1932

Abstract

Cold is an important environmental factor limiting plant growth and development. Recent studies have revealed the complex regulatory networks associated with plant responses to cold and identified their interconnections with signaling pathways related to light, the circadian clock, plant hormones, and pathogen defense. In this article, we review recent advances in understanding the molecular basis of cold perception and signal transduction pathways. We also summarize recent developments in the study of cold-responsive growth and flowering. Finally, we propose future directions for the study of long-term cold sensing, RNA secondary structures in response to cold, and the development of cold-tolerant and high-yield crops.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102226
2024-11-25
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102226.html?itemId=/content/journals/10.1146/annurev-genet-111523-102226&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, et al. 2006.. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. . J. Biol. Chem. 281::3763645
    [Crossref] [Google Scholar]
  2. 2.
    Albanesi D, Martin M, Trajtenberg F, Mansilla MC, Haouz A, et al. 2009.. Structural plasticity and catalysis regulation of a thermosensor histidine kinase. . PNAS 106::1618590
    [Crossref] [Google Scholar]
  3. 3.
    Assmann SM, Chou HL, Bevilacqua PC. 2023.. Rock, scissors, paper: how RNA structure informs function. . Plant Cell 35::1671707
    [Crossref] [Google Scholar]
  4. 4.
    Bao F, Huang X, Zhu C, Zhang X, Li X, Yang S. 2014.. Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses. . New Phytol. 202::132034
    [Crossref] [Google Scholar]
  5. 5.
    Beine-Golovchuk O, Firmino AAP, Dabrowska A, Schmidt S, Erban A, et al. 2018.. Plant temperature acclimation and growth rely on cytosolic ribosome biogenesis factor homologs. . Plant Physiol. 176::225176
    [Crossref] [Google Scholar]
  6. 6.
    Catalá R, López-Cobollo R, Castellano MM, Angosto T, Alonso JM, et al. 2014.. The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. . Plant Cell 26::332642
    [Crossref] [Google Scholar]
  7. 7.
    Catalá R, Medina J, Salinas J. 2011.. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. . PNAS 108::1647580
    [Crossref] [Google Scholar]
  8. 8.
    Chan Z, Wang Y, Cao M, Gong Y, Mu Z, et al. 2016.. RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway. . New Phytol. 209::152739
    [Crossref] [Google Scholar]
  9. 9.
    Chatzigeorgiou M, Yoo S, Watson JD, Lee W-H, Spencer WC, et al. 2010.. Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. . Nat. Neurosci. 13::86168
    [Crossref] [Google Scholar]
  10. 10.
    Chen D, Lyu M, Kou X, Li J, Yang Z, et al. 2022.. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. . Mol. Cell 82::301529.e6
    [Crossref] [Google Scholar]
  11. 11.
    Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. 2020.. Abscisic acid dynamics, signaling, and functions in plants. . J. Integr. Plant Biol. 62::2554
    [Crossref] [Google Scholar]
  12. 12.
    Chinnusamy V, Ohta M, Kanrar S, Lee B-H, Hong X, et al. 2003.. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. . Genes Dev. 17::104354
    [Crossref] [Google Scholar]
  13. 13.
    Chow BY, Sanchez SE, Breton G, Pruneda-Paz JL, Krogan NT, Kay SA. 2014.. Transcriptional regulation of LUX by CBF1 mediates cold input to the circadian clock in Arabidopsis. . Curr. Biol. 24::151824
    [Crossref] [Google Scholar]
  14. 14.
    Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F, et al. 2020.. An RNA thermoswitch regulates daytime growth in Arabidopsis. . Nat. Plant 6::52232
    [Crossref] [Google Scholar]
  15. 15.
    Corbesier L, Vincent C, Jang SH, Fornara F, Fan QZ, et al. 2007.. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. . Science 316::103033
    [Crossref] [Google Scholar]
  16. 16.
    Crosthwaite SK, Jenkins GI. 1993.. The role of leaves in the perception of vernalizing temperatures in sugar beet. . J. Exp. Bot. 44::8016
    [Crossref] [Google Scholar]
  17. 17.
