1932

Abstract

Obesity and anorexia are life-threatening diseases that are still poorly understood at the genetic and neuronal levels. Patients suffering from these conditions experience disrupted regulation of food consumption, leading to extreme weight gain or loss and, in severe situations, death from metabolic dysfunction. Despite the development of various behavioral and pharmacological interventions, current treatments often yield limited and short-lived success. To address this, a deeper understanding of the genetic and neural mechanisms underlying food perception and appetite regulation is essential for identifying new drug targets and developing more effective treatment methods. This review summarizes the progress of past research in understanding the genetic and neural mechanisms controlling food consumption and appetite regulation, focusing on two key model organisms: the fruit fly and the mouse . These studies investigate how the brain senses energy and nutrient deficiency, how sensory signals trigger appetitive behaviors, and how food intake is regulated through interconnected neural circuits in the brain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102202
2024-11-25
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102202.html?itemId=/content/journals/10.1146/annurev-genet-111523-102202&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abizaid A, Horvath TL. 2012.. Ghrelin and the central regulation of feeding and energy balance. . Indian J. Endocrinol. Metab. 16::S61726
    [Crossref] [Google Scholar]
  2. 2.
    Aklan I, Sayar Atasoy N, Yavuz Y, Ates T, Coban I, et al. 2020.. NTS catecholamine neurons mediate hypoglycemic hunger via medial hypothalamic feeding pathways. . Cell Metab. 31::31326.e5
    [Crossref] [Google Scholar]
  3. 3.
    Alfa RW, Park S, Skelly K-R, Poffenberger G, Jain N, et al. 2015.. Suppression of insulin production and secretion by a decretin hormone. . Cell Metab. 21::32334
    [Crossref] [Google Scholar]
  4. 4.
    Alhadeff AL, Baird J-P, Swick JC, Hayes MR, Grill HJ. 2014.. Glucagon-like peptide-1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed. . Neuropsychopharmacology 39::223343
    [Crossref] [Google Scholar]
  5. 5.
    Alhadeff AL, Rupprecht LE, Hayes MR. 2012.. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. . Endocrinology 153::64758
    [Crossref] [Google Scholar]
  6. 6.
    Andermann ML, Lowell BB. 2017.. Toward a wiring diagram understanding of appetite control. . Neuron 95::75778
    [Crossref] [Google Scholar]
  7. 7.
    Andrew RR, Shane TH. 2019.. GABAergic inputs to POMC neurons originating from the dorsomedial hypothalamus are regulated by energy state. . J. Neurosci. 39::644959
    [Crossref] [Google Scholar]
  8. 8.
    Aponte Y, Atasoy D, Sternson SM. 2011.. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. . Nat. Neurosci. 14::35155
    [Crossref] [Google Scholar]
  9. 9.
    Aryal B, Dhakal S, Shrestha B, Lee Y. 2022.. Molecular and neuronal mechanisms for amino acid taste perception in the Drosophila labellum. . Curr. Biol. 32::137686.e4
    [Crossref] [Google Scholar]
  10. 10.
    Atasoy D, Betley JN, Li WP, Su HH, Sertel SM, et al. 2014.. A genetically specified connectomics approach applied to long-range feeding regulatory circuits. . Nat. Neurosci. 17::183039
    [Crossref] [Google Scholar]
  11. 11.
    Atasoy D, Betley JN, Su HH, Sternson SM. 2012.. Deconstruction of a neural circuit for hunger. . Nature 488::17277
    [Crossref] [Google Scholar]
  12. 12.
    Bader R, Colomb J, Pankratz B, Schröck A, Stocker RF, Pankratz MJ. 2007.. Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: distinct classes of hugin-expressing neurons. . J. Comp. Neurol. 502::84856
    [Crossref] [Google Scholar]
  13. 13.
    Bagnasco M, Tulipano G, Melis MR, Argiolas A, Cocchi D, Muller EE. 2003.. Endogenous ghrelin is an orexigenic peptide acting in the arcuate nucleus in response to fasting. . Regul. Pept. 111::16167
    [Crossref] [Google Scholar]
  14. 14.
    Bai H, Kang P, Tatar M. 2012.. Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. . Aging Cell 11::97885
    [Crossref] [Google Scholar]
  15. 15.
    Bai L, Mesgarzadeh S, Ramesh KS, Huey EL, Liu Y, et al. 2019.. Genetic identification of vagal sensory neurons that control feeding. . Cell 179::112943.e23
    [Crossref] [Google Scholar]
  16. 16.
    Bailey P, Bremer F. 1921.. Experimental diabetes insipidus. . Arch. Intern. Med. 28::773803
    [Crossref] [Google Scholar]
  17. 17.
    Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, et al. 2004.. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. . Neuron 42::98391
    [Crossref] [Google Scholar]
  18. 18.
    Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, et al. 2005.. Divergence of melanocortin pathways in the control of food intake and energy expenditure. . Cell 123::493505
    [Crossref] [Google Scholar]
  19. 19.
    Baver SB, Hope K, Guyot S, Bjørbaek C, Kaczorowski C, O'Connell KM. 2014.. Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. . J. Neurosci. 34::548696
    [Crossref] [Google Scholar]
  20. 20.
    Berrios J, Li C, Madara JC, Garfield AS, Steger JS, et al. 2021.. Food cue regulation of AGRP hunger neurons guides learning. . Nature 595::695700
    [Crossref] [Google Scholar]
  21. 21.
    Beshel J, Dubnau J, Zhong Y. 2017.. A leptin analog locally produced in the brain acts via a conserved neural circuit to modulate obesity-linked behaviors in Drosophila. . Cell Metab. 25::20817
    [Crossref] [Google Scholar]
  22. 22.
    Betley JN, Cao ZF, Ritola KD, Sternson SM. 2013.. Parallel, redundant circuit organization for homeostatic control of feeding behavior. . Cell 155::133750
    [Crossref] [Google Scholar]
  23. 23.
    Betley JN, Xu S, Cao ZFH, Gong R, Magnus CJ, et al. 2015.. Neurons for hunger and thirst transmit a negative-valence teaching signal. . Nature 521::18085
    [Crossref] [Google Scholar]
  24. 24.
