1932

Abstract

Polyploidy is a cellular state containing more than two complete chromosome sets. It has largely been studied as a discrete phenomenon in either organismal, tissue, or disease contexts. Increasingly, however, investigation of polyploidy across disciplines is coalescing around common principles. For example, the recent Polyploidy Across the Tree of Life meeting considered the contribution of polyploidy both in organismal evolution over millions of years and in tumorigenesis across much shorter timescales. Here, we build on this newfound integration with a unified discussion of polyploidy in organisms, cells, and disease. We highlight how common polyploidy is at multiple biological scales, thus eliminating the outdated mindset of its specialization. Additionally, we discuss rules that are likely common to all instances of polyploidy. With increasing appreciation that polyploidy is pervasive in nature and displays fascinating commonalities across diverse contexts, inquiry related to this important topic is rapidly becoming unified.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102124
2024-11-25
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102124.html?itemId=/content/journals/10.1146/annurev-genet-111523-102124&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adachi K, Miyake H, Kuramochi T, Mizusawa K, Okumura S. 2017.. Genome size distribution in phylum Cnidaria. . Fish Sci. 83:(1):10712
    [Crossref] [Google Scholar]
  2. 2.
    Albert VA, Barbazuk WB, Depamphilis CW, Der JP, Leebens-Mack J, et al. ( Amborella Genome Proj). 2013. The Amborella genome and the evolution of flowering plants. . Science 342:(6165):1241089
    [Google Scholar]
  3. 3.
    Albertin W, Marullo P. 2012.. Polyploidy in fungi: evolution after whole-genome duplication. . Proc. R. Soc. B 279:(1738):2497509
    [Crossref] [Google Scholar]
  4. 4.
    Angert ER. 2021.. Challenges faced by highly polyploid bacteria with limits on DNA inheritance. . Genome Biol. Evol. 13:(6):evab037
    [Crossref] [Google Scholar]
  5. 5.
    Anisimov AP, Roslik GV, Ganin GN. 2015.. Cytogenetic description of the earthworm Drawida ghilarovi Gates, 1969 (Oligochaeta, Moniligastridae) from the southern Russian Far East. . Comp. Cytogenet. 9:(4):56577
    [Crossref] [Google Scholar]
  6. 6.
    Anzi S, Stolovich-Rain M, Klochendler A, Fridlich O, Helman A, et al. 2018.. Postnatal exocrine pancreas growth by cellular hypertrophy correlates with a shorter lifespan in mammals. . Dev. Cell 45:(6):72637.e3
    [Crossref] [Google Scholar]
  7. 7.
    Bailey EC, Kobielski S, Park J, Losick VP. 2021.. Polyploidy in tissue repair and regeneration. . Cold Spring Harb. Perspect. Biol. 13:(10):a040881
    [Crossref] [Google Scholar]
  8. 8.
    Barow M. 2006.. Endopolyploidy in seed plants. . Bioessays 28:(3):27181
    [Crossref] [Google Scholar]
  9. 9.
    Bar-Shavit Z. 2007.. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. . J. Cell Biochem. 102:(5):113039
    [Crossref] [Google Scholar]
  10. 10.
    Baslan T, Morris JP, Zhao Z, Reyes J, Ho Y-J, et al. 2022.. Ordered and deterministic cancer genome evolution after p53 loss. . Nature 608:(7924):795802
    [Crossref] [Google Scholar]
  11. 11.
    Batista RA, Figueiredo DD, Santos-González J, Köhler C. 2019.. Auxin regulates endosperm cellularization in Arabidopsis. . Genes Dev. 33:(7–8):46676
    [Crossref] [Google Scholar]
  12. 12.
    Bielski CM, Zehir A, Penson AV, Donoghue MTA, Chatila W, et al. 2018.. Genome doubling shapes the evolution and prognosis of advanced cancers. . Nat. Genet. 50:(8):118995
    [Crossref] [Google Scholar]
  13. 13.
    Bomblies K. 2023.. Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis. . Plant Reprod. 36:(1):10724
    [Crossref] [Google Scholar]
  14. 14.
    Bretscher HS, Fox DT. 2016.. Proliferation of double-strand break-resistant polyploid cells requires Drosophila FANCD2. . Dev. Cell 37:(5):44457
    [Crossref] [Google Scholar]
  15. 15.
    Brodsky VY, Uryvaeva IV. 1985.. Genome Multiplication in Growth and Development. London:: Cambridge Univ. Press
    [Google Scholar]
  16. 16.
    Buzzati-Traverso A, Visconti Di Modrone N, Cavalli LL. 1948.. Polyploidy in bacteria?. Nature 162:(4112):295
    [Crossref] [Google Scholar]
  17. 17.
