1932

Abstract

The evolution of the placenta was transformative. It changed how offspring are fed during gestation from depositing all the resources into an egg to continually supplying resources throughout gestation. Placental evolution is infinitely complex, with many moving parts, but at the core it is driven by a conflict over resources between the mother and the baby, which sets up a Red Queen race, fueling rapid diversification of morphological, cellular, and genetic forms. Placentas from even closely related species are highly divergent in form and function, and many cellular processes are distinct. If we could extract the entirety of genomic information for placentas across all species, including the many hundreds that have evolved in fish and reptiles, we could find their shared commonality, and that would tell us which of the many pieces really matter. We do not have this information, but we do have clues. Convergent evolution mechanisms were repeatedly used in the placenta, including the intense selective pressure to co-opt an envelope protein to build a multinucleated syncytium, the use of the same hormones and structural proteins in placentas derived from separate embryonic origins that arose hundreds of millions of years apart, and the co-option of endogenous retroviruses to form capsids as a way of transport and as mutagens to form new enhancers. As a result, the placental genome is the Wild West of biology, set up to rapidly change, adapt, and innovate. This ability to adapt facilitated the evolution of big babies with big brains and will continue to support offspring and their mothers in our ever-changing global environment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102135
2024-11-25
2025-04-22
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102135.html?itemId=/content/journals/10.1146/annurev-genet-111523-102135&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abed M, Verschueren E, Budayeva H, Liu P, Kirkpatrick DS, et al. 2019.. The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification. . PLOS ONE 14:(4):e0214110
    [Crossref] [Google Scholar]
  2. 2.
    Adamo SA, Kovalko I, Turnbull KF, Easy RH, Miles CI. 2016.. The parasitic wasp Cotesia congregata uses multiple mechanisms to control host (Manduca sexta) behaviour. . J. Exp. Biol. 219:(23):375058
    [Google Scholar]
  3. 3.
    Averill RL, Adams CE, Rowson LE. 1955.. Transfer of mammalian ova between species. . Nature 176:(4473):16768
    [Crossref] [Google Scholar]
  4. 4.
    Bischoff SR, Tsai S, Hardison N, Motsinger-Reif AA, Freking BA, et al. 2009.. Characterization of conserved and nonconserved imprinted genes in swine. . Biol. Reprod. 81:(5):90620
    [Crossref] [Google Scholar]
  5. 5.
    Blackburn DG. 2015.. Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. . J. Morphol. 276:(8):96190
    [Crossref] [Google Scholar]
  6. 6.
    Burton GJ. 2022.. Placental types. . In Benirschke's Pathology of the Human Placenta, ed. RN Baergen, GJ Burton, CG Kaplan , pp. 2338. Cham, Switz:.: Springer
    [Google Scholar]
  7. 7.
    Burton GJ, Fowden AL. 2015.. The placenta: a multifaceted, transient organ. . Philos. Trans. R. Soc. B 370:(1663):20140066
    [Crossref] [Google Scholar]
  8. 8.
    Burton GJ, Jauniaux E. 2015.. What is the placenta?. Am. J. Obstet. Gynecol. 213:(4 Suppl.):S6.E1S6.E4
    [Crossref] [Google Scholar]
  9. 9.
    Capellini I, Nunn CL, Barton RA. 2015.. Microparasites and placental invasiveness in eutherian mammals. . PLOS ONE 10:(7):e0132563
    [Crossref] [Google Scholar]
  10. 10.
    Capellini I, Venditti C, Barton RA. 2011.. Placentation and maternal investment in mammals. . Am. Nat. 177:(1):8698
    [Crossref] [Google Scholar]
  11. 11.
    Carroll SB. 2005.. Evolution at two levels: on genes and form. . PLOS Biol. 3:(7):e245
    [Crossref] [Google Scholar]
  12. 12.
    Chapman DD, Wintner SP, Abercrombie DL, Ashe J, Bernard AM, et al. 2013.. The behavioural and genetic mating system of the sand tiger shark, Carcharias taurus, an intrauterine cannibal. . Biol. Lett. 9:(3):20130003
    [Crossref] [Google Scholar]
  13. 13.