    Beutler LR, Chen Y, Ahn JS, Lin YC, Essner RA, Knight ZA. 2017.. Dynamics of gut-brain communication underlying hunger. . Neuron 96::46175.e5
    [Crossref] [Google Scholar]
  25. 25.
    Biglari N, Gaziano I, Schumacher J, Radermacher J, Paeger L, et al. 2021.. Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. . Nat. Neurosci. 24::91329
    [Crossref] [Google Scholar]
  26. 26.
    Blüher M. 2019.. Obesity: global epidemiology and pathogenesis. . Nat. Rev. Endocrinol. 15::28898
    [Crossref] [Google Scholar]
  27. 27.
    Borgmann D, Ciglieri E, Biglari N, Brandt C, Cremer AL, et al. 2021.. Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. . Cell Metab. 33::146682.e7
    [Crossref] [Google Scholar]
  28. 28.
    Bray GA. 1993.. Commentary on classics of obesity. 4. Hypothalamic obesity. . Obes. Res. 1::32528
    [Crossref] [Google Scholar]
  29. 29.
    Brierley DI, Holt MK, Singh A, de Araujo A, McDougle M, et al. 2021.. Central and peripheral GLP-1 systems independently suppress eating. . Nat. Metab. 3::25873
    [Crossref] [Google Scholar]
  30. 30.
    Brüning JC, Fenselau H. 2023.. Integrative neurocircuits that control metabolism and food intake. . Science 381::eabl7398
    [Crossref] [Google Scholar]
  31. 31.
    Cabral A, Cornejo MP, Fernandez G, De Francesco PN, Garcia-Romero G, et al. 2017.. Circulating ghrelin acts on GABA neurons of the area postrema and mediates gastric emptying in male mice. . Endocrinology 158::143649
    [Crossref] [Google Scholar]
  32. 32.
    Cai J, Chen J, Ortiz-Guzman J, Huang J, Arenkiel BR, et al. 2023.. AgRP neurons are not indispensable for body weight maintenance in adult mice. . Cell Rep. 42::112789
    [Crossref] [Google Scholar]
  33. 33.
    Cakir I, Diaz-Martinez M, Lining Pan P, Welch EB, Patel S, Ghamari-Langroudi M. 2019.. Leptin receptor signaling in Sim1-expressing neurons regulates body temperature and adaptive thermogenesis. . Endocrinology 160::86379
    [Crossref] [Google Scholar]
  34. 34.
    Cameron P, Hiroi M, Ngai J, Scott K. 2010.. The molecular basis for water taste in Drosophila. . Nature 465::9195
    [Crossref] [Google Scholar]
  35. 35.
    Campbell JN, Macosko EZ, Fenselau H, Pers TH, Lyubetskaya A, et al. 2017.. A molecular census of arcuate hypothalamus and median eminence cell types. . Nat. Neurosci. 20::48496
    [Crossref] [Google Scholar]
  36. 36.
    Campos CA, Bowen AJ, Schwartz MW, Palmiter RD. 2016.. Parabrachial CGRP neurons control meal termination. . Cell Metab. 23::81120
    [Crossref] [Google Scholar]
  37. 37.
    Caron A, Dungan Lemko HM, Castorena CM, Fujikawa T, Lee S, et al. 2018.. POMC neurons expressing leptin receptors coordinate metabolic responses to fasting via suppression of leptin levels. . eLife 7::e33710
    [Crossref] [Google Scholar]
  38. 38.
    Carter ME, Soden ME, Zweifel LS, Palmiter RD. 2013.. Genetic identification of a neural circuit that suppresses appetite. . Nature 503::11114
    [Crossref] [Google Scholar]
  39. 39.
    Chen J, Cheng M, Wang L, Zhang L, Xu D, et al. 2020.. A vagal-NTS neural pathway that stimulates feeding. . Curr. Biol. 30::398698.e5
    [Crossref] [Google Scholar]
  40. 40.
    Chen XY, Chen L, Yang W, Xie AM. 2021.. GLP-1 suppresses feeding behaviors and modulates neuronal electrophysiological properties in multiple brain regions. . Front. Mol. Neurosci. 14::793004
    [Crossref] [Google Scholar]
  41. 41.
    Chen Y, Lin YC, Kuo TW, Knight ZA. 2015.. Sensory detection of food rapidly modulates arcuate feeding circuits. . Cell 160::82941
    [Crossref] [Google Scholar]
  42. 42.
    Cheng W, Gonzalez I, Pan W, Tsang AH, Adams J, et al. 2020.. Calcitonin receptor neurons in the mouse nucleus tractus solitarius control energy balance via the non-aversive suppression of feeding. . Cell Metab. 31::30112.e5
    [Crossref] [Google Scholar]
  43. 43.
    Cheng W, Gordian D, Ludwig MQ, Pers TH, Seeley RJ, Myers MG Jr. 2022.. Hindbrain circuits in the control of eating behaviour and energy balance. . Nat. Metab. 4::82635
    [Crossref] [Google Scholar]
  44. 44.
    Cheng W, Ndoka E, Hutch C, Roelofs K, MacKinnon A, et al. 2020.. Leptin receptor-expressing nucleus tractus solitarius neurons suppress food intake independently of GLP1 in mice. . JCI Insight 5::e134359
    [Crossref] [Google Scholar]
  45. 45.
    Cheng W, Ndoka E, Maung JN, Pan W, Rupp AC, et al. 2021.. NTS Prlh overcomes orexigenic stimuli and ameliorates dietary and genetic forms of obesity. . Nat. Commun. 12::5175
    [Crossref] [Google Scholar]
  46. 46.
    Cheung SK, Scott K. 2017.. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster. . PLOS ONE 12::e0175177
    [Crossref] [Google Scholar]
  47. 47.
    Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, et al. 1998.. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. . Nature 392::398401
    [Crossref] [Google Scholar]
  48. 48.
    Clyne PJ, Warr CG, Carlson JR. 2000.. Candidate taste receptors in Drosophila. . Science 287::183034
    [Crossref] [Google Scholar]
  49. 49.
    Cornejo MP, De Francesco PN, García Romero G, Portiansky EL, Zigman JM, et al. 2018.. Ghrelin receptor signaling targets segregated clusters of neurons within the nucleus of the solitary tract. . Brain Struct. Funct. 223::313347
    [Crossref] [Google Scholar]
  50. 50.