    Cybulski LE, Ballering J, Moussatova A, Inda ME, Vazquez DB, et al. 2015.. Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness. . PNAS 112::635358
    [Crossref] [Google Scholar]
  18. 18.
    Davis SJ, Chen WW, Takahashi N, Hirata Y, Mas P. 2020.. A mobile ELF4 delivers circadian temperature information from shoots to roots. . Nat. Plant 6::41626
    [Crossref] [Google Scholar]
  19. 19.
    Ding Y, Jia Y, Shi Y, Zhang X, Song C, et al. 2018.. OST1-mediated BTF3L phosphorylation positively regulates CBFs during plant cold responses. . EMBO J. 37::e98228
    [Crossref] [Google Scholar]
  20. 20.
    Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. 2015.. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. . Dev. Cell 32::27889
    [Crossref] [Google Scholar]
  21. 21.
    Ding Y, Lv J, Shi Y, Gao J, Hua J, et al. 2019.. EGR2 phosphatase regulates OST1 kinase activity and freezing tolerance in Arabidopsis. . EMBO J. 38::e99819
    [Crossref] [Google Scholar]
  22. 22.
    Ding Y, Shi Y, Yang S. 2019.. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. . New Phytol. 222::1690704
    [Crossref] [Google Scholar]
  23. 23.
    Ding Y, Shi Y, Yang S. 2020.. Molecular regulation of plant responses to environmental temperatures. . Mol. Plant 13::54464
    [Crossref] [Google Scholar]
  24. 24.
    Ding Y, Yang H, Wu S, Fu D, Li M, et al. 2022.. CPK28-NLP7 module integrates cold-induced Ca2+ signal and transcriptional reprogramming in Arabidopsis. . Sci. Adv. 8::eabn7901
    [Crossref] [Google Scholar]
  25. 25.
    Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF. 2009.. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. . Plant Cell 21::97284
    [Crossref] [Google Scholar]
  26. 26.
    Dong C-H, Agarwal M, Zhang Y, Xie Q, Zhu J-K. 2006.. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. . PNAS 103::828196
    [Crossref] [Google Scholar]
  27. 27.
    Dong J, Ni W, Yu R, Deng XW, Chen H, Wei N. 2017.. Light-dependent degradation of PIF3 by SCFEBF1/2 promotes a photomorphogenic response in Arabidopsis. . Curr. Biol. 27::242030.e6
    [Crossref] [Google Scholar]
  28. 28.
    Dong MA, Farre EM, Thomashow MF. 2011.. CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. . PNAS 108::724146
    [Crossref] [Google Scholar]
  29. 29.
    Dong X, Yan Y, Jiang B, Shi Y, Jia Y, et al. 2020.. The cold response regulator CBF1 promotes Arabidopsis hypocotyl growth at ambient temperatures. . EMBO J. 39::e103630
    [Crossref] [Google Scholar]
  30. 30.
    Dowgert MF, Steponkus PL. 1984.. Behavior of the plasma membrane of isolated protoplasts during a freeze-thaw cycle. . Plant Physiol. 75::113951
    [Crossref] [Google Scholar]
  31. 31.
    Du L, Ali GS, Simons KA, Hou J, Yang T, et al. 2009.. Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. . Nature 457::115458
    [Crossref] [Google Scholar]
  32. 32.
    Dubrovsky JG, Vissenberg K. 2021.. The quiescent centre and root apical meristem: organization and function. . J. Exp. Bot. 72::667378
    [Crossref] [Google Scholar]
  33. 33.
    Eremina M, Rozhon W, Poppenberger B. 2016.. Hormonal control of cold stress responses in plants. . Cell. Mol. Life Sci. 73::797810
    [Crossref] [Google Scholar]
  34. 34.
    Eremina M, Unterholzner SJ, Rathnayake AI, Castellanos M, Khan M, et al. 2016.. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. . PNAS 113::E598291
    [Crossref] [Google Scholar]
  35. 35.