    Cadart C, Bartz J, Oaks G, Liu MZ, Heald R. 2023.. Polyploidy in Xenopus lowers metabolic rate by decreasing total cell surface area. . Curr. Biol. 33:(9):174452.e7
    [Crossref] [Google Scholar]
  18. 18.
    Campbell MA, Ganley ARD, Gabaldón T, Cox MP. 2016.. The case of the missing ancient fungal polyploids. . Am. Nat. 188:(6):60214
    [Crossref] [Google Scholar]
  19. 19.
    Chakraborty A, Peterson NG, King JS, Gross RT, Pla MM, et al. 2023.. Conserved chamber-specific polyploidy maintains heart function in Drosophila. . Development 150:(16):dev201896
    [Crossref] [Google Scholar]
  20. 20.
    Chan-Seng-Yue M, Kim JC, Wilson GW, Ng K, Figueroa EF, et al. 2020.. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. . Nat. Genet. 52:(2):23140
    [Crossref] [Google Scholar]
  21. 21.
    Chen W, Zuo C, Wang C, Zhang T, Lyu L, et al. 2021.. The hidden genomic diversity of ciliated protists revealed by single-cell genome sequencing. . BMC Biol. 19:(1):264
    [Crossref] [Google Scholar]
  22. 22.
    Chisholm AD, Hsiao TI. 2012.. The Caenorhabditis elegans epidermis as a model skin. I: development, patterning, and growth. . Wiley Interdiscip. Rev. Dev. Biol. 1:(6):86178
    [Crossref] [Google Scholar]
  23. 23.
    Contino G, Vaughan TL, Whiteman D, Fitzgerald RC. 2017.. The evolving genomic landscape of Barrett's esophagus and esophageal adenocarcinoma. . Gastroenterology 153:(3):65773.e1
    [Crossref] [Google Scholar]
  24. 24.
    Coyer JA, Hoarau G, Pearson GA, Serrão EA, Stam WT, Olsen JL. 2006.. Convergent adaptation to a marginal habitat by homoploid hybrids and polyploid ecads in the seaweed genus Fucus. . Biol. Lett. 2:(3):4058
    [Crossref] [Google Scholar]
  25. 25.
    D'Amato F. 1964.. Endopolyploidy as a factor in plant tissue development. . Caryologia 17:(1):4152
    [Crossref] [Google Scholar]
  26. 26.
    David KT. 2022.. Global gradients in the distribution of animal polyploids. . PNAS 119:(48):e2214070119
    [Crossref] [Google Scholar]
  27. 27.
    Demin SY, Berdieva MA, Goodkov AV. 2019.. Cyclic polyploidy in obligate agamic amoebae. . Cell Tiss. Biol. 13:(3):24246
    [Crossref] [Google Scholar]
  28. 28.
    Deng S, Azevedo M, Baylies M. 2017.. Acting on identity: myoblast fusion and the formation of the syncytial muscle fiber. . Semin. Cell Dev. Biol. 72::4555
    [Crossref] [Google Scholar]
  29. 29.
    Derks W, Bergmann O. 2020.. Polyploidy in cardiomyocytes: roadblock to heart regeneration?. Circ. Res. 126:(4):55265
    [Crossref] [Google Scholar]
  30. 30.
    Dewhurst SM, McGranahan N, Burrell RA, Rowan AJ, Grönroos E, et al. 2014.. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. . Cancer Discov. 4:(2):17585
    [Crossref] [Google Scholar]
  31. 31.
    Duensing A, Duensing S. 2010.. Centrosomes, polyploidy and cancer. . Adv. Exp. Med. Biol. 676::93103
    [Crossref] [Google Scholar]
  32. 32.
    Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML, et al. 2010.. The ploidy conveyor of mature hepatocytes as a source of genetic variation. . Nature 467:(7316):70710
    [Crossref] [Google Scholar]
  33. 33.
    Ehrie MG, Swartz FJ. 1974.. Diploid, tetraploid and octaploid beta cells in the islets of Langerhans of the normal human pancreas. . Diabetes 23:(7):58388
    [Crossref] [Google Scholar]
  34. 34.
    Eliades A, Papadantonakis N, Ravid K. 2010.. New roles for cyclin E in megakaryocytic polyploidization. . J. Biol. Chem. 285:(24):1890917
    [Crossref] [Google Scholar]
  35. 35.
    Forsythe ES, Grover CE, Miller ER, Conover JL, Arick MA, et al. 2022.. Organellar transcripts dominate the cellular mRNA pool across plants of varying ploidy levels. . PNAS 119:(30):e2204187119
    [Crossref] [Google Scholar]
  36. 36.
