1932

Abstract

Programmed cell death (PCD) is an essential component of animal development, and aberrant cell death underlies many disorders. Understanding mechanisms that govern PCD during development can provide insight into cell death programs that are disrupted in disease. Key steps mediating apoptosis, a highly conserved cell death program employing caspase proteases, were first uncovered in the nematode , a powerful model system for PCD research. Recent studies in also unearthed conserved nonapoptotic caspase-independent cell death programs that function during development. Here, we discuss recent advances in understanding cell death during development. We review insights expanding the molecular palette behind the execution of apoptotic and nonapoptotic cell death, as well as new discoveries revealing the mechanistic underpinnings of dying cell engulfment and clearance. A number of open questions are also discussed that will continue to propel the field over the coming years.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102051
2024-11-25
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102051.html?itemId=/content/journals/10.1146/annurev-genet-111523-102051&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abraham MC, Lu Y, Shaham S. 2007.. A morphologically conserved nonapoptotic program promotes linker cell death in Caenorhabditis elegans. . Dev. Cell 12::7386
    [Crossref] [Google Scholar]
  2. 2.
    Avery L, Horvitz HR. 1987.. A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant. . Cell 51::107178
    [Crossref] [Google Scholar]
  3. 3.
    Bailly A, Gartner A. 2012.. Germ cell development in C. elegans. . Adv. Exp. Med. Biol. 757::24976
    [Crossref] [Google Scholar]
  4. 4.
    Blum ES, Abraham MC, Yoshimura S, Lu Y, Shaham S. 2012.. Control of nonapoptotic developmental cell death in Caenorhabditis elegans by a polyglutamine-repeat protein. . Science 335::97073
    [Crossref] [Google Scholar]
  5. 5.
    Breckenridge DG, Kang BH, Kokel D, Mitani S, Staehelin LA, Xue D. 2008.. Caenorhabditis elegans drp-1 and fis-2 regulate distinct cell-death execution pathways downstream of ced-3 and independent of ced-9. . Mol. Cell 31::58697
    [Crossref] [Google Scholar]
  6. 6.
    Cabello J, Neukomm LJ, Günesdogan U, Burkart K, Charette SJ, et al. 2010.. The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac. . PLOS Biol. 8:(2):e1000297
    [Crossref] [Google Scholar]
  7. 7.
    Chakraborty S, Lambie EJ, Bindu S, Mikeladze-Dvali T, Conradt B. 2015.. Engulfment pathways promote programmed cell death by enhancing the unequal segregation of apoptotic potential. . Nat. Commun. 6::10126
    [Crossref] [Google Scholar]
  8. 8.
    Chartier NT, Mukherjee A, Pfanzelter J, Fürthauer S, Larson BT, et al. 2021.. A hydraulic instability drives the cell death decision in the nematode germline. . Nat. Phys. 17:(8):92025
    [Crossref] [Google Scholar]
  9. 9.
    Chen F, Hersh BM, Conradt B, Zhou Z, Riemer D, et al. 2000.. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. . Science 287::148589
    [Crossref] [Google Scholar]
  10. 10.
    Chen X, Wang Y, Chen Y-Z, Harry BL, Nakagawa A, et al. 2016.. Regulation of CED-3 caspase localization and activation by C. elegans nuclear-membrane protein NPP-14. . Nat. Struct. Mol. Biol. 23:(11):95864
    [Crossref] [Google Scholar]
  11. 11.
    Chen Y-Z, Mapes J, Lee E-S, Skeen-Gaar RR, Xue D. 2013.. Caspase-mediated activation of Caenorhabditis elegans CED-8 promotes apoptosis and phosphatidylserine externalization. . Nat. Commun. 4:(1):2726
    [Crossref] [Google Scholar]
  12. 12.
    Chiorazzi M, Rui L, Yang Y, Ceribelli M, Tishbi N, et al. 2013.. Related F-box proteins control cell death in Caenorhabditis elegans and human lymphoma. . PNAS 110::394348
    [Crossref] [Google Scholar]
  13. 13.
    Chu-Wang IW, Oppenheim RW. 1978.. Cell death of motoneurons in the chick embryo spinal cord. I. A light and electron microscopic study of naturally occurring and induced cell loss during development. . J. Comp. Neurol. 177::3357
    [Crossref] [Google Scholar]
  14. 14.