    Ezer D, Jung J-H, Lan H, Biswas S, Box MS, et al. 2017.. The evening complex coordinates environmental and endogenous signals in Arabidopsis. . Nat. Plant 3::17087
    [Crossref] [Google Scholar]
  36. 36.
    Fowler SG, Cook D, Thomashow ME. 2005.. Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. . Plant Physiol. 137::96168
    [Crossref] [Google Scholar]
  37. 37.
    Franklin KA, Whitelam GC. 2007.. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. . Nat. Genet. 39::141013
    [Crossref] [Google Scholar]
  38. 38.
    Fujii Y, Tanaka H, Konno N, Ogasawara Y, Hamashima N, et al. 2017.. Phototropin perceives temperature based on the lifetime of its photoactivated state. . PNAS 114::920611
    [Crossref] [Google Scholar]
  39. 39.
    Gampala SS, Kim TW, He JX, Tang WQ, Deng ZP, et al. 2007.. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. . Dev. Cell 13::17789
    [Crossref] [Google Scholar]
  40. 40.
    Gu X, Jiang D, Yang W, Jacob Y, Michaels SD, He Y. 2011.. Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing. . PLOS Genet. 7::e1002366
    [Crossref] [Google Scholar]
  41. 41.
    Guo XY, Zhang DJ, Wang ZL, Xu SJ, Batistic O, et al. 2022.. Cold-induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice. . EMBO J. 42::e110518
    [Crossref] [Google Scholar]
  42. 42.
    Hon WC, Griffith M, Mlynarz A, Kwok YC, Yang DSC. 1995.. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. . Plant Physiol. 109::87989
    [Crossref] [Google Scholar]
  43. 43.
    Hong JH, Savina M, Du J, Devendran A, Ramakanth KK, et al. 2017.. A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. . Cell 170::10213.e14
    [Crossref] [Google Scholar]
  44. 44.
    Hu Y, Jiang L, Wang F, Yu D. 2013.. Jasmonate regulates the INDUCER OF CBF EXPRESSION–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. . Plant Cell 25::2907424
    [Crossref] [Google Scholar]
  45. 45.
    Hu Y, Zhang L, Zhao L, Li J, He SB, et al. 2011.. Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. . PLOS ONE 6::e22132
    [Crossref] [Google Scholar]
  46. 46.
    Huang X, Li J, Bao F, Zhang X, Yang S. 2010.. A gain-of-function mutation in the Arabidopsis disease resistance gene RPP4 confers sensitivity to low temperature. . Plant Physiol. 154::796809
    [Crossref] [Google Scholar]
  47. 47.
    Iida H, Mahonen AP. 2020.. Growth-mediated sensing of long-term cold in plants. . Nature 583::69091
    [Crossref] [Google Scholar]
  48. 48.
    Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. 1998.. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. . Science 280::1046
    [Crossref] [Google Scholar]
  49. 49.
    Jeon J, Kim NY, Kim S, Kang NY, Novak O, et al. 2010.. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. . J. Biol. Chem. 285::2337186
    [Crossref] [Google Scholar]
  50. 50.
    Jiang B, Shi Y, Peng Y, Jia Y, Yan Y, et al. 2020.. Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. . Mol. Plant 13::894906
    [Crossref] [Google Scholar]
  51. 51.
    Jiang B, Shi Y, Zhang X, Xin X, Qi LJ, et al. 2017.. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. . PNAS 114::E6695702
    [Google Scholar]
  52. 52.
    Jiang HF, Shi YT, Liu JY, Li Z, Fu DY, et al. 2022.. Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize. . Nat. Plant 8::117690
    [Crossref] [Google Scholar]
  53. 53.
    Jin S, Kim SY, Susila H, Nasim Z, Youn G, Ahn JH. 2022.. FLOWERING LOCUS M isoforms differentially affect the subcellular localization and stability of SHORT VEGETATIVE PHASE to regulate temperature-responsive flowering in Arabidopsis. . Mol. Plant 15::1696709
    [Crossref] [Google Scholar]
  54. 54.
    Jung JH, Barbosa AD, Hutin S, Kumita JR, Wigge PA. 2020.. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. . Nature 585::25660
    [Crossref] [Google Scholar]
  55. 55.