    Frade JM. 2010.. Somatic tetraploidy in vertebrate neurons: implications in physiology and pathology. . Commun. Integr. Biol. 3:(2):2013
    [Crossref] [Google Scholar]
  37. 37.
    Frankell AM, Dietzen M, Al Bakir M, Lim EL, Karasaki T, et al. 2023.. The evolution of lung cancer and impact of subclonal selection in TRACERx. . Nature 616:(7957):52533
    [Crossref] [Google Scholar]
  38. 38.
    Gemble S, Wardenaar R, Keuper K, Srivastava N, Nano M, et al. 2022.. Genetic instability from a single S phase after whole-genome duplication. . Nature 604:(7904):14651
    [Crossref] [Google Scholar]
  39. 39.
    Gentric G, Maillet V, Paradis V, Couton D, L'Hermitte A, et al. 2015.. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. . J. Clin. Invest. 125:(3):98192
    [Crossref] [Google Scholar]
  40. 40.
    Gillette R. 1991.. On the significance of neuronal giantism in gastropods. . Biol. Bull. 180:(2):23440
    [Crossref] [Google Scholar]
  41. 41.
    González-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, et al. 2018.. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. . Dev. Cell 44:(4):43346.e7
    [Crossref] [Google Scholar]
  42. 42.
    Gregory TR, Mable BK. 2005.. Polyploidy in animals. . In The Evolution of the Genome, pp. 427517, ed. TR Gregory . Cambridge, MA:: Academic Press
    [Google Scholar]
  43. 43.
    Greilhuber J, Dolezel J, Lysák MA, Bennett MD. 2005.. The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents. . Ann. Bot. 95:(1):25560
    [Crossref] [Google Scholar]
  44. 44.
    Han L, Choudhury S, Mich-Basso JD, Ammanamanchi N, Ganapathy B, et al. 2020.. Lamin B2 levels regulate polyploidization of cardiomyocyte nuclei and myocardial regeneration. . Dev. Cell 53:(1):4259.e11
    [Crossref] [Google Scholar]
  45. 45.
    Hennaut C, Hilger F, Grenson M. 1970.. Space limitation for permease insertion in the cytoplasmic membrane of Saccharomyces cerevisiae. . Biochem. Biophys. Res. Commun. 39:(4):66671
    [Crossref] [Google Scholar]
  46. 46.
    Herrtwich L, Nanda I, Evangelou K, Nikolova T, Horn V, et al. 2016.. DNA damage signaling instructs polyploid macrophage fate in granulomas. . Cell 167:(5):126480.e18
    [Crossref] [Google Scholar]
  47. 47.
    Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, et al. 2015.. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. . PNAS 112:(41):1276469
    [Crossref] [Google Scholar]
  48. 48.
    Hirose K, Payumo AY, Cutie S, Hoang A, Zhang H, et al. 2019.. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. . Science 364:(6436):18488
    [Crossref] [Google Scholar]
  49. 49.
    Hur JH, Van Doninck K, Mandigo ML, Meselson M. 2009.. Degenerate tetraploidy was established before bdelloid rotifer families diverged. . Mol. Biol. Evol. 26:(2):37583
    [Crossref] [Google Scholar]
  50. 50.
    Iglesias A, Murga M, Laresgoiti U, Skoudy A, Bernales I, et al. 2004.. Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice. . J. Clin. Invest. 113:(10):1398407
    [Crossref] [Google Scholar]
  51. 51.
    Ioos R, Andrieux A, Marçais B, Frey P. 2006.. Genetic characterization of the natural hybrid species Phytophthora alni as inferred from nuclear and mitochondrial DNA analyses. . Fungal Genet. Biol. 43:(7):51129
    [Crossref] [Google Scholar]
  52. 52.
    Iqbal T, Sharma G. 2023.. First detection of endopolyploidy in tapetal cells and chromosomal anomalies in meiocytes of Viola pilosa cytotypes (2n = 20) from Pir Panjal (Himalayas). . J. Genet. 102:(1):19
    [Crossref] [Google Scholar]
  53. 53.
    Kato Y, Nair KK, Dyer KA, Riddiford LM. 1987.. Changes in ploidy level of epidermal cells during last larval instar of the tobacco hornworm, Manduca sexta. . Development 99:(1):13743
    [Crossref] [Google Scholar]
  54. 54.
    Katsuda T, Hosaka K, Matsuzaki J, Usuba W, Prieto-Vila M, et al. 2020.. Transcriptomic dissection of hepatocyte heterogeneity: linking ploidy, zonation, and stem/progenitor cell characteristics. . Cell. Mol. Gastroenterol. Hepatol. 9:(1):16183
    [Crossref] [Google Scholar]
  55. 55.