    Cowley MA, Smart JL, Rubinstein M, Cerdán MG, Diano S, et al. 2001.. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. . Nature 411::48084
    [Crossref] [Google Scholar]
  51. 51.
    Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, et al. 2003.. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. . Neuron 37::64961
    [Crossref] [Google Scholar]
  52. 52.
    D'Agostino G, Lyons DJ, Cristiano C, Burke LK, Madara JC, et al. 2016.. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. . eLife 5::e12225
    [Crossref] [Google Scholar]
  53. 53.
    D'Agostino G, Lyons DJ, Cristiano C, Lettieri M, Olarte-Sanchez C, et al. 2018.. Nucleus of the solitary tract serotonin 5-HT2C receptors modulate food intake. . Cell Metab. 28::61930.e5
    [Crossref] [Google Scholar]
  54. 54.
    Davis EA, Wald HS, Suarez AN, Zubcevic J, Liu CM, et al. 2020.. Ghrelin signaling affects feeding behavior, metabolism, and memory through the vagus nerve. . Curr. Biol. 30::451018.e6
    [Crossref] [Google Scholar]
  55. 55.
    de Araujo IE, Oliveira-Maia AJ, Sotnikova TD, Gainetdinov RR, Caron MG, et al. 2008.. Food reward in the absence of taste receptor signaling. . Neuron 57::93041
    [Crossref] [Google Scholar]
  56. 56.
    Dethier VG. 1976.. The Hungry Fly. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  57. 57.
    Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, et al. 2006.. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. . Neuron 49::191203
    [Crossref] [Google Scholar]
  58. 58.
    Dodd GT, Michael NJ, Lee-Young RS, Mangiafico SP, Pryor JT, et al. 2018.. Insulin regulates POMC neuronal plasticity to control glucose metabolism. . eLife 7::e38704
    [Crossref] [Google Scholar]
  59. 59.
    Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu S-C, et al. 2023.. Neuronal wiring diagram of an adult brain. . bioRxiv 2023.06.27.546656. https://www.biorxiv.org/content/10.1101/2023.06.27.546656v2
  60. 60.
    Douglass AM, Resch JM, Madara JC, Kucukdereli H, Yizhar O, et al. 2023.. Neural basis for fasting activation of the hypothalamic-pituitary-adrenal axis. . Nature 620::15462
    [Crossref] [Google Scholar]
  61. 61.
    Dus M, Lai JS-Y, Gunapala KM, Min S, Tayler TD, et al. 2015.. Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. . Neuron 87::13951
    [Crossref] [Google Scholar]
  62. 62.
    Dus M, Min S, Keene AC, Lee GY, Suh GS. 2011.. Taste-independent detection of the caloric content of sugar in Drosophila. . PNAS 108::1164449
    [Crossref] [Google Scholar]
  63. 63.
    Elmquist JK, Bjørbæk C, Ahima RS, Flier JS, Saper CB. 1998.. Distributions of leptin receptor mRNA isoforms in the rat brain. . J. Comp. Neurol. 395::53547
    [Crossref] [Google Scholar]
  64. 64.
    Farooqi IS, O'Rahilly S. 2006.. Genetics of obesity in humans. . Endoc. Rev. 27::71018
    [Crossref] [Google Scholar]
  65. 65.
    Faulconbridge LF, Cummings DE, Kaplan JM, Grill HJ. 2003.. Hyperphagic effects of brainstem ghrelin administration. . Diabetes 52::226065
    [Crossref] [Google Scholar]
  66. 66.
    Fenselau H, Campbell JN, Verstegen AMJ, Madara JC, Xu J, et al. 2017.. A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH. . Nat. Neurosci. 20::4251
    [Crossref] [Google Scholar]
  67. 67.
    Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, et al. 2009.. Inactivation of the Fto gene protects from obesity. . Nature 458::89498
    [Crossref] [Google Scholar]
  68. 68.
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, et al. 2007.. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. . Science 316::88994
    [Crossref] [Google Scholar]
  69. 69.
    Fridell Y-WC, Hoh M, Kréneisz O, Hosier S, Chang C, et al. 2009.. Increased uncoupling protein (UCP) activity in Drosophila insulin-producing neurons attenuates insulin signaling and extends lifespan. . Aging 1::699713
    [Crossref] [Google Scholar]
  70. 70.
    Fukushima A, Kataoka N, Nakamura K. 2022.. An oxytocinergic neural pathway that stimulates thermogenic and cardiac sympathetic outflow. . Cell Rep. 40::111380
    [Crossref] [Google Scholar]
  71. 71.
    Gao W, Liu L, Huh E, Gbahou F, Cecon E, et al. 2023.. Human GLP1R variants affecting GLP1R cell surface expression are associated with impaired glucose control and increased adiposity. . Nat. Metab. 5::167384
    [Crossref] [Google Scholar]
  72. 72.
    Garfield AS, Li C, Madara JC, Shah BP, Webber E, et al. 2015.. A neural basis for melanocortin-4 receptor-regulated appetite. . Nat. Neurosci. 18::86371
    [Crossref] [Google Scholar]
  73. 73.
    Garfield AS, Shah BP, Burgess CR, Li MM, Li C, et al. 2016.. Dynamic GABAergic afferent modulation of AgRP neurons. . Nat. Neurosci. 19::162835
    [Crossref] [Google Scholar]
  74. 74.
    Géminard C, Rulifson EJ, Léopold P. 2009.. Remote control of insulin secretion by fat cells in Drosophila. . Cell Metab. 10::199207
    [Crossref] [Google Scholar]
  75. 75.
    Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, et al. 2007.. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. . Science 318::146972
    [Crossref] [Google Scholar]
  76. 76.
    Goldstein N, McKnight AD, Carty JRE, Arnold M, Betley JN, Alhadeff AL. 2021.. Hypothalamic detection of macronutrients via multiple gut-brain pathways. . Cell Metab. 33::67687.e5
    [Google Scholar]
  77. 77.
    González Segarra AJ, Pontes G, Jourjine N, Del Toro A, Scott K. 2023.. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. . eLife 12::RP88143
    [Google Scholar]
  78. 78.