    Jung JH, Domijan M, Klose C, Biswas S, Ezer D, et al. 2016.. Phytochromes function as thermosensors in Arabidopsis. . Science 354::88689
    [Crossref] [Google Scholar]
  56. 56.
    Jung J-H, Park J-H, Lee S, To TK, Kim J-M, et al. 2013.. The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 activates FLOWERING LOCUS C transcription via chromatin remodeling under short-term cold stress in Arabidopsis. . Plant Cell 25::437890
    [Crossref] [Google Scholar]
  57. 57.
    Jung J-H, Seo PJ, Park C-M. 2012.. The E3 ubiquitin ligase HOS1 regulates Arabidopsis flowering by mediating CONSTANS degradation under cold stress. . J. Biol. Chem. 287::4327787
    [Crossref] [Google Scholar]
  58. 58.
    Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P. 2007.. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. . Planta 225::35364
    [Crossref] [Google Scholar]
  59. 59.
    Kaplan F, Guy CL. 2004.. β-Amylase induction and the protective role of maltose during temperature shock. . Plant Physiol. 135::167484
    [Crossref] [Google Scholar]
  60. 60.
    Kidokoro S, Hayashi K, Haraguchi H, Ishikawa T, Yamaguchi-Shinozaki K. 2021.. Posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression in Arabidopsis. . PNAS 118::e2021048118
    [Crossref] [Google Scholar]
  61. 61.
    Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y, et al. 2009.. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. . Plant Physiol. 151::204657
    [Crossref] [Google Scholar]
  62. 62.
    Kidokoro S, Yoneda K, Takasaki H, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K. 2017.. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. . Plant Cell 29::76074
    [Crossref] [Google Scholar]
  63. 63.
    Kim HJ, Kim YK, Park JY, Kim J. 2002.. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. . Plant J. 29::693704
    [Crossref] [Google Scholar]
  64. 64.
    Kim JH, Castroverde CDM, Huang S, Li C, Hilleary R, et al. 2022.. Increasing the resilience of plant immunity to a warming climate. . Nature 607::33944
    [Crossref] [Google Scholar]
  65. 65.
    Kim YS, An C, Park S, Gilmour SJ, Wang L, et al. 2017.. CAMTA-mediated regulation of salicylic acid immunity pathway genes in Arabidopsis exposed to low temperature and pathogen infection. . Plant Cell 29::246577
    [Crossref] [Google Scholar]
  66. 66.
    Kim YS, Park S, Gilmour SJ, Thomashow MF. 2013.. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. . Plant J. 75::36476
    [Crossref] [Google Scholar]
  67. 67.
    Kindgren P, Ard R, Ivanov M, Marquardt S. 2018.. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. . Nat. Commun. 9::4561
    [Crossref] [Google Scholar]
  68. 68.
    Knight H, Trewavas AJ, Knight MR. 1996.. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. . Plant Cell 8::489503
    [Google Scholar]
  69. 69.
    Lee CM, Thomashow MF. 2012.. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. . PNAS 109::1505459
    [Crossref] [Google Scholar]
  70. 70.
    Lee ES, Park JH, Wi SD, Chang HK, Sang YL. 2021.. Redox-dependent structural switch and CBF activation confer freezing tolerance in plants. . Nat. Plant 7::91422
    [Crossref] [Google Scholar]
  71. 71.
    Lee JH, Kim JJ, Kim SH, Cho HJ, Kim J, Ahn JH. 2012.. The E3 ubiquitin ligase HOS1 regulates low ambient temperature-responsive flowering in Arabidopsis thaliana. . Plant Cell Physiol. 53::180214
    [Crossref] [Google Scholar]
  72. 72.
    Lee JH, Ryu HS, Chung KS, Pose D, Kim S, et al. 2013.. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. . Science 342::62832
    [Crossref] [Google Scholar]
  73. 73.
    Legris M, Klose C, Burgie ES, Rojas CC, Neme M, et al. 2016.. Phytochrome B integrates light and temperature signals in Arabidopsis. . Science 354::897900
    [Crossref] [Google Scholar]
  74. 74.