    Conradt B, Horvitz HR. 1998.. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. . Cell 93::51929
    [Crossref] [Google Scholar]
  15. 15.
    Conradt B, Horvitz HR. 1999.. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. . Cell 98:(3):31727
    [Crossref] [Google Scholar]
  16. 16.
    Conradt B, Wu YC, Xue D. 2016.. Programmed cell death during Caenorhabditis elegans development. . Genetics 203::153362
    [Crossref] [Google Scholar]
  17. 17.
    Cordes S, Frank CA, Garriga G. 2006.. The C. elegans MELK ortholog PIG-1 regulates cell size asymmetry and daughter cell fate in asymmetric neuroblast divisions. . Development 133::274756
    [Crossref] [Google Scholar]
  18. 18.
    Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, et al. 1997.. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. . Cell 90::53748
    [Crossref] [Google Scholar]
  19. 19.
    Denning DP, Hatch V, Horvitz HR. 2012.. Programmed elimination of cells by caspase-independent cell extrusion in C. elegans. . Nature 488::22630
    [Crossref] [Google Scholar]
  20. 20.
    Denning DP, Hatch V, Horvitz HR. 2013.. Both the caspase CSP-1 and a caspase-independent pathway promote programmed cell death in parallel to the canonical pathway for apoptosis in Caenorhabditis elegans. . PLOS Genet. 9::e1003341
    [Crossref] [Google Scholar]
  21. 21.
    Dhani S, Zhao Y, Zhivotovsky B. 2021.. A long way to go: caspase inhibitors in clinical use. . Cell Death Dis. 12:(10):949
    [Crossref] [Google Scholar]
  22. 22.
    Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, et al. 2012.. Ferroptosis: an iron-dependent form of nonapoptotic cell death. . Cell 149:(5):106072
    [Crossref] [Google Scholar]
  23. 23.
    Driscoll K, Stanfield GM, Droste R, Horvitz HR. 2017.. Presumptive TRP channel CED-11 promotes cell volume decrease and facilitates degradation of apoptotic cells in Caenorhabditis elegans. . PNAS 114:(33):880611
    [Crossref] [Google Scholar]
  24. 24.
    Dwivedi VK, Pardo-Pastor C, Droste R, Kong JN, Tucker N, et al. 2021.. Replication stress promotes cell elimination by extrusion. . Nature 593::59196
    [Crossref] [Google Scholar]
  25. 25.
    Ellis HM, Horvitz HR. 1986.. Genetic control of programmed cell death in the nematode C. elegans. . Cell 44::81729
    [Crossref] [Google Scholar]
  26. 26.
    Ellis RE, Horvitz HR. 1991.. Two C. elegans genes control the programmed deaths of specific cells in the pharynx. . Development 112::591603
    [Crossref] [Google Scholar]
  27. 27.
    Fazeli G, Levin-Konigsberg R, Bassik MC, Stigloher C, Wehman AM. 2023.. A BORC-dependent molecular pathway for vesiculation of cell corpse phagolysosomes. . Curr. Biol. 33:(4):60721.e7
    [Crossref] [Google Scholar]
  28. 28.
    Fazeli G, Stetter M, Lisack JN, Wehman AM. 2018.. C. elegans blastomeres clear the corpse of the second polar body by LC3-associated phagocytosis. . Cell Rep. 23:(7):207082
    [Crossref] [Google Scholar]
  29. 29.
    Fuchs Y, Steller H. 2011.. Programmed cell death in animal development and disease. . Cell 147::74258
    [Crossref] [Google Scholar]
  30. 30.
    Fuchs Y, Steller H. 2015.. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. . Nat. Rev. Mol. Cell Biol. 16::32944
    [Crossref] [Google Scholar]
  31. 31.
    Ge X, Zhao X, Nakagawa A, Gong X, Skeen-Gaar RR, et al. 2014.. A novel mechanism underlies caspase-dependent conversion of the dicer ribonuclease into a deoxyribonuclease during apoptosis. . Cell Res. 24:(2):21832
    [Crossref] [Google Scholar]
  32. 32.
    Ghose P, Rashid A, Insley P, Trivedi M, Shah P, et al. 2018.. EFF-1 fusogen promotes phagosome sealing during cell process clearance in Caenorhabditis elegans. . Nat. Cell Biol. 20::39399
    [Crossref] [Google Scholar]
  33. 33.