    Kirillova A, Han L, Liu H, Kühn B. 2021.. Polyploid cardiomyocytes: implications for heart regeneration. . Development 148:(14):dev199401
    [Crossref] [Google Scholar]
  56. 56.
    Koester JA, Swalwell JE, von Dassow P, Armbrust EV. 2010.. Genome size differentiates co-occurring populations of the planktonic diatom Ditylum brightwellii (Bacillariophyta). . BMC Evol. Biol. 10::1
    [Crossref] [Google Scholar]
  57. 57.
    Lambuta RA, Nanni L, Liu Y, Diaz-Miyar J, Iyer A, et al. 2023.. Whole-genome doubling drives oncogenic loss of chromatin segregation. . Nature 615:(7954):92533
    [Crossref] [Google Scholar]
  58. 58.
    Lazzeri E, Angelotti ML, Peired A, Conte C, Marschner JA, et al. 2018.. Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury. . Nat. Commun. 9:(1):1344
    [Crossref] [Google Scholar]
  59. 59.
    Le Comber SC, Smith C. 2004.. Polyploidy in fishes: patterns and processes. . Biol. J. Linnean Soc. 82:(4):43142
    [Crossref] [Google Scholar]
  60. 60.
    Leitch IJ, Dodsworth S. 2017.. Endopolyploidy in Plants. . In eLS, ed. John Wiley & Sons. https://doi.org/10.1002/9780470015902.a0020097.pub2
    [Google Scholar]
  61. 61.
    Li Z, Tiley GP, Galuska SR, Reardon CR, Kidder TI, et al. 2018.. Multiple large-scale gene and genome duplications during the evolution of hexapods. . PNAS 115:(18):471318
    [Crossref] [Google Scholar]
  62. 62.
    Lin YH, Zhang S, Zhu M, Lu T, Chen K, et al. 2020.. Mice with increased numbers of polyploid hepatocytes maintain regenerative capacity but develop fewer hepatocellular carcinomas following chronic liver injury. . Gastroenterology 158:(6):1698712.e14
    [Crossref] [Google Scholar]
  63. 63.
    Lokki J, Saura A. 1980.. Polyploidy in insect evolution. . In Polyploidy, ed. WH Lewis , pp. 277312. Boston, MA:: Springer
    [Google Scholar]
  64. 64.
    Lutz AM. 1907.. A preliminary note on the chromosomes of Œlnothera lamarckiana and one of its mutants, O. gigas. . Science 26:(657):15152
    [Crossref] [Google Scholar]
  65. 65.
    Mable BK. 2004.. ‘ Why polyploidy is rarer in animals than in plants’: myths and mechanisms. . Biol. J. Linn. Soc. 82:(4):45366
    [Crossref] [Google Scholar]
  66. 66.
    Macqueen DJ, Johnston IA. 2014.. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. . Proc. Biol. Sci. 281:(1778):20132881
    [Google Scholar]
  67. 67.
    Maddipati R, Norgard RJ, Baslan T, Rathi KS, Zhang A, et al. 2022.. MYC levels regulate metastatic heterogeneity in pancreatic adenocarcinoma. . Cancer Discov. 12:(2):54261
    [Crossref] [Google Scholar]
  68. 68.
    Mao Y, Satoh N. 2019.. A likely ancient genome duplication in the speciose reef-building coral genus. , Acropora. iScience 13::2032
    [Crossref] [Google Scholar]
  69. 69.
    Maqbool SB, Mehrotra S, Kolpakas A, Durden C, Zhang B, et al. 2010.. Dampened activity of E2F1-DP and Myb-MuvB transcription factors in Drosophila endocycling cells. . J. Cell Sci. 123:(23):4095106
    [Crossref] [Google Scholar]
  70. 70.
    Marchant DB, Chen G, Cai S, Chen F, Schafran P, et al. 2022.. Dynamic genome evolution in a model fern. . Nat. Plants 8:(9):103851
    [Crossref] [Google Scholar]
  71. 71.
    Markov AV, Kaznacheev IS. 2016.. Evolutionary consequences of polyploidy in prokaryotes and the origin of mitosis and meiosis. . Biol. Direct. 11::28
    [Crossref] [Google Scholar]
  72. 72.
    Marotta R, Crottini A, Raimondi E, Fondello C, Ferraguti M. 2014.. Alike but different: the evolution of the Tubifex tubifex species complex (Annelida, Clitellata) through polyploidization. . BMC Evol. Biol. 14:(1):73
    [Crossref] [Google Scholar]
  73. 73.
    Martínez-Jiménez F, Movasati A, Brunner SR, Nguyen L, Priestley P, et al. 2023.. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. . Nature 618:(7964):33341
    [Crossref] [Google Scholar]
  74. 74.