    Li H, Ding Y, Shi Y, Zhang X, Zhang S, et al. 2017.. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. . Dev. Cell 43::63042.e4
    [Crossref] [Google Scholar]
  75. 75.
    Li H, Ye K, Shi Y, Cheng J, Zhang X, Yang S. 2017.. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. . Mol. Plant 10::54559
    [Crossref] [Google Scholar]
  76. 76.
    Li X, Ma D, Lu SX, Hu X, Huang R, et al. 2016.. Blue light- and low temperature-regulated COR27 and COR28 play roles in the Arabidopsis circadian clock. . Plant Cell 28::275569
    [Crossref] [Google Scholar]
  77. 77.
    Li Y, Shi Y, Li M, Fu D, Wu S, et al. 2021.. The CRY2–COP1–HY5–BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. . Plant Cell 33::355573
    [Crossref] [Google Scholar]
  78. 78.
    Li Z, Fu D, Wang X, Zeng R, Zhang X, et al. 2022.. The transcription factor bZIP68 negatively regulates cold tolerance in maize. . Plant Cell 34::283351
    [Crossref] [Google Scholar]
  79. 79.
    Liang XX, Zhou JM. 2018.. Receptor-like cytoplasmic kinases: central players in plant receptor kinase–mediated signaling. . Annu. Rev. Plant Biol. 69::26799
    [Crossref] [Google Scholar]
  80. 80.
    Liu H, Zhang Y, Lu S, Chen H, Wu J, et al. 2021.. HsfA1d promotes hypocotyl elongation under chilling via enhancing expression of ribosomal protein genes in Arabidopsis. . New Phytol. 231::64660
    [Crossref] [Google Scholar]
  81. 81.
    Liu J, Yang H, Bao F, Ao K, Zhang X, et al. 2015.. IBR5 modulates temperature-dependent, R protein CHS3-mediated defense responses in Arabidopsis. . PLOS Genet. 11::e1005584
    [Crossref] [Google Scholar]
  82. 82.
    Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, et al. 1998.. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. . Plant Cell 10::1391406
    [Crossref] [Google Scholar]
  83. 83.
    Liu Q, Ding Y, Shi Y, Ma L, Wang Y, et al. 2021.. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. . EMBO J. 40::e104559
    [Crossref] [Google Scholar]
  84. 84.
    Liu X, Jiang W, Li YL, Nie HZ, Cui LN, et al. 2023.. FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB. . Nat. Plant 9::64560
    [Crossref] [Google Scholar]
  85. 85.
    Liu Y, Xu C, Zhu Y, Zhang L, Chen T, et al. 2018.. The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice. . J. Integr. Plant Biol. 60::17388
    [Crossref] [Google Scholar]
  86. 86.
    Liu Z, Jia Y, Ding Y, Shi Y, Li Z, et al. 2017.. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. . Mol. Cell 66::11728
    [Crossref] [Google Scholar]
  87. 87.
    Lv J, Liu J, Ming Y, Shi Y, Song C, et al. 2021.. Reciprocal regulation between the negative regulator PP2CG1 phosphatase and the positive regulator OST1 kinase confers cold response in Arabidopsis. . J. Integr. Plant Biol. 63::156887
    [Crossref] [Google Scholar]
  88. 88.
    Ma Y, Dai X, Xu Y, Luo W, Zheng X, et al. 2015.. COLD1 confers chilling tolerance in rice. . Cell 160::120921
    [Crossref] [Google Scholar]
  89. 89.
    Mao D, Xin Y, Tan Y, Hu X, Bai J, et al. 2019.. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. . PNAS 116::3494501
    [Crossref] [Google Scholar]
  90. 90.
    Mathieu J, Warthmann N, Kuttner F, Schmid M. 2007.. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. . Curr. Biol. 17::105560
    [Crossref] [Google Scholar]
  91. 91.
    McKemy DD, Neuhausser WM, Julius D. 2002.. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. . Nature 416::5258
    [Crossref] [Google Scholar]
  92. 92.