    Ghose P, Shaham S. 2020.. Cell death in animal development. . Development 147:(14):dev191882
    [Crossref] [Google Scholar]
  34. 34.
    Ghose P, Wehman AM. 2021.. The developmental and physiological roles of phagocytosis in Caenorhabditis elegans. . Curr. Top. Dev. Biol. 144::40932
    [Crossref] [Google Scholar]
  35. 35.
    Glücksmann A. 1951.. Cell deaths in normal vertebrate ontogeny. . Biol. Rev. 26:(1):5986
    [Crossref] [Google Scholar]
  36. 36.
    Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, et al. 2001.. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. . Cell 107::2741
    [Crossref] [Google Scholar]
  37. 37.
    Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO. 1999.. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. . Development 126::101122
    [Crossref] [Google Scholar]
  38. 38.
    Gurling M, Talavera K, Garriga G. 2014.. The DEP domain-containing protein TOE-2 promotes apoptosis in the Q lineage of C. elegans through two distinct mechanisms. . Development 141:(13):272434
    [Crossref] [Google Scholar]
  39. 39.
    Haley R, Zhou Z. 2021.. The small GTPase RAB-35 facilitates the initiation of phagosome maturation and acts as a robustness factor for apoptotic cell clearance. . Small GTPases 12:(3):188201
    [Crossref] [Google Scholar]
  40. 40.
    Hall DH, Gu G, García-Añoveros J, Gong L, Chalfie M, Driscoll M. 1997.. Neuropathology of degenerative cell death in Caenorhabditis elegans. . J. Neurosci. 17:(3):103345
    [Crossref] [Google Scholar]
  41. 41.
    Harders RH, Morthorst TH, Lande AD, Hesselager MO, Mandrup OA, et al. 2018.. Dynein links engulfment and execution of apoptosis via CED-4/Apaf1 in C. elegans. . Cell Death Dis. 9:(10):1012
    [Crossref] [Google Scholar]
  42. 42.
    Hatzold J, Conradt B. 2008.. Control of apoptosis by asymmetric cell division. . PLOS Biol. 6:(4):e84
    [Crossref] [Google Scholar]
  43. 43.
    Hengartner MO, Ellis RE, Horvitz HR. 1992.. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. . Nature 356::49499
    [Crossref] [Google Scholar]
  44. 44.
    Hirose T, Horvitz HR. 2013.. An Sp1 transcription factor coordinates caspase-dependent and -independent apoptotic pathways. . Nature 500::35458
    [Crossref] [Google Scholar]
  45. 45.
    Hirose T, Horvitz HR. 2014.. The translational regulators GCN-1 and ABCF-3 act together to promote apoptosis in C. elegans. . PLOS Genet. 10::e1004512
    [Crossref] [Google Scholar]
  46. 46.
    Honarpour N, Du C, Richardson JA, Hammer RE, Wang X, Herz J. 2000.. Adult Apaf-1-deficient mice exhibit male infertility. . Dev. Biol. 218::24858
    [Crossref] [Google Scholar]
  47. 47.
    Horvitz HR. 2003.. Nobel lecture: Worms, life and death. . Biosci. Rep. 23:(5–6):239303
    [Crossref] [Google Scholar]
  48. 48.
    Hsu T-Y, Wu Y-C. 2010.. Engulfment of apoptotic cells in C. elegans is mediated by integrin α/SRC signaling. . Curr. Biol. 20:(6):47786
    [Crossref] [Google Scholar]
  49. 49.
    Huang C-Y, Chen J-Y, Wu S-C, Tan C-H, Tzeng R-Y, et al. 2012.. C. elegans EIF-3.K promotes programmed cell death through CED-3 caspase. . PLOS ONE 7:(5):e36584
    [Crossref] [Google Scholar]
  50. 50.
    Huang S, Jia K, Wang Y, Zhou Z, Levine B. 2013.. Autophagy genes function in apoptotic cell corpse clearance during C. elegans embryonic development. . Autophagy 9:(2):13849
    [Crossref] [Google Scholar]
  51. 51.
    Huang W, Jiang T, Choi W, Qi S, Pang Y, et al. 2013.. Mechanistic insights into CED-4-mediated activation of CED-3. . Genes Dev. 27::203948
    [Crossref] [Google Scholar]
  52. 52.
    Jacobson MD, Weil M, Raff MC. 1997.. Programmed cell death in animal development. . Cell 88:(3):34754
    [Crossref] [Google Scholar]
  53. 53.