    Matondo RB, Moreno E, Toussaint MJM, Tooten PCJ, van Essen SC, et al. 2018.. Atypical E2f functions are critical for pancreas polyploidization. . PLOS ONE 13:(1):e0190899
    [Crossref] [Google Scholar]
  75. 75.
    Matsumoto T, Wakefield L, Tarlow BD, Grompe M. 2020.. In vivo lineage tracing of polyploid hepatocytes reveals extensive proliferation during liver regeneration. . Cell Stem Cell 26:(1):3447.e3
    [Crossref] [Google Scholar]
  76. 76.
    Meckert PC, Rivello HG, Vigliano C, González P, Favaloro R, Laguens R. 2005.. Endomitosis and polyploidization of myocardial cells in the periphery of human acute myocardial infarction. . Cardiovasc. Res. 67:(1):11623
    [Crossref] [Google Scholar]
  77. 77.
    Meyer HM, Teles J, Formosa-Jordan P, Refahi Y, San-Bento R, et al. 2017.. Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal. . eLife 6::e19131
    [Crossref] [Google Scholar]
  78. 78.
    Mezzasalma M, Brunelli E, Odierna G, Guarino FM. 2023.. Evolutionary and genomic diversity of true polyploidy in tetrapods. . Animals 13:(6):1033
    [Crossref] [Google Scholar]
  79. 79.
    Miettinen TP, Pessa HKJ, Caldez MJ, Fuhrer T, Diril MK, et al. 2014.. Identification of transcriptional and metabolic programs related to mammalian cell size. . Curr. Biol. 24:(6):598608
    [Crossref] [Google Scholar]
  80. 80.
    Miyaoka Y, Ebato K, Kato H, Arakawa S, Shimizu S, Miyajima A. 2012.. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. . Curr. Biol. 22::116675
    [Crossref] [Google Scholar]
  81. 81.
    Nandakumar S, Grushko O, Buttitta LA. 2020.. Polyploidy in the adult Drosophila brain. . eLife 9::e54385
    [Crossref] [Google Scholar]
  82. 82.
    Nandakumar S, Rozich E, Buttitta L. 2021.. Cell cycle re-entry in the nervous system: from polyploidy to neurodegeneration. . Front. Cell Dev. Biol. 9::698661
    [Crossref] [Google Scholar]
  83. 83.
    Nguyen B, Fong C, Luthra A, Smith SA, DiNatale RG, et al. 2022.. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. . Cell 185:(3):56375.e11
    [Crossref] [Google Scholar]
  84. 84.
    Nichols HW. 1979.. Polyploidy in algae. . Basic Life Sci. 13::15161
    [Google Scholar]
  85. 85.
    Ohno S. 1970.. Evolution by Gene Duplication. Berlin, Heidelberg, Ger.:: Springer
    [Google Scholar]
  86. 86.
    Oliver TRW, Chappell L, Sanghvi R, Deighton L, Ansari-Pour N, et al. 2022.. Clonal diversification and histogenesis of malignant germ cell tumours. . Nat. Commun. 13:(1):4272
    [Crossref] [Google Scholar]
  87. 87.
    One Thousand Plant Transcr. Initiat. 2019.. One thousand plant transcriptomes and the phylogenomics of green plants. . Nature 574:(7780):67985
    [Crossref] [Google Scholar]
  88. 88.
    Otto SP, Whitton J. 2000.. Polyploid incidence and evolution. . Annu. Rev. Genet. 34::40137
    [Crossref] [Google Scholar]
  89. 89.
    Øvrebø JI, Edgar BA. 2018.. Polyploidy in tissue homeostasis and regeneration. . Development 145:(14):dev156034
    [Crossref] [Google Scholar]
  90. 90.
    Pacey EK, Maherali H, Husband BC. 2022.. Polyploidy increases storage but decreases structural stability in Arabidopsis thaliana. . Curr. Biol. 32:(18):405763.e3
    [Crossref] [Google Scholar]
  91. 91.
    Patterson JO, Basu S, Rees P, Nurse P. 2021.. CDK control pathways integrate cell size and ploidy information to control cell division. . eLife 10::e64592
    [Crossref] [Google Scholar]
  92. 92.
    Patterson M, Barske L, Van Handel B, Rau CD, Gan P, et al. 2017.. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. . Nat. Genet. 49:(9):134653
    [Crossref] [Google Scholar]
  93. 93.
    Pennisi E. 2023.. Stress responders. . Science 381:(6660):82529
    [Crossref] [Google Scholar]
  94. 94.
    Perel TS. 1987.. The nature of eurytopy in polyploid earthworm species in relation to their use in biological soil amelioration. . Biol. Fert. Soils 3:(1–2):1035
    [Google Scholar]
  95. 95.