    Miura K, Jin JB, Lee J, Yoo CY, Stirm V, et al. 2007.. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. . Plant Cell 19::140314
    [Crossref] [Google Scholar]
  93. 93.
    Mori K, Renhu N, Naito M, Nakamura A, Miura K. 2018.. Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+ increase and cold tolerance in Arabidopsis. . Sci. Rep. 8::550
    [Crossref] [Google Scholar]
  94. 94.
    Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, et al. 2009.. Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. . Plant Cell Physiol. 50::44762
    [Crossref] [Google Scholar]
  95. 95.
    Olate E, Jimenez-Gomez JM, Holuigue L, Salinas J. 2018.. NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors. . Nat. Plants 4::81123
    [Crossref] [Google Scholar]
  96. 96.
    Pazhouhandeh M, Molinier J, Berr A, Genschik P. 2011.. MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis. . PNAS 108::343035
    [Crossref] [Google Scholar]
  97. 97.
    Pearce RS. 2001.. Plant freezing and damage. . Ann. Bot. 87::41724
    [Crossref] [Google Scholar]
  98. 98.
    Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, et al. 2002.. A TRP channel that senses cold stimuli and menthol. . Cell 108::70515
    [Crossref] [Google Scholar]
  99. 99.
    Perez-Garcia P, Pucciariello O, Sanchez-Corrionero A, Cabrera J, Barrio CD, et al. 2023.. The cold-induced factor CBF3 mediates root stem cell activity, regeneration, and developmental response to cold. . Plant Commun. 4::100737
    [Crossref] [Google Scholar]
  100. 100.
    Qi L, Shi Y, Terzaghi W, Yang S, Li J. 2022.. Integration of light and temperature signaling pathways in plants. . J. Integr. Plant Biol. 64::393411
    [Crossref] [Google Scholar]
  101. 101.
    Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. 2013.. The biology of strigolactones. . Trends Plant Sci. 18::7283
    [Crossref] [Google Scholar]
  102. 102.
    Seo PJ, Kim MJ, Park J-Y, Kim S-Y, Jeon J, et al. 2010.. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. . Plant J. 61::66171
    [Crossref] [Google Scholar]
  103. 103.
    Seo PJ, Park MJ, Lim MH, Kim SG, Lee M, et al. 2012.. A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. . Plant Cell 24::242742
    [Crossref] [Google Scholar]
  104. 104.
    Shi Y, Ding Y, Yang S. 2015.. Cold signal transduction and its interplay with phytohormones during cold acclimation. . Plant Cell Physiol. 56::715
    [Crossref] [Google Scholar]
  105. 105.
    Shi Y, Ding Y, Yang S. 2018.. Molecular regulation of CBF signaling in cold acclimation. . Trends Plant Sci. 23::62337
    [Crossref] [Google Scholar]
  106. 106.
    Shi Y, Tian S, Hou L, Huang X, Zhang X, et al. 2012.. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. . Plant Cell 24::257895
    [Crossref] [Google Scholar]
  107. 107.
    Silva CS, Nayak A, Lai XL, Hutin S, Hugouvieux V, et al. 2020.. Molecular mechanisms of Evening Complex activity in Arabidopsis. . PNAS 117::69019
    [Crossref] [Google Scholar]
  108. 108.
    Šmarda P, Bureš P, Horová L, Leitch IJ, Mucina L, et al. 2014.. Ecological and evolutionary significance of genomic GC content diversity in monocots. . PNAS 111::E4096102
    [Crossref] [Google Scholar]
  109. 109.
    Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF. 1998.. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. . PNAS 95::1457075
    [Crossref] [Google Scholar]
  110. 110.
    Susila H, Juric S, Liu L, Gawarecka K, Chung KS, et al. 2021.. Florigen sequestration in cellular membranes modulates temperature-responsive flowering. . Science 373::113741
    [Crossref] [Google Scholar]
  111. 111.
    Thomashow MF. 1999.. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. . Annu. Rev. Plant Physiol. Plant Mol. Biol. 50::57199
    [Crossref] [Google Scholar]
  112. 112.