    Jenkins NL, James SA, Salim A, Sumardy F, Speed TP, et al. 2020.. Changes in ferrous iron and glutathione promote ferroptosis and frailty in aging Caenorhabditis elegans. . eLife 9::e56580
    [Crossref] [Google Scholar]
  54. 54.
    Jeong PY, Kumar A, Joshi PM, Rothman JH. 2020.. Intertwined functions of separase and caspase in cell division and programmed cell death. . Sci. Rep. 10:(1):6159
    [Crossref] [Google Scholar]
  55. 55.
    Jiang H-S, Ghose P, Han H-F, Wu Y-Z, Tsai Y-Y, et al. 2021.. BLMP-1 promotes developmental cell death in C. elegans by timely repression of ced-9 transcription. . Development 148:(20):dev193995
    [Crossref] [Google Scholar]
  56. 56.
    Jiang H-S, Wu Y-C. 2014.. LIN-3/EGF promotes the programmed cell death of specific cells in Caenorhabditis elegans by transcriptional activation of the pro-apoptotic gene egl-1. . PLOS Genet. 10::e1004513
    [Crossref] [Google Scholar]
  57. 57.
    Johnsen HL, Horvitz HR. 2016.. Both the apoptotic suicide pathway and phagocytosis are required for a programmed cell death in Caenorhabditis elegans. . BMC Biol. 14::39
    [Crossref] [Google Scholar]
  58. 58.
    Ke FFS, Vanyai HK, Cowan AD, Delbridge ARD, Whitehead L, et al. 2018.. Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK. . Cell 173::121730.e17
    [Crossref] [Google Scholar]
  59. 59.
    Keil W, Kutscher LM, Shaham S, Siggia ED. 2017.. Long-term high-resolution imaging of developing C. elegans larvae with microfluidics. . Dev. Cell 40:(2):20214
    [Crossref] [Google Scholar]
  60. 60.
    Kerr JFR, Wyllie AH, Currie AR. 1972.. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. . Br. J. Cancer 26:(4):23957
    [Crossref] [Google Scholar]
  61. 61.
    Kimble J, Hirsh D. 1979.. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. . Dev. Biol. 70::396417
    [Crossref] [Google Scholar]
  62. 62.
    Kinchen JM, Cabello J, Klingele D, Wong K, Feichtinger R, et al. 2005.. Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. . Nature 434::9399
    [Crossref] [Google Scholar]
  63. 63.
    Kinchen JM, Doukoumetzidis K, Almendinger J, Stergiou L, Tosello-Trampont A, et al. 2008.. A pathway for phagosome maturation during engulfment of apoptotic cells. . Nat. Cell Biol. 10::55666
    [Crossref] [Google Scholar]
  64. 64.
    Kinet MJ, Malin JA, Abraham MC, Blum ES, Silverman MR, et al. 2016.. HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans. . eLife 5::e12821
    [Crossref] [Google Scholar]
  65. 65.
    Kinet MJ, Shaham S. 2014.. Noncanonical cell death in the nematode Caenorhabditis elegans. . Methods Enzym. 545::15780
    [Crossref] [Google Scholar]
  66. 66.
    Kochersberger A, Torkashvand MM, Lee D, Baskoylu S, Sengupta T, et al. 2023.. Programmed cell death modifies neural circuits and tunes intrinsic behavior. . bioRxiv 2023.09.11.557249. https://www.biorxiv.org/content/10.1101/2023.09.11.557249v2
  67. 67.
    Kon S, Ishibashi K, Katoh H, Kitamoto S, Shirai T, et al. 2017.. Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolic changes. . Nat. Cell Biol. 19:(5):53041
    [Crossref] [Google Scholar]
  68. 68.
    Kutscher LM, Keil W, Shaham S. 2018.. RAB-35 and ARF-6 GTPases mediate engulfment and clearance following linker cell-type death. . Dev. Cell 47::22238.e6
    [Crossref] [Google Scholar]
  69. 69.
    Kutscher LM, Shaham S. 2017.. Non-apoptotic cell death in animal development. . Cell Death Differ. 24::132636
    [Crossref] [Google Scholar]
  70. 70.
    Lai H-J, Lo SJ, Kage-Nakadai E, Mitani S, Xue D. 2009.. The roles and acting mechanism of Caenorhabditis elegans DNase II genes in apoptotic DNA degradation and development. . PLOS ONE 4:(10):e7348
    [Crossref] [Google Scholar]
  71. 71.