    Peterson NG, Fox DT. 2021.. Communal living: the role of polyploidy and syncytia in tissue biology. . Chromosome Res. 29::24560
    [Crossref] [Google Scholar]
  96. 96.
    Peterson NG, Stormo BM, Schoenfelder KP, King JS, Lee RS, Fox DT. 2020.. Cytoplasmic sharing through apical membrane remodeling. . eLife 9::e58107
    [Crossref] [Google Scholar]
  97. 97.
    Prasad V, Millay DP. 2021.. Skeletal muscle fibers count on nuclear numbers for growth. . Semin. Cell Dev. Biol. 119::310
    [Crossref] [Google Scholar]
  98. 98.
    Quinton RJ, DiDomizio A, Vittoria MA, Kotýnková K, Ticas CJ, et al. 2021.. Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. . Nature 590:(7846):49297
    [Crossref] [Google Scholar]
  99. 99.
    Redmond AK, Casey D, Gundappa MK, Macqueen DJ, McLysaght A. 2023.. Independent rediploidization masks shared whole genome duplication in the sturgeon-paddlefish ancestor. . Nat. Commun. 14::2879
    [Crossref] [Google Scholar]
  100. 100.
    Rice A, Šmarda P, Novosolov M, Drori M, Glick L, et al. 2019.. The global biogeography of polyploid plants. . Nat. Ecol. Evol. 3:(2):26573
    [Crossref] [Google Scholar]
  101. 101.
    Rios AC, Fu NY, Jamieson PR, Pal B, Whitehead L, et al. 2016.. Essential role for a novel population of binucleated mammary epithelial cells in lactation. . Nat. Commun. 7::11400
    [Crossref] [Google Scholar]
  102. 102.
    Robinson DO, Coate JE, Singh A, Hong L, Bush M, et al. 2018.. Ploidy and size at multiple scales in the Arabidopsis sepal. . Plant Cell 30:(10):230829
    [Crossref] [Google Scholar]
  103. 103.
    Rodriguez F, Arkhipova IR. 2018.. Transposable elements and polyploid evolution in animals. . Curr. Opin. Genet. Dev. 49::11523
    [Crossref] [Google Scholar]
  104. 104.
    Rogers JD. 1973.. Polyploidy in fungi. . Evolution 27:(1):15360
    [Crossref] [Google Scholar]
  105. 105.
    Sabelli PA, Larkins BA. 2009.. The development of endosperm in grasses. . Plant Physiol. 149:(1):1426
    [Crossref] [Google Scholar]
  106. 106.
    Salazar-Roa M, Malumbres M. 2017.. Fueling the cell division cycle. . Trends Cell Biol. 27:(1):6981
    [Crossref] [Google Scholar]
  107. 107.
    Sarkar A, Jin Y, DeFelice BC, Logan CY, Yang Y, et al. 2023.. Intermittent fasting induces rapid hepatocyte proliferation to restore the hepatostat in the mouse liver. . eLife 12::e82311
    [Crossref] [Google Scholar]
  108. 108.
    Schmid M, Evans BJ, Bogart JP. 2015.. Polyploidy in Amphibia. . Cytogenet. Genome Res. 145:(3–4):31530
    [Crossref] [Google Scholar]
  109. 109.
    Scholes DR, Paige KN. 2014.. Plasticity in ploidy underlies plant fitness compensation to herbivore damage. . Mol. Ecol. 23:(19):486270
    [Crossref] [Google Scholar]
  110. 110.
    Schultz RJ. 1980.. Role of polyploidy in the evolution of fishes. . In Polyploidy, ed. WH Lewis , pp. 31340. Boston, MA:: Springer
    [Google Scholar]
  111. 111.
    Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shoresh N, et al. 2015.. Polyploidy can drive rapid adaptation in yeast. . Nature 519:(7543):34951
    [Crossref] [Google Scholar]
  112. 112.
    Shen H, Shih J, Hollern DP, Wang L, Bowlby R, et al. 2018.. Integrated molecular characterization of testicular germ cell tumors. . Cell Rep. 23:(11):3392406
    [Crossref] [Google Scholar]
  113. 113.
    Simakov O, Marlétaz F, Yue J-X, O'Connell B, Jenkins J, et al. 2020.. Deeply conserved synteny resolves early events in vertebrate evolution. . Nat. Ecol. Evol. 4:(6):82030
    [Crossref] [Google Scholar]
  114. 114.
    Singh VP, Hassan H, Deng F, Tsuchiya D, McKinney S, et al. 2023.. Myc promotes polyploidy in murine trophoblast cells and suppresses senescence. . Development 150:(11):dev201581
    [Crossref] [Google Scholar]
  115. 115.
