et al. 2017.. Developmental diet regulates Drosophila lifespan via lipid autotoxins. . Nat. Commun. 8:(1):1384
    [Crossref] [Google Scholar]
  138. 138.
    Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, et al. 2008.. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. . Aging Cell 7:(5):64150
    [Crossref] [Google Scholar]
  139. 139.
    Sun L, Sadighi Akha AA, Miller RA, Harper JM. 2009.. Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. . J. Gerontol. Ser. A 64A:(7):71122
    [Crossref] [Google Scholar]
  140. 140.
    Sutter BM, Wu X, Laxman S, Tu BP. 2013.. Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. . Cell 154:(2):40315
    [Crossref] [Google Scholar]
  141. 141.
    Suzawa M, Bland ML. 2023.. Insulin signaling in development. . Development 150:(20):dev201599
    [Crossref] [Google Scholar]
  142. 142.
    Swovick K, Firsanov D, Welle KA, Hryhorenko JR, Wise JP Sr., et al. 2021.. Interspecies differences in proteome turnover kinetics are correlated with life spans and energetic demands. . Mol. Cell. Proteom. 20::100041
    [Crossref] [Google Scholar]
  143. 143.
    Swovick K, Welle KA, Hryhorenko JR, Seluanov A, Gorbunova V, Ghaemmaghami S. 2018.. Cross-species comparison of proteome turnover kinetics. . Mol. Cell. Proteom. 17:(4):58091
    [Crossref] [Google Scholar]
  144. 144.
    Tonoki A, Kuranaga E, Ito N, Nekooki-Machida Y, Tanaka M, Miura M. 2011.. Aging causes distinct characteristics of polyglutamine amyloids in vivo. . Genes Cells 16:(5):55764
    [Crossref] [Google Scholar]
  145. 145.
    Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT, et al. 2013.. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. . Cell 154:(5):97182
    [Crossref] [Google Scholar]
  146. 146.
    Tyshkovskiy A, Ma S, Shindyapina AV, Tikhonov S, Lee S-G, et al. 2023.. Distinct longevity mechanisms across and within species and their association with aging. . Cell 186:(13):292949.e20
    [Crossref] [Google Scholar]
  147. 147.
    Uno M, Tani Y, Nono M, Okabe E, Kishimoto S, et al. 2021.. Neuronal DAF-16-to-intestinal DAF-16 communication underlies organismal lifespan extension in C. elegans. . iScience 24:(7):102706
    [Crossref] [Google Scholar]
  148. 148.
    Valerio A, D'Antona G, Nisoli E. 2011.. Branched-chain amino acids, mitochondrial biogenesis, and healthspan: an evolutionary perspective. . Aging 3:(5):46478
    [Crossref] [Google Scholar]
  149. 149.
    Vattem KM, Wek RC. 2004.. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. . PNAS 101:(31):1126974
    [Crossref] [Google Scholar]
  150. 150.
    Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F. 2003.. Influence of TOR kinase on lifespan in C. elegans. . Nature 426:(6967):620
    [Crossref] [Google Scholar]
  151. 151.
    Viña J, Borrás C, Gambini J, Sastre J, Pallardó FV. 2005.. Why females live longer than males: control of longevity by sex hormones. . Sci. Aging Knowledge Environ. 2005(23):pe17
    [Google Scholar]
  152. 152.
    Visscher M, De Henau S, Wildschut MHE, van Es RM, Dhondt I, et al. 2016.. Proteome-wide changes in protein turnover rates in C. elegans models of longevity and age-related disease. . Cell Rep. 16:(11):304151
    [Crossref] [Google Scholar]
  153. 153.
    Williams GC. 1957.. Pleiotropy, natural selection, and the evolution of senescence. . Evolution 11:(4):398411
    [Crossref] [Google Scholar]
  154. 154.
    Williams GC. 1966.. Natural selection, the costs of reproduction, and a refinement of Lack's principle. . Am. Nat. 100:(916):68790
    [Crossref] [Google Scholar]
  155. 155.
    Wilson KA, Chamoli M, Hilsabeck TA, Pandey M, Bansal S, et al. 2021.. Evaluating the beneficial effects of dietary restrictions: a framework for precision nutrigeroscience. . Cell Metab. 33:(11):214273
    [Crossref] [Google Scholar]
  156. 156.
    Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, et al. 2016.. Sestrin2 is a leucine sensor for the mTORC1 pathway. . Science 351:(6268):4348
    [Crossref] [Google Scholar]
  157. 157.
    Wolfson RL, Sabatini DM. 2017.. The dawn of the age of amino acid sensors for the mTORC1 pathway. . Cell Metab. 26:(2):3019
    [Crossref] [Google Scholar]
  158. 158.
    Wolkow CA, Kimura KD, Lee M-S, Ruvkun G. 2000.. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. . Science 290:(5489):14750
    [Crossref] [Google Scholar]
  159. 159.
    Wu CC-C, Peterson A, Zinshteyn B, Regot S, Green R. 2020.. Ribosome collisions trigger general stress responses to regulate cell fate. . Cell 182:(2):40416.e14
    [Crossref] [Google Scholar]
  160. 160.
    Wu JJ, Liu J, Chen EB, Wang JJ, Cao L, et al. 2013.. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. . Cell Rep. 4:(5):91320
    [Crossref] [Google Scholar]
  161. 161.
    Yamamoto R, Chung R, Vazquez JM, Sheng H, Steinberg PL, et al. 2022.. Tissue-specific impacts of aging and genetics on gene expression patterns in humans. . Nat. Commun. 13:(1):5803
    [Crossref] [Google Scholar]
  162. 162.
    Yang L, Ma Z, Wang H, Niu K, Cao Y, et al. 2019.. Ubiquitylome study identifies increased histone 2A ubiquitylation as an evolutionarily conserved aging biomarker. . Nat. Commun. 10:(1):2191
    [Crossref] [Google Scholar]
  163. 163.
    Yao H, Li K, Wei J, Lin Y, Liu Y. 2023.. The contradictory role of branched-chain amino acids in lifespan and insulin resistance. . Front. Nutr. 10::1189982
    [Crossref] [Google Scholar]
  164. 164.
    Ye J, Palm W, Peng M, King B, Lindsten T, et al. 2015.. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. . Genes Dev. 29:(22):233136
    [Crossref] [Google Scholar]
  165. 165.
    Zhang Y-P, Zhang W-H, Zhang P, Li Q, Sun Y, et al. 2022.. Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. . Nat. Commun. 13:(1):6339
    [Crossref] [Google Scholar]
  166. 166.
    Zhu M, Teng F, Li N, Zhang L, Zhang S, et al. 2021.. Monomethyl branched-chain fatty acid mediates amino acid sensing upstream of mTORC1. . Dev. Cell 56:(19):2692702.e5
    [Crossref] [Google Scholar]
  167. 167.
    Zoncu R, Efeyan A, Sabatini DM. 2011.. mTOR: from growth signal integration to cancer, diabetes and ageing. . Nat. Rev. Mol. Cell Biol. 12:(1):2135
    [Crossref] [Google Scholar]
  168. 168.
    Zou K, Rouskin S, Dervishi K, McCormick MA, Sasikumar A, et al. 2020.. Life span extension by glucose restriction is abrogated by methionine supplementation: cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. . Sci. Adv. 6:(32):eaba1306
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102042
Loading
/content/journals/10.1146/annurev-genet-111523-102042
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error