    Li K, van Delft MF, Dewson G. 2021.. Too much death can kill you: inhibiting intrinsic apoptosis to treat disease. . EMBO J. 40:(14):e107341
    [Crossref] [Google Scholar]
  72. 72.
    Li Y, Tian L, Zhang Y, Shi Y. 2023.. Structural insights into CED-3 activation. . Life Sci. Alliance 6:(9):e202302056
    [Crossref] [Google Scholar]
  73. 73.
    Lindsten T, Ross AJ, King A, Zong W-X, Rathmell JC, et al. 2000.. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. . Mol. Cell 6:(6):138999
    [Crossref] [Google Scholar]
  74. 74.
    Lockshin RA, Williams CM. 1965.. Programmed cell death–I. Cytology of degeneration in the intersegmental muscles of the Pernyi silkmoth. . J. Insect Physiol. 11::12333
    [Crossref] [Google Scholar]
  75. 75.
    Malin JA, Kinet MJ, Abraham MC, Blum ES, Shaham S. 2016.. Transcriptional control of non-apoptotic developmental cell death in C. elegans. . Cell Death Differ. 23::198594
    [Crossref] [Google Scholar]
  76. 76.
    Malin JZ, Shaham S. 2015.. Cell death in C. elegans development. . Curr. Top. Dev. Biol. 114::142
    [Crossref] [Google Scholar]
  77. 77.
    Maurer CW, Chiorazzi M, Shaham S. 2007.. Timing of the onset of a developmental cell death is controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene. . Development 134::135768
    [Crossref] [Google Scholar]
  78. 78.
    Miettinen TP, Björklund M. 2016.. Cellular allometry of mitochondrial functionality establishes the optimal cell size. . Dev. Cell 39:(3):37082
    [Crossref] [Google Scholar]
  79. 79.
    Mishra N, Wei H, Conradt B. 2018.. Caenorhabditis elegans ced-3 caspase is required for asymmetric divisions that generate cells programmed to die. . Genetics 210:(3):98398
    [Crossref] [Google Scholar]
  80. 80.
    Motegi F, Sugimoto A. 2006.. Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos. . Nat. Cell Biol. 8:(9):97885
    [Crossref] [Google Scholar]
  81. 81.
    Nakagawa A, Shi Y, Kage-Nakadai E, Mitani S, Xue D. 2010.. Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. . Science 328::32734
    [Crossref] [Google Scholar]
  82. 82.
    Nakagawa A, Sullivan KD, Xue D. 2014.. Caspase-activated phosphoinositide binding by CNT-1 promotes apoptosis by inhibiting the AKT pathway. . Nat. Struct. Mol. Biol. 21::108290
    [Crossref] [Google Scholar]
  83. 83.
    Nehme R, Grote P, Tomasi T, Löser S, Holzkamp H, et al. 2010.. Transcriptional upregulation of both egl-1 BH3-only and ced-3 caspase is required for the death of the male-specific CEM neurons. . Cell Death Differ. 17::126676
    [Crossref] [Google Scholar]
  84. 84.
    Neukomm LJ, Zeng S, Frei AP, Huegli PA, Hengartner MO. 2014.. Small GTPase CDC-42 promotes apoptotic cell corpse clearance in response to PAT-2 and CED-1 in C. elegans. . Cell Death Differ. 21:(6):84553
    [Crossref] [Google Scholar]
  85. 85.
    O'Connor TM, Wyttenbach CR. 1974.. Cell death in the embryonic chick spinal cord. . J. Cell Biol. 60::44859
    [Crossref] [Google Scholar]
  86. 86.
    Ohsawa S, Vaughen J, Igaki T. 2018.. Cell extrusion: a stress-responsive force for good or evil in epithelial homeostasis. . Dev. Cell 44:(3):28496
    [Crossref] [Google Scholar]
  87. 87.
    Opferman JT, Korsmeyer SJ. 2003.. Apoptosis in the development and maintenance of the immune system. . Nat. Immunol. 4::41015
    [Crossref] [Google Scholar]
  88. 88.
    Oppenheim RW. 1991.. Cell death during development of the nervous system. . Annu. Rev. Neurosci. 14::453501
    [Crossref] [Google Scholar]
  89. 89.
    Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, et al. 2012.. dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. . Science 337::48184
    [Crossref] [Google Scholar]
  90. 90.
    Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D. 2001.. Mitochondrial endonuclease G is important for apoptosis in C. elegans. . Nature 412::9094
    [Crossref] [Google Scholar]
  91. 91.
    Parrish JZ, Xue D. 2003.. Functional genomic analysis of apoptotic DNA degradation in C. elegans. . Mol. Cell 11:(4):98796
    [Crossref] [Google Scholar]
  92. 92.
    Parrish JZ, Xue D. 2006.. Cuts can kill: the roles of apoptotic nucleases in cell death and animal development. . Chromosoma 115:(2):8997
    [Crossref] [Google Scholar]
  93. 93.
    Peden E, Kimberly E, Gengyo-Ando K, Mitani S, Xue D. 2007.. Control of sex-specific apoptosis in C. elegans by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho. . Genes Dev. 21::3195207
    [Crossref] [Google Scholar]
  94. 94.
    Peña-Ramos O, Chiao L, Liu X, Yu X, Yao T, et al. 2022.. Autophagosomes fuse to phagosomes and facilitate the degradation of apoptotic cells in Caenorhabditis elegans. . eLife 11::e72466
    [Crossref] [Google Scholar]
  95. 95.
    Perez MA, Magtanong L, Dixon SJ, Watts JL. 2020.. Dietary lipids induce ferroptosis in Caenorhabditis elegans and human cancer cells. . Dev. Cell 54:(4):44754.e4
    [Crossref] [Google Scholar]
  96. 96.
    Qi S, Pang Y, Hu Q, Liu Q, Li H, et al. 2010.. Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4. . Cell 141::44657
    [Crossref] [Google Scholar]
  97. 97.
    Reza RN, Serra ND, Detwiler AC, Hanna-Rose W, Crook M. 2022.. Non-canonical necrosis in two different cell types in a C. elegans NAD+ salvage pathway mutant. . G3 12:(4):jkac033
    [Crossref] [Google Scholar]
  98. 98.
    Robertson AMG, Thomson JN. 1982.. Morphology of programmed cell death in the ventral nerve cord of Caenorhabditis elegans larvae. . Development 67:(1):89100
    [Crossref] [Google Scholar]
  99. 99.
    Schonegg S, Hyman AA. 2006.. CDC-42 and RHO-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. . Development 133:(18):350716
    [Crossref] [Google Scholar]
  100. 100.
    Schwartz HT, Horvitz HR. 2007.. The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9. . Genes Dev. 21::318194
    [Crossref] [Google Scholar]
  101. 101.
    Sethi A, Wei H, Mishra N, Segos I, Lambie EJ, et al. 2022.. A caspase-RhoGEF axis contributes to the cell size threshold for apoptotic death in developing Caenorhabditis elegans. . PLOS Biol. 20:(10):e3001786
    [Crossref] [Google Scholar]
  102. 102.
    Shaham S. 1998.. Identification of multiple Caenorhabditis elegans caspases and their potential roles in proteolytic cascades. . J. Biol. Chem. 273::3510917
    [Crossref] [Google Scholar]
  103. 103.
    Shaham S, Horvitz HR. 1996.. Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. . Genes Dev. 10::57891
    [Crossref] [Google Scholar]
  104. 104.
    Shen Q, He B, Lu N, Conradt B, Grant BD, Zhou Z. 2013.. Phagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remodeling during apoptotic cell engulfment in C. elegans. . Development 140::323043
    [Crossref] [Google Scholar]
  105. 105.
    Sherrard R, Luehr S, Holzkamp H, McJunkin K, Memar N, Conradt B. 2017.. miRNAs cooperate in apoptosis regulation during C. elegans development. . Genes Dev. 31::20922
    [Crossref] [Google Scholar]
  106. 106.
    Siomos MF, Badrinath A, Pasierbek P, Livingstone D, White J, et al. 2001.. Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans. . Curr. Biol. 11:(23):182535
    [Crossref] [Google Scholar]
  107. 107.
    Subasic D, Stoeger T, Eisenring S, Matia-Gonzalez AM, Imig J, et al. 2016.. Post-transcriptional control of executioner caspases by RNA-binding proteins. . Genes Dev. 30::221325
    [Crossref] [Google Scholar]
  108. 108.