    Wang JC, Ren YL, Liu X, Luo S, Zhang X, et al. 2021.. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice. . Mol. Plant 14::31529
    [Crossref] [Google Scholar]
  113. 113.
    Wang P, Cui X, Zhao CS, Shi LY, Zhang GW, et al. 2017.. COR27 and COR28 encode nighttime repressors integrating Arabidopsis circadian clock and cold response. . J. Integr. Plant Biol. 59::7885
    [Crossref] [Google Scholar]
  114. 114.
    Wang S, Bai G, Wang S, Yang L, Yang F, et al. 2016.. Chloroplast RNA-binding protein RBD1 promotes chilling tolerance through 23S rRNA processing in Arabidopsis. . PLOS Genet. 12::e1006027
    [Crossref] [Google Scholar]
  115. 115.
    Wang X, Ding Y, Li Z, Shi Y, Wang J, et al. 2019.. PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15. . Dev. Cell 51::22235.e5
    [Crossref] [Google Scholar]
  116. 116.
    Wang X, Li Z, Shi Y, Liu Z, Zhang X, et al. 2023.. Strigolactones promote plant freezing tolerance by releasing the WRKY41-mediated inhibition of CBF/DREB1 expression. . EMBO J. 42::e112999
    [Crossref] [Google Scholar]
  117. 117.
    Wang X, Zhang X, Song C-P, Gong Z, Yang S, Ding Y. 2023.. PUB25 and PUB26 dynamically modulate ICE1 stability via differential ubiquitination during cold stress in Arabidopsis. . Plant Cell 35::3585603
    [Crossref] [Google Scholar]
  118. 118.
    Wang Y, Yu L, Shao J, Zhu Z, Zhang L. 2023.. Structure-driven protein engineering for production of valuable natural products. . Trends Plant Sci. 28::46070
    [Crossref] [Google Scholar]
  119. 119.
    Wang Y, Zhang Y, Wang Z, Zhang X, Yang S. 2013.. A missense mutation in CHS1, a TIR-NB protein, induces chilling sensitivity in Arabidopsis. . Plant J. 75::55365
    [Crossref] [Google Scholar]
  120. 120.
    Wei SB, Li X, Lu ZF, Zhang H, Ye XY, et al. 2022.. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. . Science 377::eabi8455
    [Crossref] [Google Scholar]
  121. 121.
    Xia C, Liang G, Chong K, Xu Y. 2023.. The COG1-OsSERL2 complex senses cold to trigger signaling network for chilling tolerance in japonica rice. . Nat. Commun. 14::3104
    [Crossref] [Google Scholar]
  122. 122.
    Xiao R, Xu XZS. 2021.. Temperature sensation: from molecular thermosensors to neural circuits and coding principles. . Annu. Rev. Physiol. 83::20530
    [Crossref] [Google Scholar]
  123. 123.
    Xu B, Zhu Y, Cao C, Chen H, Jin Q, et al. 2022.. Recent advances in RNA structurome. . Sci. China Life Sci. 65::1285324
    [Crossref] [Google Scholar]
  124. 124.
    Xu S, Wang J, Guo Z, He Z, Shi S. 2020.. Genomic convergence in the adaptation to extreme environments. . Plant Commun. 1::100117
    [Crossref] [Google Scholar]
  125. 125.
    Yang H, Shi Y, Liu J, Guo L, Zhang X, Yang S. 2010.. A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. . Plant J. 63::28396
    [Crossref] [Google Scholar]
  126. 126.
    Yang M, Zhu P, Cheema J, Bloomer R, Mikulski P, et al. 2022.. In vivo single-molecule analysis reveals COOLAIR RNA structural diversity. . Nature 609::39499
    [Crossref] [Google Scholar]
  127. 127.
    Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW. 2010.. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. . J. Biol. Chem. 285::711926
    [Crossref] [Google Scholar]
  128. 128.
    Yang T, Shad Ali G, Yang L, Du L, Reddy ASN, Poovaiah BW. 2010.. Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants. . Plant Signal. Behav. 5::99194
    [Crossref] [Google Scholar]
  129. 129.