    Charalambous M, Smith FM, Bennett WR, Crew TE, Mackenzie F, Ward A. 2003.. Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism. . PNAS 100:(14):829297
    [Crossref] [Google Scholar]
  14. 14.
    Chuong EB. 2013.. Retroviruses facilitate the rapid evolution of the mammalian placenta. . BioEssays 35:(10):85361
    [Crossref] [Google Scholar]
  15. 15.
    Chuong EB, Rumi MAK, Soares MJ, Baker JC. 2013.. Endogenous retroviruses function as species-specific enhancer elements in the placenta. . Nat. Genet. 45:(3):32529
    [Crossref] [Google Scholar]
  16. 16.
    Chuong EB, Tong W, Hoekstra HE. 2010.. Maternal–fetal conflict: rapidly evolving proteins in the rodent placenta. . Mol. Biol. Evol. 27:(6):122125
    [Crossref] [Google Scholar]
  17. 17.
    Coan PM, Angiolini E, Sandovici I, Burton GJ, Constância M, Fowden AL. 2008.. Adaptations in placental nutrient transfer capacity to meet fetal growth demands depend on placental size in mice. . J. Physiol. 586:(18):456776
    [Crossref] [Google Scholar]
  18. 18.
    Coorens THH, Oliver TRW, Sanghvi R, Sovio U, Cook E, et al. 2021.. Inherent mosaicism and extensive mutation of human placentas. . Nature 592:(7852):8085
    [Crossref] [Google Scholar]
  19. 19.
    Cornelis G, Heidmann O, Bernard-Stoecklin S, Reynaud K, Véron G, et al. 2012.. Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene involved in placentation and conserved in Carnivora. . PNAS 109:(7):E43241
    [Crossref] [Google Scholar]
  20. 20.
    Cornelis G, Vernochet C, Carradec Q, Souquere S, Mulot B, et al. 2015.. Retroviral envelope gene captures and syncytin exaptation for placentation in marsupials. . PNAS 112:(5):E48796
    [Crossref] [Google Scholar]
  21. 21.
    Darwin C. 1860.. On the Origin of the Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London:: John Murray. , 2nd ed..
    [Google Scholar]
  22. 22.
    DeChiara TM, Robertson EJ, Efstratiadis A. 1991.. Parental imprinting of the mouse insulin-like growth factor II gene. . Cell 64:(4):84959
    [Crossref] [Google Scholar]
  23. 23.
    Dewannieux M, Blaise S, Heidmann T. 2005.. Identification of a functional envelope protein from the HERV-K family of human endogenous retroviruses. . J. Virol. 79:(24):1557377
    [Crossref] [Google Scholar]
  24. 24.
    Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, et al. 2006.. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. . Genome Res. 16:(12):154856
    [Crossref] [Google Scholar]
  25. 25.
    Dudley JS, Hannaford P, Dowland SN, Lindsay LA, Thompson MB, et al. 2021.. Structural changes to the brood pouch of male pregnant seahorses (Hippocampus abdominalis) facilitate exchange between father and embryos. . Placenta 114::11523
    [Crossref] [Google Scholar]
  26. 26.
    Duncan C. 2024.. A female stingray that hasn't had a mate in eight years is mysteriously pregnant. Is a shark the father?. Smithsonian Magazine, Feb. 16. https://www.smithsonianmag.com/smart-news/a-female-stingray-that-hasnt-had-a-mate-in-eight-years-is-mysteriously-pregnant-is-a-shark-the-father-180983809/
    [Google Scholar]
  27. 27.
    Dupressoir A, Lavialle C, Heidmann T. 2012.. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. . Placenta 33:(9):66371
    [Crossref] [Google Scholar]
  28. 28.
    Dupressoir A, Marceau G, Vernochet C, Bénit L, Kanellopoulos C, et al. 2005.. Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. . PNAS 102:(3):72530
    [Crossref] [Google Scholar]
  29. 29.
    Dupressoir A, Vernochet C, Bawa O, Harper F, Pierron G, et al. 2009.. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. . PNAS 106:(29):1212732
    [Crossref] [Google Scholar]
  30. 30.
    Elliot MG. 2016.. Oxidative stress and the evolutionary origins of preeclampsia. . J. Reprod. Immunol. 114::7580
    [Crossref] [Google Scholar]
  31. 31.