    Gordon MD, Scott K. 2009.. Motor control in a Drosophila taste circuit. . Neuron 61::37384
    [Google Scholar]
  79. 79.
    Grill HJ, Hayes MR. 2012.. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. . Cell Metab. 16::296309
    [Google Scholar]
  80. 80.
    Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG. 2002.. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. . Endocrinology 143::23946
    [Google Scholar]
  81. 81.
    Hadjieconomou D, King G, Gaspar P, Mineo A, Blackie L, et al. 2020.. Enteric neurons increase maternal food intake during reproduction. . Nature 587::45559
    [Google Scholar]
  82. 82.
    Hahn TM, Breininger JF, Baskin DG, Schwartz MW. 1998.. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. . Nat. Neurosci. 1::27172
    [Google Scholar]
  83. 83.
    Håkansson ML, Brown H, Ghilardi N, Skoda RC, Meister B. 1998.. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. . J. Neurosci. 18::55972
    [Google Scholar]
  84. 84.
    Han W, Tellez LA, Perkins MH, Perez IO, Qu T, et al. 2018.. A neural circuit for gut-induced reward. . Cell 175::88788
    [Google Scholar]
  85. 85.
    Hartenstein V. 2006.. The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. . J. Endocrinol. 190::55570
    [Google Scholar]
  86. 86.
    Hayes MR, Skibicka KP, Leichner TM, Guarnieri DJ, DiLeone RJ, et al. 2010.. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. . Cell Metab. 11::7783
    [Google Scholar]
  87. 87.
    He Y, Cai X, Liu H, Conde KM, Xu P, et al. 2021.. 5-HT recruits distinct neurocircuits to inhibit hunger-driven and non-hunger-driven feeding. . Mol. Psychiatry 26::721124
    [Google Scholar]
  88. 88.
    Heisler LK, Jobst EE, Sutton GM, Zhou L, Borok E, et al. 2006.. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. . Neuron 51::23949
    [Google Scholar]
  89. 89.
    Holst JJ, Andersen DB, Grunddal KV. 2022.. Actions of glucagon-like peptide-1 receptor ligands in the gut. . Br. J. Pharmacol. 179::72742
    [Google Scholar]
  90. 90.
    Holt MK, Richards JE, Cook DR, Brierley DI, Williams DL, et al. 2019.. Preproglucagon neurons in the nucleus of the solitary tract are the main source of brain GLP-1, mediate stress-induced hypophagia, and limit unusually large intakes of food. . Diabetes 68::2133
    [Google Scholar]
  91. 91.
    Horio N, Liberles SD. 2021.. Hunger enhances food-odour attraction through a neuropeptide Y spotlight. . Nature 592::26266
    [Crossref] [Google Scholar]
  92. 92.
    Hsu J-Y, Crawley S, Chen M, Ayupova DA, Lindhout DA, et al. 2017.. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. . Nature 550::25559
    [Crossref] [Google Scholar]
  93. 93.
    Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, et al. 1997.. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. . Cell 88::13141
    [Crossref] [Google Scholar]
  94. 94.
    Inagaki HK, Panse KM, Anderson DJ. 2014.. Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. . Neuron 84::80620
    [Crossref] [Google Scholar]
  95. 95.
    Jais A, Paeger L, Sotelo-Hitschfeld T, Bremser S, Prinzensteiner M, et al. 2020.. PNOCARC neurons promote hyperphagia and obesity upon high-fat-diet feeding. . Neuron 106::100925.e10
    [Crossref] [Google Scholar]
  96. 96.
    Jarvie BC, Hentges ST. 2012.. Expression of GABAergic and glutamatergic phenotypic markers in hypothalamic proopiomelanocortin neurons. . J. Comp. Neurol. 520::386376
    [Crossref] [Google Scholar]
  97. 97.
    Jin H, Fishman ZH, Ye M, Wang L, Zuker CS. 2021.. Top-down control of sweet and bitter taste in the mammalian brain. . Cell 184::25771.e16
    [Crossref] [Google Scholar]
  98. 98.
    Jing J, Wu Z, Wang J, Luo G, Lin H, et al. 2023.. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. . Signal. Transduct. Targeted Ther. 8::315
    [Crossref] [Google Scholar]
  99. 99.
    Jourjine N, Mullaney BC, Mann K, Scott K. 2016.. Coupled sensing of hunger and thirst signals balances sugar and water consumption. . Cell 166::85566
    [Crossref] [Google Scholar]
  100. 100.
    Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, et al. 2018.. A gut-brain neural circuit for nutrient sensory transduction. . Science 361::eaat5236
    [Crossref] [Google Scholar]
  101. 101.
    Kaplan JM, Seeley RJ, Grill HJ. 1993.. Daily caloric intake in intact and chronic decerebrate rats. . Behav. Neurosci. 107::87681
    [Crossref] [Google Scholar]
  102. 102.
    Kennedy GC. 1953.. The role of depot fat in the hypothalamic control of food intake in the rat. . Proc. R. Soc. B 140::57896
    [Google Scholar]
  103. 103.
    Kim DY, Heo G, Kim M, Kim H, Jin JA, et al. 2020.. A neural circuit mechanism for mechanosensory feedback control of ingestion. . Nature 580::37680
    [Crossref] [Google Scholar]
  104. 104.
    Kim SK, Rulifson EJ. 2004.. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. . Nature 431::31620
    [Crossref] [Google Scholar]
  105. 105.
    Kim SK, Tsao DD, Suh GSB, Miguel-Aliaga I. 2021.. Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila. . Cell Metab. 33::127992
    [Crossref] [Google Scholar]
  106. 106.
    King BM. 2006.. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. . Physiol. Behav. 87::22144
    [Crossref] [Google Scholar]
  107. 107.
    Koch M, Varela L, Kim JG, Kim JD, Hernández-Nuño F, et al. 2015.. Hypothalamic POMC neurons promote cannabinoid-induced feeding. . Nature 519::4550
    [Crossref] [Google Scholar]
  108. 108.
    Kohyama-Koganeya A, Kim YJ, Miura M, Hirabayashi Y. 2008.. A Drosophila orphan G protein-coupled receptor BOSS functions as a glucose-responding receptor: loss of boss causes abnormal energy metabolism. . PNAS 105::1532833
    [Crossref] [Google Scholar]
  109. 109.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. 1999.. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. . Nature 402::65660
    [Crossref] [Google Scholar]
  110. 110.