    Yang XF, Cheema J, Zhang YY, Deng HJ, Duncan S, et al. 2020.. RNA G-quadruplex structures exist and function in vivo in plants. . Genome Biol. 21::226
    [Crossref] [Google Scholar]
  130. 130.
    Yang XF, Yu HP, Duncan S, Zhang YY, Cheema J, et al. 2022.. RNA G-quadruplex structure contributes to cold adaptation in plants. . Nat. Commun. 13::6224
    [Crossref] [Google Scholar]
  131. 131.
    Ye K, Li H, Ding Y, Shi Y, Song C, et al. 2019.. BRASSINOSTEROID-INSENSITIVE2 negatively regulates the stability of transcription factor ICE1 in response to cold stress in Arabidopsis. . Plant Cell 31::268296
    [Crossref] [Google Scholar]
  132. 132.
    Yu H, Kong X, Huang H, Wu W, Park J, et al. 2020.. STCH4/REIL2 confers cold stress tolerance in Arabidopsis by promoting rRNA processing and CBF protein translation. . Cell Rep. 30::22942
    [Crossref] [Google Scholar]
  133. 133.
    Zbierzak AM, Porfirova S, Griebel T, Melzer M, Parker JE, Dörmann P. 2013.. A TIR-NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature. . Plant J. 75::53952
    [Crossref] [Google Scholar]
  134. 134.
    Zeng R, Li Z, Shi Y, Fu D, Yin P, et al. 2021.. Natural variation in a type-A response regulator confers maize chilling tolerance. . Nat. Commun. 12::4713
    [Crossref] [Google Scholar]
  135. 135.
    Zhang CY, Zhang ZY, Li JH, Li F, Liu HH, et al. 2017.. OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. . Dev. Cell 43::73143.e5
    [Crossref] [Google Scholar]
  136. 136.
    Zhang D, Guo X, Xu Y, Li H, Ma L, et al. 2019.. OsCIPK7 point-mutation leads to conformation and kinase-activity change for sensing cold response. . J. Integr. Plant Biol. 61::1194200
    [Crossref] [Google Scholar]
  137. 137.
    Zhang H, Zhao Y, Zhu JK. 2020.. Thriving under stress: how plants balance growth and the stress response. . Dev. Cell 55::52943
    [Crossref] [Google Scholar]
  138. 138.
    Zhang J, Li X-M, Lin H-X, Chong K. 2019.. Crop improvement through temperature resilience. . Annu. Rev. Plant Biol. 70::75380
    [Crossref] [Google Scholar]
  139. 139.
    Zhang MM, Zhang SQ. 2022.. Mitogen-activated protein kinase cascades in plant signaling. . J. Integr. Plant Biol. 64::30141
    [Crossref] [Google Scholar]
  140. 140.
    Zhang Y, Wang Y, Liu J, Ding Y, Wang S, et al. 2017.. Temperature-dependent autoimmunity mediated by chs1 requires its neighboring TNL gene SOC3. . New Phytol. 213::133045
    [Crossref] [Google Scholar]
  141. 141.
    Zhao C, Wang P, Si T, Hsu CC, Wang L, et al. 2017.. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. . Dev. Cell 43::61829.e5
    [Crossref] [Google Scholar]
  142. 142.
    Zhao Y, Antoniou-Kourounioti RL, Calder G, Dean C, Howard M. 2020.. Temperature-dependent growth contributes to long-term cold sensing. . Nature 583::82529
    [Crossref] [Google Scholar]
  143. 143.
    Zhao Y, Shi H, Pan Y, Lyu M, Yang ZX, et al. 2023.. Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction. . Cell 186::123043.e14
    [Crossref] [Google Scholar]
  144. 144.
    Zhao Z, Dent C, Liang H, Lv J, Shang G, et al. 2022.. CRY2 interacts with CIS1 to regulate thermosensory flowering via FLM alternative splicing. . Nat. Commun. 13::7045
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102226
Loading
/content/journals/10.1146/annurev-genet-111523-102226
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error