    Elliot MG, Crespi BJ. 2008.. Placental invasiveness and brain–body allometry in eutherian mammals. . J. Evol. Biol. 21:(6):176378
    [Crossref] [Google Scholar]
  32. 32.
    Elliot MG, Crespi BJ. 2009.. Phylogenetic evidence for early hemochorial placentation in eutheria. . Placenta 30:(11):94967
    [Crossref] [Google Scholar]
  33. 33.
    Enders AC, Carter AM. 2006.. Comparative placentation: some interesting modifications for histotrophic nutrition—a review. . Placenta 27:(Suppl. A):S1116
    [Crossref] [Google Scholar]
  34. 34.
    Esnault C, Cornelis G, Heidmann O, Heidmann T. 2013.. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV Syncytin, captured for a function in placentation. . PLOS Genet. 9:(3):e1003400
    [Crossref] [Google Scholar]
  35. 35.
    Evans JP, Pilastro A, Schlupp I. 2011.. Ecology and Evolution of Poeciliid Fishes. Chicago:: Univ. Chicago Press
    [Google Scholar]
  36. 36.
    Fehilly CB, Willadsen SM, Tucker EM. 1984.. Interspecific chimaerism between sheep and goat. . Nature 307:(5952):63436
    [Crossref] [Google Scholar]
  37. 37.
    Fei M, Gols R, Harvey JA. 2023.. The biology and ecology of parasitoid wasps of predatory arthropods. . Annu. Rev. Entomol. 68::10928
    [Crossref] [Google Scholar]
  38. 38.
    Feldman D. 1975.. An electron microscopic study of virus particles in rhesus monkey placenta. . PNAS 72:(1):11821
    [Crossref] [Google Scholar]
  39. 39.
    Fields AT, Feldheim KA, Poulakis GR, Chapman DD. 2015.. Facultative parthenogenesis in a critically endangered wild vertebrate. . Curr. Biol. 25:(11):R44647
    [Crossref] [Google Scholar]
  40. 40.
    Fowden AL, Coan PM, Angiolini E, Burton GJ, Constancia M. 2011.. Imprinted genes and the epigenetic regulation of placental phenotype. . Prog. Biophys. Mol. Biol. 106:(1):28188
    [Crossref] [Google Scholar]
  41. 41.
    Frank JA, Feschotte C. 2017.. Co-option of endogenous viral sequences for host cell function. . Curr. Opin. Virol. 25::8189
    [Crossref] [Google Scholar]
  42. 42.
    Frels WI, Rossant J, Chapman VM. 1980.. Intrinsic and extrinsic factors affecting the viability of Mus caroli × M. musculus hybrid embryos. . J. Reprod. Fertil. 59:(2):38792
    [Crossref] [Google Scholar]
  43. 43.
    Freyer C, Zeller U, Renfree MB. 2002.. Ultrastructure of the placenta of the tammar wallaby, Macropus eugenii: comparison with the grey short-tailed opossum, Monodelphis domestica. . J. Anat. 201:(2):10119
    [Crossref] [Google Scholar]
  44. 44.
    Frost JM, Amante SM, Okae H, Jones EM, Ashley B, et al. 2023.. Regulation of human trophoblast gene expression by endogenous retroviruses. . Nat. Struct. Mol. Biol. 30:(4):52738
    [Crossref] [Google Scholar]
  45. 45.
    Furukawa S, Kuroda Y, Sugiyama A. 2014.. A comparison of the histological structure of the placenta in experimental animals. . J. Toxicol. Pathol. 27:(1):1118
    [Crossref] [Google Scholar]
  46. 46.
    Gilmore RG Jr., Putz O, Dodrill JW. 2005.. Oophagy, intrauterine cannibalism and reproductive strategy in lamnoid sharks. . In Reproductive Biology and Phylogeny of Chondrichthyes: Sharks, Batoids, and Chimaeras, Vol. 3, WC Hamlett , 43562. Boca Raton, FL:: CRC Press
    [Google Scholar]
  47. 47.
    Griffith OW, Wagner GP. 2017.. The placenta as a model for understanding the origin and evolution of vertebrate organs. . Nat. Ecol. Evol. 1:(4):0072
    [Crossref] [Google Scholar]
  48. 48.