    Könner AC, Janoschek R, Plum L, Jordan SD, Rother E, et al. 2007.. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. . Cell Metab. 5::43849
    [Crossref] [Google Scholar]
  111. 111.
    Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, et al. 2011.. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. . J. Clin. Invest. 121::142428
    [Crossref] [Google Scholar]
  112. 112.
    Krashes MJ, Lowell BB, Garfield AS. 2016.. Melanocortin-4 receptor-regulated energy homeostasis. . Nat. Neurosci. 19::20619
    [Crossref] [Google Scholar]
  113. 113.
    Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE, et al. 2014.. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. . Nature 507::23842
    [Crossref] [Google Scholar]
  114. 114.
    Kréneisz O, Chen X, Fridell YW, Mulkey DK. 2010.. Glucose increases activity and Ca2+ in insulin-producing cells of adult Drosophila. . Neuroreport 21::111620
    [Crossref] [Google Scholar]
  115. 115.
    Kubrak O, Koyama T, Ahrentløv N, Jensen L, Malita A, et al. 2022.. The gut hormone Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under nutrient stress. . Nat. Commun. 13::692
    [Crossref] [Google Scholar]
  116. 116.
    Lam BYH, Cimino I, Polex-Wolf J, Kohnke SN, Rimmington D, et al. 2017.. Heterogeneity of hypothalamic pro-opiomelanocortin-expressing neurons revealed by single-cell RNA sequencing. . Mol. Metab. 6::38392
    [Crossref] [Google Scholar]
  117. 117.
    Lebrun B, Bariohay B, Moyse E, Jean A. 2006.. Brain-derived neurotrophic factor (BDNF) and food intake regulation: a minireview. . Autonom. Neurosci. 126–127::3038
    [Crossref] [Google Scholar]
  118. 118.
    Lee G, Park JH. 2004.. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. . Genetics 167::31123
    [Crossref] [Google Scholar]
  119. 119.
    Leinninger GM. 2011.. Lateral thinking about leptin: a review of leptin action via the lateral hypothalamus. . Physiol. Behav. 104::57281
    [Crossref] [Google Scholar]
  120. 120.
    Li C, Navarrete J, Liang-Guallpa J, Lu C, Funderburk SC, et al. 2019.. Defined paraventricular hypothalamic populations exhibit differential responses to food contingent on caloric state. . Cell Metab. 29::68194.e5
    [Crossref] [Google Scholar]
  121. 121.
    Li M, Tan HE, Lu Z, Tsang KS, Chung AJ, Zuker CS. 2022.. Gut–brain circuits for fat preference. . Nature 610::72230
    [Crossref] [Google Scholar]
  122. 122.
    Li MM, Madara JC, Steger JS, Krashes MJ, Balthasar N, et al. 2019.. The paraventricular hypothalamus regulates satiety and prevents obesity via two genetically distinct circuits. . Neuron 102::65367.e6
    [Crossref] [Google Scholar]
  123. 123.
    Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, et al. 2023.. Behavioral state-dependent modulation of insulin-producing cells in Drosophila. . Curr. Biol. 33::44963.e5
    [Crossref] [Google Scholar]
  124. 124.
    Lin H-H, Kuang MC, Hossain I, Xuan Y, Beebe L, et al. 2022.. A nutrient-specific gut hormone arbitrates between courtship and feeding. . Nature 602::63238
    [Crossref] [Google Scholar]
  125. 125.
    López-Ferreras L, Richard JE, Noble EE, Eerola K, Anderberg RH, et al. 2018.. Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight. . Mol. Psychiatry 23::115768
    [Crossref] [Google Scholar]
  126. 126.
    Ludwig MQ, Cheng W, Gordian D, Lee J, Paulsen SJ, et al. 2021.. A genetic map of the mouse dorsal vagal complex and its role in obesity. . Nat. Metab. 3::53045
    [Crossref] [Google Scholar]
  127. 127.
    Lutz TA, Senn M, Althaus J, Del Prete E, Ehrensperger F, Scharrer E. 1998.. Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. . Peptides 19::30917
    [Crossref] [Google Scholar]
  128. 128.
    Ly T, Oh JY, Sivakumar N, Shehata S, La Santa Medina N, et al. 2023.. Sequential appetite suppression by oral and visceral feedback to the brainstem. . Nature 624::13037
    [Crossref] [Google Scholar]
  129. 129.
    Malita A, Kubrak O, Koyama T, Ahrentløv N, Texada MJ, et al. 2022.. A gut-derived hormone suppresses sugar appetite and regulates food choice in Drosophila. . Nat. Metab. 4::153250
    [Crossref] [Google Scholar]
  130. 130.
    Mandelblat-Cerf Y, Ramesh RN, Burgess CR, Patella P, Yang Z, et al. 2015.. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales. . eLife 4::e07122
    [Crossref] [Google Scholar]
  131. 131.
    Marella S, Mann K, Scott K. 2012.. Dopaminergic modulation of sucrose acceptance behavior in Drosophila. . Neuron 73::94150
    [Crossref] [Google Scholar]
  132. 132.
    Martelli C, Pech U, Kobbenbring S, Pauls D, Bahl B, et al. 2017.. SIFamide translates hunger signals into appetitive and feeding behavior in Drosophila. . Cell Rep. 20::46478
    [Crossref] [Google Scholar]
  133. 133.
    Masek P, Keene AC. 2013.. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons. . PLOS Genet. 9::e1003710
    [Crossref] [Google Scholar]
  134. 134.
    McDougle M, de Araujo A, Singh A, Yang M, Braga I, et al. 2024.. Separate gut-brain circuits for fat and sugar reinforcement combine to promote overeating. . Cell Metab. 36:(2):393407.e7
    [Crossref] [Google Scholar]
  135. 135.
    McKellar CE, Siwanowicz I, Dickson BJ, Simpson JH. 2020.. Controlling motor neurons of every muscle for fly proboscis reaching. . eLife 9::e54978
    [Crossref] [Google Scholar]
  136. 136.