    Sladky VC, Akbari H, Tapias-Gomez D, Evans LT, Drown CG, et al. 2022.. Centriole signaling restricts hepatocyte ploidy to maintain liver integrity. . Genes Dev. 36:(13–14):84356
    [Crossref] [Google Scholar]
  116. 116.
    Soltis DE, Soltis PS. 1999.. Polyploidy: recurrent formation and genome evolution. . Trends Ecol. Evol. 14:(9):34852
    [Crossref] [Google Scholar]
  117. 117.
    Soppa J. 2014.. Polyploidy in archaea and bacteria: about desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. . J. Mol. Microbiol. Biotechnol. 24:(5–6):40919
    [Google Scholar]
  118. 118.
    Spinler KR, Shin J-W, Lambert MP, Discher DE. 2015.. Myosin-II repression favors pre/proplatelets but shear activation generates platelets and fails in macrothrombocytopenia. . Blood 125:(3):52533
    [Crossref] [Google Scholar]
  119. 119.
    Storchova Z, Breneman A, Cande J, Dunn J, Burbank K, et al. 2006.. Genome-wide genetic analysis of polyploidy in yeast. . Nature 443:(7111):54147
    [Crossref] [Google Scholar]
  120. 120.
    Stormo BM, Fox DT. 2016.. Distinct responses to reduplicated chromosomes require distinct Mad2 responses. . eLife 5::e15204
    [Crossref] [Google Scholar]
  121. 121.
    Stormo BM, Fox DT. 2017.. Polyteny: still a giant player in chromosome research. . Chromosome Res. 25:(3–4):20114
    [Crossref] [Google Scholar]
  122. 122.
    Szitenberg A, Salazar-Jaramillo L, Blok VC, Laetsch DR, Joseph S, et al. 2017.. Comparative genomics of apomictic root-knot nematodes: hybridization, ploidy, and dynamic genome change. . Genome Biol. Evol. 9:(10):284461
    [Crossref] [Google Scholar]
  123. 123.
    Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y. 2003.. Genome duplication, a trait shared by 22,000 species of ray-finned fish. . Genome Res. 13:(3):38290
    [Crossref] [Google Scholar]
  124. 124.
    Todd RT, Forche A, Selmecki A. 2017.. Ploidy variation in fungi: polyploidy, aneuploidy, and genome evolution. . Microbiol. Spectr. 5:: 10.1128/microbiolspec.funk-0051-2016
    [Crossref] [Google Scholar]
  125. 125.
    Toyoda H, Bregerie O, Vallet A, Nalpas B, Pivert G, et al. 2005.. Changes to hepatocyte ploidy and binuclearity profiles during human chronic viral hepatitis. . Gut 54:(2):297302
    [Crossref] [Google Scholar]
  126. 126.
    Trakala M, Malumbres M. 2014.. The functional relevance of polyploidization in the skin. . Exp. Dermatol. 23:(2):9293
    [Crossref] [Google Scholar]
  127. 127.
    Unhavaithaya Y, Orr-Weaver TL. 2012.. Polyploidization of glia in neural development links tissue growth to blood–brain barrier integrity. . Genes Dev. 26:(1):3136
    [Crossref] [Google Scholar]
  128. 128.
    Van de Peer Y, Ashman T-L, Soltis PS, Soltis DE. 2021.. Polyploidy: an evolutionary and ecological force in stressful times. . Plant Cell 33:(1):1126
    [Crossref] [Google Scholar]
  129. 129.
    Van de Peer Y, Mizrachi E, Marchal K. 2017.. The evolutionary significance of polyploidy. . Nat. Rev. Genet. 18:(7):41124
    [Crossref] [Google Scholar]
  130. 130.
    van Rijnberk LM, Barrull-Mascaró R, van der Palen RL, Schild ES, Korswagen HC, Galli M. 2022.. Endomitosis controls tissue-specific gene expression during development. . PLOS Biol. 20:(5):e3001597
    [Crossref] [Google Scholar]
  131. 131.
    Vanneste K, Baele G, Maere S, Van de Peer Y. 2014.. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary. . Genome Res. 24:(8):133447
    [Crossref] [Google Scholar]
  132. 132.
    Vittoria MA, Quinton RJ, Ganem NJ. 2023.. Whole-genome doubling in tissues and tumors. . Trends Genet. 39:(12):95467
    [Crossref] [Google Scholar]
  133. 133.
    Vliegen HW, Eulderink F, Bruschke AV, van der Laarse A, Cornelisse CJ. 1995.. Polyploidy of myocyte nuclei in pressure overloaded human hearts: a flow cytometric study in left and right ventricular myocardium. . Am. J. Cardiovasc. Pathol. 5:(1):2731
    [Google Scholar]
  134. 134.