    Grosser O. 1909.. Vergleichende Anatomie und Entwicklungsgeschichte Der Eihäute und Der Placenta: Mit Besonderer Berücksichtigung Des Menschen. Vienna:: Wilhelm Braumüller
    [Google Scholar]
  49. 49.
    Guernsey MW, Chuong EB, Cornelis G, Renfree MB, Baker JC. 2017.. Molecular conservation of marsupial and eutherian placentation and lactation. . eLife 6::e27450
    [Crossref] [Google Scholar]
  50. 50.
    Guernsey MW, van Kruistum H, Reznick DN, Pollux BJA, Baker JC. 2020.. Molecular signatures of placentation and secretion uncovered in Poeciliopsis maternal follicles. . Mol. Biol. Evol. 37:(9):267990
    [Crossref] [Google Scholar]
  51. 51.
    Guillemot F, Caspary T, Tilghman SM, Copeland NG, Gilbert DJ, et al. 1995.. Genomic imprinting of Mash2, a mouse gene required for trophoblast development. . Nat. Genet. 9:(3):23542
    [Crossref] [Google Scholar]
  52. 52.
    Haig D. 1993.. Genetic conflicts in human pregnancy. . Q. Rev. Biol. 68:(4):495532
    [Crossref] [Google Scholar]
  53. 53.
    Haig D. 1997.. William Turner's lectures on the comparative anatomy of the placenta. . Placenta 18:(4):37174
    [Crossref] [Google Scholar]
  54. 54.
    Haines AN, Flajnik MF, Wourms JP. 2006.. Histology and immunology of the placenta in the Atlantic sharpnose shark, Rhizoprionodon terraenovae. . Placenta 27:(11–12):111423
    [Crossref] [Google Scholar]
  55. 55.
    Hall JG. 1990.. Genomic imprinting: review and relevance to human diseases. . Am. J. Hum. Genet. 46:(5):85773
    [Google Scholar]
  56. 56.
    Hannibal RL, Baker JC. 2016.. Selective amplification of the genome surrounding key placental genes in trophoblast giant cells. . Curr. Biol. 26:(2):23036
    [Crossref] [Google Scholar]
  57. 57.
    Hannibal RL, Chuong EB, Rivera-Mulia JC, Gilbert DM, Valouev A, Baker JC. 2014.. Copy number variation is a fundamental aspect of the placental genome. . PLOS Genet. 10:(5):e1004290
    [Crossref] [Google Scholar]
  58. 58.
    Hayakawa K, Terada K, Takahashi T, Oana H, Washizu M, Tanaka S. 2018.. Nucleosomes of polyploid trophoblast giant cells mostly consist of histone variants and form a loose chromatin structure. . Sci. Rep. 8:(1):5811
    [Crossref] [Google Scholar]
  59. 59.
    Hu D, Cross JC. 2010.. Development and function of trophoblast giant cells in the rodent placenta. . Int. J. Dev. Biol. 54:(2–3):34154
    [Crossref] [Google Scholar]
  60. 60.
    Jiang B, He Y, Elsler A, Wang S, Keating JN, et al. 2023.. Extended embryo retention and viviparity in the first amniotes. . Nat. Ecol. Evol. 7:(7):113140
    [Crossref] [Google Scholar]
  61. 61.
    Kalousek DK, Dill FJ. 1983.. Chromosomal mosaicism confined to the placenta in human conceptions. . Science 221:(4611):66567
    [Crossref] [Google Scholar]
  62. 62.
    Kalter SS, Heberling RL, Hellman A, Todaro GJ, Panigel M. 1975.. C-type particles in baboon placenta. . Proc. R. Soc. Med. 68:(3):13540
    [Google Scholar]
  63. 63.
    Kalter SS, Heberling RL, Helmke RJ, Panigel M, Smith GC, et al. 1975.. A comparative study on the presence of C-type viral particles in placentas from primates and other animals. . Curr. Studies Haematol. Blood Transfus. 40::391401
    [Google Scholar]
  64. 64.
    Kalter SS, Helmke RJ, Heberling RL, Panigel M, Fowler AK, et al. 1973.. Brief communication: C-type particles in normal human placentas. . J. Natl. Cancer Inst. 50:(4):108184
    [Crossref] [Google Scholar]
  65. 65.