    Mercader JM, Ribasés M, Gratacòs M, González JR, Bayés M, et al. 2007.. Altered brain-derived neurotrophic factor blood levels and gene variability are associated with anorexia and bulimia. . Genes Brain Behav. 6::70616
    [Crossref] [Google Scholar]
  137. 137.
    Miguel-Aliaga I, Jasper H, Lemaitre B. 2018.. Anatomy and physiology of the digestive tract of Drosophila melanogaster. . Genetics 210::35796
    [Crossref] [Google Scholar]
  138. 138.
    Min S, Chae H-S, Jang Y-H, Choi S, Lee S, et al. 2016.. Identification of a peptidergic pathway critical to satiety responses in Drosophila. . Curr. Biol. 26::81420
    [Crossref] [Google Scholar]
  139. 139.
    Min S, Oh Y, Verma P, Whitehead SC, Yapici N, et al. 2021.. Control of feeding by Piezo-mediated gut mechanosensation in Drosophila. . eLife 10::e63049
    [Crossref] [Google Scholar]
  140. 140.
    Miyamoto T, Slone J, Song X, Amrein H. 2012.. A fructose receptor functions as a nutrient sensor in the Drosophila brain. . Cell 151::111325
    [Crossref] [Google Scholar]
  141. 141.
    Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, et al. 1997.. Congenital leptin deficiency is associated with severe early-onset obesity in humans. . Nature 387::9038
    [Crossref] [Google Scholar]
  142. 142.
    Muhsin NIA, Bentley L, Bai Y, Goldsworthy M, Cox RD. 2020.. A novel mutation in the mouse Pcsk1 gene showing obesity and diabetes. . Mamm. Genome 31::1729
    [Crossref] [Google Scholar]
  143. 143.
    Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, et al. 2019.. Glucagon-like peptide 1 (GLP-1). . Mol. Metab. 30::72130
    [Crossref] [Google Scholar]
  144. 144.
    Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, et al. 2015.. Ghrelin. . Mol. Metab. 4::43760
    [Crossref] [Google Scholar]
  145. 145.
    Nässel DR, Zandawala M. 2019.. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. . Progress Neurobiol. 179::101607
    [Crossref] [Google Scholar]
  146. 146.
    Nauck MA, Quast DR, Wefers J, Meier JJ. 2021.. GLP-1 receptor agonists in the treatment of type 2 diabetes—state-of-the-art. . Mol. Metab. 46::101102
    [Crossref] [Google Scholar]
  147. 147.
    Nelson JM, Saunders CJ, Johnson EC. 2021.. The intrinsic nutrient sensing adipokinetic hormone producing cells function in modulation of metabolism, activity, and stress. . Int. J. Mol. Sci. 22::7515
    [Crossref] [Google Scholar]
  148. 148.
    Oh Y, Lai JS-Y, Mills HJ, Erdjument-Bromage H, Giammarinaro B, et al. 2019.. A glucose-sensing neuron pair regulates insulin and glucagon in Drosophila. . Nature 574::55964
    [Crossref] [Google Scholar]
  149. 149.
    Oh Y, Lai JS-Y, Min S, Huang HW, Liberles SD, et al. 2021.. Periphery signals generated by Piezo-mediated stomach stretch and Neuromedin-mediated glucose load regulate the Drosophila brain nutrient sensor. . Neuron 109::197995.e6
    [Crossref] [Google Scholar]
  150. 150.
    Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, et al. 1997.. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. . Science 278::13538
    [Crossref] [Google Scholar]
  151. 151.
    Pan WW, Myers MG Jr. 2018.. Leptin and the maintenance of elevated body weight. . Nat. Rev. Neurosci. 19::95105
    [Crossref] [Google Scholar]
  152. 152.
    Pei H, Sutton AK, Burnett KH, Fuller PM, Olson DP. 2014.. AVP neurons in the paraventricular nucleus of the hypothalamus regulate feeding. . Mol. Metab. 3::20915
    [Crossref] [Google Scholar]
  153. 153.
    Pool A-H, Kvello P, Mann K, Cheung SK, Gordon MD, et al. 2014.. Four GABAergic interneurons impose feeding restraint in Drosophila. . Neuron 83::16477
    [Crossref] [Google Scholar]
  154. 154.
    Poritsanos NJ, Lew PS, Fischer J, Mobbs CV, Nagy JI, et al. 2011.. Impaired hypothalamic Fto expression in response to fasting and glucose in obese mice. . Nutr. Diabetes 1::e19
    [Crossref] [Google Scholar]
  155. 155.
    Qi W, Wang G, Wang L. 2021.. A novel satiety sensor detects circulating glucose and suppresses food consumption via insulin-producing cells in Drosophila. . Cell Res. 31::58088
    [Crossref] [Google Scholar]
  156. 156.
    Qin C, Li J, Tang K. 2018.. The paraventricular nucleus of the hypothalamus: development, function, and human diseases. . Endocrinology 159::345872
    [Crossref] [Google Scholar]
  157. 157.
    Rajan A, Perrimon N. 2012.. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. . Cell 151::12337
    [Crossref] [Google Scholar]
  158. 158.
    Ramos-Molina B, Martin MG, Lindberg I. 2016.. PCSK1 variants and human obesity. . Prog. Mol. Biol. Transl. Sci. 140::4774
    [Crossref] [Google Scholar]
  159. 159.
    Ran C, Boettcher JC, Kaye JA, Gallori CE, Liberles SD. 2022.. A brainstem map for visceral sensations. . Nature 609::32026
    [Crossref] [Google Scholar]
  160. 160.
    Rau AR, Hentges ST. 2021.. Energy state alters regulation of proopiomelanocortin neurons by glutamatergic ventromedial hypothalamus neurons: pre- and postsynaptic mechanisms. . J. Neurophysiol. 125::72030
    [Crossref] [Google Scholar]
  161. 161.
    Reinoß P, Ciglieri E, Minere M, Bremser S, Klein A, et al. 2020.. Hypothalamic Pomc neurons innervate the spinal cord and modulate the excitability of premotor circuits. . Curr. Biol. 30::457993.e7
    [Crossref] [Google Scholar]
  162. 162.
    Richard JE, Anderberg RH, Göteson A, Gribble FM, Reimann F, Skibicka KP. 2015.. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. . PLOS ONE 10::e0119034
    [Crossref] [Google Scholar]
  163. 163.