    Sulston JE, Albertson DG, Thomson JN. 1980.. The Caenorhabditis elegans male: postembryonic development of nongonadal structures. . Dev. Biol. 78::54276
    [Crossref] [Google Scholar]
  109. 109.
    Sulston JE, Horvitz HR. 1977.. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. . Dev. Biol. 56::11056
    [Crossref] [Google Scholar]
  110. 110.
    Sulston JE, Schierenberg E, White JG, Thomson JN. 1983.. The embryonic cell lineage of the nematode Caenorhabditis elegans. . Dev. Biol. 100::64119
    [Crossref] [Google Scholar]
  111. 111.
    Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S. 2013.. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. . Science 341::4036
    [Crossref] [Google Scholar]
  112. 112.
    Teuliere J, Cordes S, Singhvi A, Talavera K, Garriga G. 2014.. Asymmetric neuroblast divisions producing apoptotic cells require the cytohesin GRP-1 in Caenorhabditis elegans. . Genetics 198:(1):22947
    [Crossref] [Google Scholar]
  113. 113.
    Thellmann M, Hatzold J, Conradt B. 2003.. The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. . Development 130::405771
    [Crossref] [Google Scholar]
  114. 114.
    Thornberry NA, Lazebnik Y. 1998.. Caspases: enemies within. . Science 281:(5381):131216
    [Crossref] [Google Scholar]
  115. 115.
    Turmaine M, Raza A, Mahal A, Mangiarini L, Bates GP, Davies SW. 2000.. Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. . PNAS 97::809397
    [Crossref] [Google Scholar]
  116. 116.
    Venegas V, Zhou Z. 2007.. Two alternative mechanisms that regulate the presentation of apoptotic cell engulfment signal in Caenorhabditis elegans. . Mol. Biol. Cell 18::318092
    [Crossref] [Google Scholar]
  117. 117.
    Wang H, Lu Q, Cheng S, Wang X, Zhang H. 2013.. Autophagy activity contributes to programmed cell death in Caenorhabditis elegans. . Autophagy 9:(12):197582
    [Crossref] [Google Scholar]
  118. 118.
    Wang J, Chitturi J, Ge Q, Laskova V, Wang W, et al. 2015.. The C. elegans COE transcription factor UNC-3 activates lineage-specific apoptosis and affects neurite growth in the RID lineage. . Development 142:(8):144757
    [Google Scholar]
  119. 119.
    Wang X, Li W, Zhao D, Liu B, Shi Y, et al. 2010.. Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor. . Nat. Cell Biol. 12:(7):65564
    [Crossref] [Google Scholar]
  120. 120.
    Wang X, Wang J, Gengyo-Ando K, Gu L, Sun C-L, et al. 2007.. C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1. . Nat. Cell Biol. 9:(5):54149
    [Crossref] [Google Scholar]
  121. 121.
    Wang X, Wu Y-C, Fadok VA, Lee M-C, Gengyo-Ando K, et al. 2003.. Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. . Science 302:(5650):156366
    [Crossref] [Google Scholar]
  122. 122.
    Wang X, Yang C. 2016.. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans. . Cell. Mol. Life Sci. 73:(11–12):222136
    [Crossref] [Google Scholar]
  123. 123.
    Wang X, Yang C, Chai J, Shi Y, Xue D. 2002.. Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. . Science 298::158792
    [Crossref] [Google Scholar]
  124. 124.
    Wei H, Lambie EJ, Osorio DS, Carvalho AX, Conradt B. 2020.. PIG-1 MELK-dependent phosphorylation of nonmuscle myosin II promotes apoptosis through CES-1 Snail partitioning. . PLOS Genet. 16::e1008912
    [Crossref] [Google Scholar]
  125. 125.
    White JG, Southgate E, Thomson JN. 1991.. On the nature of undead cells in the nematode Caenorhabditis elegans. . Philos. Trans. R. Soc. Lond. B 331:(1261):26371
    [Crossref] [Google Scholar]
  126. 126.
    Widlak P, Garrard WT. 2009.. Roles of the major apoptotic nuclease-DNA fragmentation factor-in biology and disease. . Cell. Mol. Life Sci. 66:(2):26374
    [Crossref] [Google Scholar]
  127. 127.
    Wu D, Chai Y, Zhu Z, Li W, Ou G, Li W. 2017.. CED-10-WASP-Arp2/3 signaling axis regulates apoptotic cell corpse engulfment in C. elegans. . Dev. Biol. 428:(1):21523
    [Crossref] [Google Scholar]
  128. 128.