    Kazemian A, Hooshmandabbasi R, Schraner EM, Boos A, Klisch K. 2019.. Evolutionary implications of fetal and maternal microvillous surfaces in epitheliochorial placentae. . J. Morphol. 280:(4):61522
    [Crossref] [Google Scholar]
  66. 66.
    King MC, Wilson AC. 1975.. Evolution at two levels in humans and chimpanzees. . Science 188:(4184):10716
    [Crossref] [Google Scholar]
  67. 67.
    Klisch K, Mess A. 2007.. Evolutionary differentiation of Cetartiodactyl placentae in the light of the viviparity-driven conflict hypothesis. . Placenta 28:(4):35360
    [Crossref] [Google Scholar]
  68. 68.
    Knox K, Baker JC. 2008.. Genomic evolution of the placenta using co-option and duplication and divergence. . Genome Res. 18:(5):695705
    [Crossref] [Google Scholar]
  69. 69.
    Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, et al. 2010.. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. . Cell 142:(5):78799
    [Crossref] [Google Scholar]
  70. 70.
    Koppes E, Shaffer B, Sadovsky E, Himes K, Barak Y, et al. 2019.. Klf14 is an imprinted transcription factor that regulates placental growth. . Placenta 88::6167
    [Crossref] [Google Scholar]
  71. 71.
    Kraaijeveld AR, Godfray HCJ. 2009.. Evolution of host resistance and parasitoid counter-resistance. . Adv. Parasitol. 70::25780
    [Crossref] [Google Scholar]
  72. 72.
    Kwan L, Fris M, Rodd FH, Rowe L, Tuhela L, Panhuis TM. 2015.. An examination of the variation in maternal placentae across the genus Poeciliopsis (Poeciliidae). . J. Morphol. 276:(6):70720
    [Crossref] [Google Scholar]
  73. 73.
    Lagutina I, Lazzari G, Duchi R, Galli C. 2004.. Developmental potential of bovine androgenetic and parthenogenetic embryos: a comparative study. . Biol. Reprod. 70:(2):4005
    [Crossref] [Google Scholar]
  74. 74.
    Langford MB, Outhwaite JE, Hughes M, Natale DRC, Simmons DG. 2018.. Deletion of the Syncytin A receptor Ly6e impairs syncytiotrophoblast fusion and placental morphogenesis causing embryonic lethality in mice. . Sci. Rep. 8:(1):3961
    [Crossref] [Google Scholar]
  75. 75.
    Lau MM, Stewart CE, Liu Z, Bhatt H, Rotwein P, Stewart CL. 1994.. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. . Genes Dev. 8:(24):295363
    [Crossref] [Google Scholar]
  76. 76.
    Laundon D, Gostling NJ, Sengers BG, Chavatte-Palmer P, Lewis RM. 2024.. Placental evolution from a three-dimensional and multiscale structural perspective. . Evolution 78:(1):1325
    [Crossref] [Google Scholar]
  77. 77.
    Laurin M. 2005.. Embryo retention, character optimization, and the origin of the extra-embryonic membranes of the amniotic egg. . J. Nat. Hist. 39:(34):315161
    [Crossref] [Google Scholar]
  78. 78.
    Lavialle C, Cornelis G, Dupressoir A, Esnault C, Heidmann O, et al. 2013.. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. . Philos. Trans. R. Soc. B 368:(1626):20120507
    [Crossref] [Google Scholar]
  79. 79.
    Leiser R, Kaufmann P. 1994.. Placental structure: in a comparative aspect. . Exp. Clin. Endocrinol. 102:(3):12234
    [Crossref] [Google Scholar]
  80. 80.
    Lewis RM, Cleal JK, Hanson MA. 2012.. Review: Placenta, evolution and lifelong health. . Placenta 33::S2832
    [Crossref] [Google Scholar]
  81. 81.
    Lewitus E, Soligo C. 2011.. Life-history correlates of placental structure in eutherian evolution. . Evol. Biol. 38:(3):287305
    [Crossref] [Google Scholar]
  82. 82.
    Lombardi J. 1994.. Embryo retention and evolution of the amniote condition. . J. Morphol. 220::368 ( Abstr. )
    [Google Scholar]
  83. 83.