    Walker JD, Oppenheimer DG, Concienne J, Larkin JC. 2000.. SIAMESE, a gene controlling the endoreduplication cell cycle in Arabidopsis thaliana trichomes. . Development 127:(18):393140
    [Crossref] [Google Scholar]
  135. 135.
    Wang J, Batourina E, Schneider K, Souza S, Swayne T, et al. 2018.. Polyploid superficial cells that maintain the urothelial barrier are produced via incomplete cytokinesis and endoreplication. . Cell Rep. 25:(2):46477.e4
    [Crossref] [Google Scholar]
  136. 136.
    Wang M-J, Chen F, Lau JTY, Hu Y-P. 2017.. Hepatocyte polyploidization and its association with pathophysiological processes. . Cell Death Dis. 8:(5):e2805
    [Crossref] [Google Scholar]
  137. 137.
    Weng A, Maciel Herrerias M, Watanabe S, Welch LC, Flozak AS, et al. 2022.. Lung injury induces alveolar type 2 cell hypertrophy and polyploidy with implications for repair and regeneration. . Am. J. Respir. Cell Mol. Biol. 66:(5):56476
    [Crossref] [Google Scholar]
  138. 138.
    Wilkinson PD, Delgado ER, Alencastro F, Leek MP, Roy N, et al. 2019.. The polyploid state restricts hepatocyte proliferation and liver regeneration in mice. . Hepatology 69:(3):124258
    [Crossref] [Google Scholar]
  139. 139.
    Wilson EB. 1925.. The Cell in Development and Heredity. New York:: Macmillan. , 3rd ed..
    [Google Scholar]
  140. 140.
    Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009.. The frequency of polyploid speciation in vascular plants. . PNAS 106:(33):1387579
    [Crossref] [Google Scholar]
  141. 141.
    Wos G, Macková L, Kubíková K, Kolář F. 2022.. Ploidy and local environment drive intraspecific variation in endoreduplication in Arabidopsis arenosa. . Am. J. Bot. 109:(2):25971
    [Crossref] [Google Scholar]
  142. 142.
    Wu C-Y, Rolfe PA, Gifford DK, Fink GR. 2010.. Control of transcription by cell size. . PLOS Biol. 8:(11):e1000523
    [Crossref] [Google Scholar]
  143. 143.
    Yahya G, Menges P, Amponsah PS, Ngandiri DA, Schulz D, et al. 2022.. Sublinear scaling of the cellular proteome with ploidy. . Nat. Commun. 13:(1):6182
    [Crossref] [Google Scholar]
  144. 144.
    Yamasaki S, Shimada E, Kuwano T, Kawano T, Noguchi N. 2010.. Continuous UV-B irradiation induces endoreduplication and peroxidase activity in epidermal cells surrounding trichomes on cucumber cotyledons. . J. Radiat. Res. 51:(2):18796
    [Crossref] [Google Scholar]
  145. 145.
    Yang L, Naylor GJP, Mayden RL. 2022.. Deciphering reticulate evolution of the largest group of polyploid vertebrates, the subfamily cyprininae (Teleostei: Cypriniformes). . Mol. Phylogenet. Evol. 166::107323
    [Crossref] [Google Scholar]
  146. 146.
    Zeng J, Hills SA, Ozono E, Diffley JFX. 2023.. Cyclin E-induced replicative stress drives p53-dependent whole-genome duplication. . Cell 186:(3):52842.e14
    [Crossref] [Google Scholar]
  147. 147.
    Zhang B, Mehrotra S, Ng WL, Calvi BR. 2014.. Low levels of p53 protein and chromatin silencing of p53 target genes repress apoptosis in Drosophila endocycling cells. . PLOS Genet. 10:(9):e1004581
    [Crossref] [Google Scholar]
  148. 148.
    Zhang S, Nguyen LH, Zhou K, Tu H-C, Sehgal A, et al. 2018.. Knockdown of anillin actin binding protein blocks cytokinesis in hepatocytes and reduces liver tumor development in mice without affecting regeneration. . Gastroenterology 154:(5):142134
    [Crossref] [Google Scholar]
  149. 149.
    Zhang S, Zhou K, Luo X, Li L, Tu HC, et al. 2018.. The polyploid state plays a tumor-suppressive role in the liver. . Dev. Cell 44:(4):44759.e5
    [Crossref] [Google Scholar]
  150. 150.
    Zhong L, Georgia S, Tschen S-I, Nakayama K, Nakayama K, Bhushan A. 2007.. Essential role of Skp2-mediated p27 degradation in growth and adaptive expansion of pancreatic β cells. . J. Clin. Invest. 117:(10):286976
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102124
Loading
/content/journals/10.1146/annurev-genet-111523-102124
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error