    Wu YC, Horvitz HR. 1998.. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. . Cell 93::95160
    [Crossref] [Google Scholar]
  129. 129.
    Wu Y-C, Stanfield GM, Horvitz HR. 2000.. NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. . Genes Dev. 14::53648
    [Crossref] [Google Scholar]
  130. 130.
    Wu Y-C, Tsai M-C, Cheng L-C, Chou C-J, Weng N-Y. 2001.. C. elegans CED-12 acts in the conserved CrkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. . Dev. Cell 1::491502
    [Crossref] [Google Scholar]
  131. 131.
    Xu J, Dong X, Huang DCS, Xu P, Zhao Q, Chen B. 2023.. Current advances and future strategies for BCL-2 inhibitors: potent weapons against cancers. . Cancers 15:(20):4957
    [Crossref] [Google Scholar]
  132. 132.
    Xu J, Jiang Y, Sherrard R, Ikegami K, Conradt B. 2023.. PUF-8, a C. elegans ortholog of the RNA-binding proteins PUM1 and PUM2, is required for robustness of the cell death fate. . Development 150:(19):dev201167
    [Crossref] [Google Scholar]
  133. 133.
    Xue D, Shaham S, Horvitz HR. 1996.. The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. . Genes Dev. 10::107383
    [Crossref] [Google Scholar]
  134. 134.
    Yan N, Chai J, Lee ES, Gu L, Liu Q, et al. 2005.. Structure of the CED-4–CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. . Nature 437::83137
    [Crossref] [Google Scholar]
  135. 135.
    Yan N, Gu L, Kokel D, Chai J, Li W, et al. 2004.. Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. . Mol. Cell 15::9991006
    [Crossref] [Google Scholar]
  136. 136.
    Yan N, Xu Y, Shi Y. 2006.. 2:1 Stoichiometry of the CED4–CED9 complex and the tetrameric CED-4: insights into the regulation of CED-3 activation. . Cell Cycle 5:(1):3134
    [Crossref] [Google Scholar]
  137. 137.
    Yang H, Chen Y-Z, Zhang Y, Wang X, Zhao X, et al. 2015.. A lysine-rich motif in the phosphatidylserine receptor PSR-1 mediates recognition and removal of apoptotic cells. . Nat. Commun. 6:(1):5717
    [Crossref] [Google Scholar]
  138. 138.
    Yarychkivska O, Sharmin R, Elkhalil A, Ghose P. 2024.. Apoptosis and beyond: A new era for programmed cell death in Caenorhabditis elegans. . Semin. Cell Dev. Biol. 154:(Part A):1422
    [Crossref] [Google Scholar]
  139. 139.
    Yu H, Lai H-J, Lin T-W, Lo SJ. 2015.. Autonomous and non-autonomous roles of DNase II during cell death in C. elegans embryos. . Biosci. Rep. 35:(3):e00203
    [Crossref] [Google Scholar]
  140. 140.
    Yu X, Odera S, Chuang C-H, Lu N, Zhou Z. 2006.. C. elegans dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfment and degradation of apoptotic cells. . Dev. Cell 10:(6):74357
    [Crossref] [Google Scholar]
  141. 141.
    Yuan J, Horvitz HR. 1992.. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. . Development 116::30920
    [Crossref] [Google Scholar]
  142. 142.
    Yuan L, Li P, Jing H, Zheng Q, Xiao H. 2022.. trim-21 promotes proteasomal degradation of CED-1 for apoptotic cell clearance in C. elegans. . eLife 11::e76436
    [Crossref] [Google Scholar]
  143. 143.
    Zhang D, Yang H, Jiang L, Zhao C, Wang M, et al. 2022.. Interaction between DLC-1 and SAO-1 facilitates CED-4 translocation during apoptosis in the Caenorhabditis elegans germline. . Cell Death Discov. 8:(1):441
    [Crossref] [Google Scholar]
  144. 144.
    Zhou Z, Caron E, Hartwieg E, Hall A, Horvitz HR. 2001.. The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. . Dev. Cell 1::47789
    [Crossref] [Google Scholar]
  145. 145.
    Zhou Z, Hartwieg E, Horvitz HR. 2001.. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. . Cell 104:(1):4356
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102051
Loading
/content/journals/10.1146/annurev-genet-111523-102051
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error