    Lowe RM, Ward SA, Crozier RH. 2002.. The evolution of parasites from their hosts: intra- and interspecific parasitism and Emery's rule. . Proc. Biol. Sci. 269:(1497):13015
    [Crossref] [Google Scholar]
  84. 84.
    Lowry PJ. 2008.. The placenta is simply a neuroendocrine parasite. . J. Neuroendocrinol. 20:(6):7004
    [Crossref] [Google Scholar]
  85. 85.
    Marsh-Matthews E, Deaton R. 2006.. Resources and offspring provisioning: a test of the Trexler-DeAngelis model for matrotrophy evolution. . Ecology 87:(12):301420
    [Crossref] [Google Scholar]
  86. 86.
    Martin JF, Wagner GP. 2019.. The origin of platelets enabled the evolution of eutherian placentation. . Biol. Lett. 15:(7):20190374
    [Crossref] [Google Scholar]
  87. 87.
    Mayer W, Hemberger M, Frank H-G, Grümmer R, Winterhager E, et al. 2000.. Expression of the imprinted genes MEST/Mest in human and murine placenta suggests a role in angiogenesis. . Dev. Dyn. 217:(1):110
    [Crossref] [Google Scholar]
  88. 88.
    McGrath J, Solter D. 1984.. Completion of mouse embryogenesis requires both the maternal and paternal genomes. . Cell 37:(1):17983
    [Crossref] [Google Scholar]
  89. 89.
    Mi S, Lee X, Li X, Veldman GM, Finnerty H, et al. 2000.. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. . Nature 403:(6771):78589
    [Crossref] [Google Scholar]
  90. 90.
    Moffett A, Loke C. 2006.. Immunology of placentation in eutherian mammals. . Nat. Rev. Immunol. 6:(8):58494
    [Crossref] [Google Scholar]
  91. 91.
    Moore T, Haig D. 1991.. Genomic imprinting in mammalian development: a parental tug-of-war. . Trends Genet. 7:(2):4549
    [Crossref] [Google Scholar]
  92. 92.
    Moreau SJM, Asgari S. 2015.. Venom proteins from parasitoid wasps and their biological functions. . Toxins 7:(7):2385412
    [Crossref] [Google Scholar]
  93. 93.
    Mossman HW. 1937.. Comparative Morphogenesis of the Fetal Membranes and Accessory Uterine Structures. Washington, DC:: Carnegie Inst.
    [Google Scholar]
  94. 94.
    Murphy BF, Thompson MB. 2011.. A review of the evolution of viviparity in squamate reptiles: the past, present and future role of molecular biology and genomics. . J. Comp. Physiol. B 181:(5):57594
    [Crossref] [Google Scholar]
  95. 95.
    Naismith DJ. 1969.. The foetus as a parasite. . Proc. Nutr. Soc. 28:(1):2531
    [Crossref] [Google Scholar]
  96. 96.
    Ono R, Kobayashi S, Wagatsuma H, Aisaka K, Kohda T, et al. 2001.. A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. . Genomics 73:(2):23237
    [Crossref] [Google Scholar]
  97. 97.
    Ono R, Nakamura K, Inoue K, Naruse M, Usami T, et al. 2006.. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. . Nat. Genet. 38:(1):1016
    [Crossref] [Google Scholar]
  98. 98.
    Panhuis TM, Fris M, Tuhela L, Kwan L. 2017.. An examination of surface epithelium structures of the embryo across the genus Poeciliopsis (Poeciliidae). . J. Morphol. 278:(12):172638
    [Crossref] [Google Scholar]
  99. 99.
    Parisi T, Beck AR, Rougier N, McNeil T, Lucian L, et al. 2003.. Cyclins E1 and E2 are required for endoreplication in placental trophoblast giant cells. . EMBO J. 22:(18):4794803
    [Crossref] [Google Scholar]
  100. 100.
    Pijnenborg R, Brosens I, Romero R, eds. 2010.. Placental Bed Disorders: Basic Science and Its Translation to Obstetrics. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  101. 101.
    Pollux BJA, Pires MN, Banet AI, Reznick DN. 2009.. Evolution of placentas in the fish family Poeciliidae: an empirical study of macroevolution. . Annu. Rev. Ecol. Evol. Syst. 40::27189
    [Crossref] [Google Scholar]
  102. 102.