    Richards P, Parker HE, Adriaenssens AE, Hodgson JM, Cork SC, et al. 2014.. Identification and characterization of GLP-1 receptor–expressing cells using a new transgenic mouse model. . Diabetes 63::122433
    [Crossref] [Google Scholar]
  164. 164.
    Richter EA, Sylow L, Hargreaves M. 2021.. Interactions between insulin and exercise. . Biochem. J. 478::382746
    [Crossref] [Google Scholar]
  165. 165.
    Roman CW, Derkach VA, Palmiter RD. 2016.. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. . Nat. Commun. 7::11905
    [Crossref] [Google Scholar]
  166. 166.
    Roman CW, Sloat SR, Palmiter RD. 2017.. A tale of two circuits: CCKNTS neuron stimulation controls appetite and induces opposing motivational states by projections to distinct brain regions. . Neuroscience 358::31624
    [Crossref] [Google Scholar]
  167. 167.
    Rulifson EJ, Kim SK, Nusse R. 2002.. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. . Science 296::111820
    [Crossref] [Google Scholar]
  168. 168.
    Sabatini PV, Frikke-Schmidt H, Arthurs J, Gordian D, Patel A, et al. 2021.. GFRAL-expressing neurons suppress food intake via aversive pathways. . PNAS 118::e2021357118
    [Crossref] [Google Scholar]
  169. 169.
    Sayar-Atasoy N, Aklan I, Yavuz Y, Laule C, Kim H, et al. 2024.. AgRP neurons encode circadian feeding time. . Nat. Neurosci. 27::10215
    [Crossref] [Google Scholar]
  170. 170.
    Sayar-Atasoy N, Laule C, Aklan I, Kim H, Yavuz Y, et al. 2023.. Adrenergic modulation of melanocortin pathway by hunger signals. . Nat. Commun. 14::6602
    [Crossref] [Google Scholar]
  171. 171.
    Scott K. 2018.. Gustatory processing in Drosophila melanogaster. . Annu. Rev. Entomol. 63::1530
    [Crossref] [Google Scholar]
  172. 172.
    Scott K, Brady R Jr., Cravchik A, Morozov P, Rzhetsky A, et al. 2001.. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. . Cell 104::66173
    [Crossref] [Google Scholar]
  173. 173.
    Servin-Vences MR, Lam RM, Koolen A, Wang Y, Saade DN, et al. 2023.. PIEZO2 in somatosensory neurons controls gastrointestinal transit. . Cell 186::338699.e15
    [Crossref] [Google Scholar]
  174. 174.
    Shah BP, Vong L, Olson DP, Koda S, Krashes MJ, et al. 2014.. MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. . PNAS 111::1319398
    [Crossref] [Google Scholar]
  175. 175.
    Shiu PK, Sterne GR, Engert S, Dickson BJ, Scott K. 2022.. Taste quality and hunger interactions in a feeding sensorimotor circuit. . eLife 11::e79887
    [Crossref] [Google Scholar]
  176. 176.
    Soderberg JA, Carlsson MA, Nassel DR. 2012.. Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin. . Front. Endocrinol. 3::109
    [Crossref] [Google Scholar]
  177. 177.
    Spanswick D, Smith M, Groppi V, Logan S, Ashford M. 1997.. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. . Nature 390::52125
    [Crossref] [Google Scholar]
  178. 178.
    Sternson SM, Shepherd GM, Friedman JM. 2005.. Topographic mapping of VMH → arcuate nucleus microcircuits and their reorganization by fasting. . Nat. Neurosci. 8::135663
    [Crossref] [Google Scholar]
  179. 179.
    Steuernagel L, Lam BYH, Klemm P, Dowsett GKC, Bauder CA, et al. 2022.. HypoMap—a unified single-cell gene expression atlas of the murine hypothalamus. . Nat. Metab. 4::140219
    [Crossref] [Google Scholar]
  180. 180.
    Su Z, Alhadeff AL, Betley JN. 2017.. Nutritive, post-ingestive signals are the primary regulators of AgRP neuron activity. . Cell Rep. 21::272436
    [Crossref] [Google Scholar]
  181. 181.
    Tan HE, Sisti AC, Jin H, Vignovich M, Villavicencio M, et al. 2020.. The gut–brain axis mediates sugar preference. . Nature 580::51116
    [Crossref] [Google Scholar]
  182. 182.
    Tao J, Campbell JN, Tsai LT, Wu C, Liberles SD, Lowell BB. 2021.. Highly selective brain-to-gut communication via genetically defined vagus neurons. . Neuron 109::210615.e4
    [Crossref] [Google Scholar]
  183. 183.
    Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, et al. 1995.. Identification and expression cloning of a leptin receptor, OB-R. . Cell 83::126371
    [Crossref] [Google Scholar]
  184. 184.
    Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, et al. 2009.. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. . Nat. Genet. 41::1824
    [Crossref] [Google Scholar]
  185. 185.
    Titos I, Juginović A, Vaccaro A, Nambara K, Gorelik P, et al. 2023.. A gut-secreted peptide suppresses arousability from sleep. . Cell 186::138297.e21
    [Crossref] [Google Scholar]
  186. 186.
    Trapp S, Cork SC. 2015.. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 309::R795804
    [Crossref] [Google Scholar]
  187. 187.
    Tschöp M, Smiley DL, Heiman ML. 2000.. Ghrelin induces adiposity in rodents. . Nature 407::90813
    [Crossref] [Google Scholar]
  188. 188.
    Turton M, O'Shea D, Gunn I, Beak S, Edwards C, et al. 1996.. A role for glucagon-like peptide-1 in the central regulation of feeding. . Nature 379::6972
    [Crossref] [Google Scholar]
  189. 189.
    Üner AG, Keçik O, Quaresma PGF, De Araujo TM, Lee H, et al. 2019.. Role of POMC and AgRP neuronal activities on glycaemia in mice. . Sci. Rep. 9::13068
    [Crossref] [Google Scholar]
  190. 190.
    Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M. 2007.. Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. . J. Neurosci. 27::1426574
    [Crossref] [Google Scholar]
  191. 191.