    Ramsey EM. 1982.. The Placenta: Human and Animal. Westport, CT:: Praeger
    [Google Scholar]
  103. 103.
    Renaud SJ, Jeyarajah MJ. 2022.. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. . Cell. Mol. Life Sci. 79:(8):433
    [Crossref] [Google Scholar]
  104. 104.
    Renfree MB. 2010.. Review: marsupials: placental mammals with a difference. . Placenta 31:(Suppl.):S2126
    [Crossref] [Google Scholar]
  105. 105.
    Renfree MB, Suzuki S, Kaneko-Ishino T. 2013.. The origin and evolution of genomic imprinting and viviparity in mammals. . Philos. Trans. R. Soc. B 368:(1609):20120151
    [Crossref] [Google Scholar]
  106. 106.
    Reznick DN, Mateos M, Springer MS. 2002.. Independent origins and rapid evolution of the placenta in the fish genus Poeciliopsis. . Science 298:(5595):101820
    [Crossref] [Google Scholar]
  107. 107.
    Ribet D, Harper F, Dupressoir A, Dewannieux M, Pierron G, Heidmann T. 2008.. An infectious progenitor for the murine IAP retrotransposon: emergence of an intracellular genetic parasite from an ancient retrovirus. . Genome Res. 18:(4):597609
    [Crossref] [Google Scholar]
  108. 108.
    Roberts RM, Green JA, Schulz LC. 2016.. The evolution of the placenta. . Reproduction 152:(5):R17989
    [Crossref] [Google Scholar]
  109. 109.
    Romer AS. 1957.. Origin of the amniote egg. . Sci. Mon. 85:(2):5763
    [Google Scholar]
  110. 110.
    Rossant J, Mauro VM, Croy BA. 1982.. Importance of trophoblast genotype for survival of interspecific murine chimaeras. . J. Embryol. Exp. Morphol. 69::14149
    [Google Scholar]
  111. 111.
    Ryder OA, Thomas S, Judson JM, Romanov MN, Dandekar S, et al. 2021.. Facultative parthenogenesis in California condors. . J. Hered. 112:(7):56974
    [Crossref] [Google Scholar]
  112. 112.
    Safian D, Ahmed M, van Kruistum H, Furness AI, Reznick DN, et al. 2023.. Repeated independent origins of the placenta reveal convergent and divergent organ evolution within a single fish family (Poeciliidae). . Sci. Adv. 9:(34):eadf3915
    [Crossref] [Google Scholar]
  113. 113.
    Segel M, Lash B, Song J, Ladha A, Liu CC, et al. 2021.. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. . Science 373:(6557):88289
    [Crossref] [Google Scholar]
  114. 114.
    Shiura H, Kitazawa M, Ishino F, Kaneko-Ishino T. 2023.. Roles of retrovirus-derived PEG10 and PEG11/RTL1 in mammalian development and evolution and their involvement in human disease. . Front. Cell Dev. Biol. 11::1273638
    [Crossref] [Google Scholar]
  115. 115.
    Simpson GR, Patience C, Löwer R, Tönjes RR, Moore HD, et al. 1996.. Endogenous D-type (HERV-K) related sequences are packaged into retroviral particles in the placenta and possess open reading frames for reverse transcriptase. . Virology 222:(2):45156
    [Crossref] [Google Scholar]
  116. 116.
    Skalkos ZMG, Van Dyke JU, Whittington CM. 2023.. Distinguishing between embryonic provisioning strategies in teleost fishes using a threshold value for parentotrophy. . Biomolecules 13:(1):166
    [Crossref] [Google Scholar]
  117. 117.
    Smith GC, Kalter SS, Helmke RJ, Heberling RL, Panigel M, Kraemer DC. 1975.. A-type particles in placentas of four mouse strains. . Proc. Soc. Exp. Biol. Med. 148:(4):121213
    [Crossref] [Google Scholar]
  118. 118.
    Starck JM, Stewart JR, Blackburn DG. 2021.. Phylogeny and evolutionary history of the amniote egg. . J. Morphol. 282:(7):1080122
    [Crossref] [Google Scholar]
  119. 119.