    Vaisse C, Clement K, Guy-Grand B, Froguel P. 1998.. A frameshift mutation in human MC4R is associated with a dominant form of obesity. . Nat. Genet. 20::11314
    [Crossref] [Google Scholar]
  192. 192.
    Vong L, Ye C, Yang Z, Choi B, Chua S Jr., Lowell BB. 2011.. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. . Neuron 71::14254
    [Crossref] [Google Scholar]
  193. 193.
    Wang D, He X, Zhao Z, Feng Q, Lin R, et al. 2015.. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. . Front. Neuroanat. 9::40
    [Google Scholar]
  194. 194.
    Wang P, Jia Y, Liu T, Jan Y-N, Zhang W. 2020.. Visceral mechano-sensing neurons control Drosophila feeding by using Piezo as a sensor. . Neuron 108::64050.e4
    [Crossref] [Google Scholar]
  195. 195.
    Wang Q, Liu C, Uchida A, Chuang JC, Walker A, et al. 2014.. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. . Mol. Metab. 3::6472
    [Crossref] [Google Scholar]
  196. 196.
    Williams EK, Chang RB, Strochlic DE, Umans BD, Lowell BB, Liberles SD. 2016.. Sensory neurons that detect stretch and nutrients in the digestive system. . Cell 166::20921
    [Crossref] [Google Scholar]
  197. 197.
    Wu Q, Boyle MP, Palmiter RD. 2009.. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. . Cell 137::122534
    [Crossref] [Google Scholar]
  198. 198.
    Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, et al. 2003.. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. . Nat. Neurosci. 6::73642
    [Crossref] [Google Scholar]
  199. 199.
    Xu J, Bartolome CL, Low CS, Yi X, Chien CH, et al. 2018.. Genetic identification of leptin neural circuits in energy and glucose homeostases. . Nature 556::5059
    [Crossref] [Google Scholar]
  200. 200.
    Xu S, Yang H, Menon V, Lemire AL, Wang L, et al. 2020.. Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. . Science 370::eabb2494
    [Crossref] [Google Scholar]
  201. 201.
    Xu Y, Jones JE, Kohno D, Williams KW, Lee CE, et al. 2008.. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. . Neuron 60::58289
    [Crossref] [Google Scholar]
  202. 202.
    Yamamoto H, Kishi T, Lee CE, Choi BJ, Fang H, et al. 2003.. Glucagon-like peptide-1-responsive catecholamine neurons in the area postrema link peripheral glucagon-like peptide-1 with central autonomic control sites. . J. Neurosci. 23::293946
    [Crossref] [Google Scholar]
  203. 203.
    Yanagi S, Sato T, Kangawa K, Nakazato M. 2018.. The homeostatic force of ghrelin. . Cell Metab. 27::786804
    [Crossref] [Google Scholar]
  204. 204.
    Yang Y, Atasoy D, Su HH, Sternson SM. 2011.. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. . Cell 146::9921003
    [Crossref] [Google Scholar]
  205. 205.
    Yang Z, Huang R, Fu X, Wang G, Qi W, et al. 2018.. A post-ingestive amino acid sensor promotes food consumption in Drosophila. . Cell Res. 28::101325
    [Crossref] [Google Scholar]
  206. 206.
    Yao Z, Scott K. 2022.. Serotonergic neurons translate taste detection into internal nutrient regulation. . Neuron 110::103650.e7
    [Crossref] [Google Scholar]
  207. 207.
    Yapici N, Cohn R, Schusterreiter C, Ruta V, Vosshall LB. 2016.. A taste circuit that regulates ingestion by integrating food and hunger signals. . Cell 165::71529
    [Crossref] [Google Scholar]
  208. 208.
    Yaswen L, Diehl N, Brennan MB, Hochgeschwender U. 1999.. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. . Nat. Med. 5::106670
    [Crossref] [Google Scholar]
  209. 209.
    Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O'Rahilly S. 1998.. A frameshift mutation in MC4R associated with dominantly inherited human obesity. . Nat. Genet. 20::11112
    [Crossref] [Google Scholar]
  210. 210.
    Yoshinari Y, Kosakamoto H, Kamiyama T, Hoshino R, Matsuoka R, et al. 2021.. The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster. . Nat. Commun. 12::4818
    [Crossref] [Google Scholar]
  211. 211.
    Yu Y, Huang R, Ye J, Zhang V, Wu C, et al. 2016.. Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. . eLife 5::e15693
    [Crossref] [Google Scholar]
  212. 212.
    Zhan C, Zhou J, Feng Q, Zhang J-e, Lin S, et al. 2013.. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. . J. Neurosci. 33::362432
    [Crossref] [Google Scholar]
  213. 213.
    Zhan YP, Liu L, Zhu Y. 2016.. Taotie neurons regulate appetite in Drosophila. . Nat. Commun. 7::13633
    [Crossref] [Google Scholar]
  214. 214.
    Zhang C, Kaye JA, Cai Z, Wang Y, Prescott SL, Liberles SD. 2021.. Area postrema cell types that mediate nausea-associated behaviors. . Neuron 109::46172.e5
    [Crossref] [Google Scholar]
  215. 215.
    Zhang T, Perkins MH, Chang H, Han W, de Araujo IE. 2022.. An inter-organ neural circuit for appetite suppression. . Cell 185::247894.e28
    [Crossref] [Google Scholar]
  216. 216.
    Zhang X, van den Pol AN. 2016.. Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. . Nat. Neurosci. 19::134147
    [Crossref] [Google Scholar]
  217. 217.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. 1994.. Positional cloning of the mouse obese gene and its human homologue. . Nature 372::42532
    [Crossref] [Google Scholar]
  218. 218.
    Zhao Q, Yu CD, Wang R, Xu QJ, Dai Pra R, et al. 2022.. A multidimensional coding architecture of the vagal interoceptive system. . Nature 603::87884
    [Crossref] [Google Scholar]
  219. 219.
    Zhao Y, Khallaf MA, Johansson E, Dzaki N, Bhat S, et al. 2022.. Hedgehog-mediated gut-taste neuron axis controls sweet perception in Drosophila. . Nat. Commun. 13::7810
    [Crossref] [Google Scholar]
  220. 220.
    Zheng Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M, et al. 2018.. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. . Cell 174::73043.e22
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102202
Loading
/content/journals/10.1146/annurev-genet-111523-102202
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error