    Surani MA, Barton SC, Norris ML. 1984.. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. . Nature 308:(5959):54850
    [Crossref] [Google Scholar]
  120. 120.
    Takahashi K, Kobayashi T, Kanayama N. 2000.. p57Kip2 regulates the proper development of labyrinthine and spongiotrophoblasts. . Mol. Hum. Reprod. 6:(11):101925
    [Crossref] [Google Scholar]
  121. 121.
    Tarkowski AK. 1962.. Inter-specific transfers of eggs between rat and mouse. . J. Embryol. Exp. Morphol. 10::47695
    [Google Scholar]
  122. 122.
    Tyndale-Biscoe CH, Renfree M. 1987.. Reproductive Physiology of Marsupials. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  123. 123.
    van der Kooi CJ, Schwander T. 2015.. Parthenogenesis: birth of a new lineage or reproductive accident?. Curr. Biol. 25:(15):R65961
    [Crossref] [Google Scholar]
  124. 124.
    Van Dyke JU, Brandley MC, Thompson MB. 2014.. The evolution of viviparity: Molecular and genomic data from squamate reptiles advance understanding of live birth in amniotes. . Reproduction 147:(1):R1526
    [Crossref] [Google Scholar]
  125. 125.
    Van Valen L. 1973.. A new evolutionary law. . Evol. Theory 1::130
    [Google Scholar]
  126. 126.
    Wang X, Liu S. 2022.. Endogenous Jaagsiekte sheep retrovirus envelope protein promotes sheep trophoblast cell fusion by activating PKA/MEK/ERK1/2 signaling. . Theriogenology 193::5867
    [Crossref] [Google Scholar]
  127. 127.
    Wang X, Miller DC, Harman R, Antczak DF, Clark AG. 2013.. Paternally expressed genes predominate in the placenta. . PNAS 110:(26):1070510
    [Crossref] [Google Scholar]
  128. 128.
    Wang Y, Evans SE. 2011.. A gravid lizard from the Cretaceous of China and the early history of squamate viviparity. . Naturwissenschaften 98:(9):73943
    [Crossref] [Google Scholar]
  129. 129.
    Warwick BL, Berry RO. 1949.. Inter-generic and intra-specific embryo transfers in sheep and goats. . J. Hered. 40:(11):297303
    [Crossref] [Google Scholar]
  130. 130.
    Whittington CM, Buddle AL, Griffith OW, Carter AM. 2022.. Embryonic specializations for vertebrate placentation. . Philos. Trans. R. Soc. B 377:(1865):20210261
    [Crossref] [Google Scholar]
  131. 131.
    Whittington CM, Griffith OW, Qi W, Thompson MB, Wilson AB. 2015.. Seahorse brood pouch transcriptome reveals common genes associated with vertebrate pregnancy. . Mol. Biol. Evol. 32:(12):311431
    [Google Scholar]
  132. 132.
    Wildman DE, Chen C, Erez O, Grossman LI, Goodman M, Romero R. 2006.. Evolution of the mammalian placenta revealed by phylogenetic analysis. . PNAS 103:(9):32038
    [Crossref] [Google Scholar]
  133. 133.
    Wooding P, Burton G. 2008.. Comparative Placentation: Structures, Functions and Evolution. Berlin:: Springer
    [Google Scholar]
  134. 134.
    Yoshinaga K, Adams CE. 1967.. Reciprocal transfer of blastocysts between the rat and rabbit. . J. Reprod. Fertil. 14:(2):32528
    [Crossref] [Google Scholar]
  135. 135.
    Zybina EV, Zybina TG. 1996.. Polytene chromosomes in mammalian cells. . Int. Rev. Cytol. 165::53119
    [Crossref] [Google Scholar]
  136. 136.
    Zybina TG, Zybina EV. 2005.. Cell reproduction and genome multiplication in the proliferative and invasive trophoblast cell populations of mammalian placenta. . Cell Biol. Int. 29:(12):107183
    [Crossref] [Google Scholar]
  137. 137.
    Zybina TG, Zybina EV. 2020.. Role of cell cycling and polyploidy in placental trophoblast of different mammalian species. . Reprod. Domest. Anim. 55:(8):895904
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102135
Loading
/content/journals/10.1146/annurev-genet-111523-102135
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error