1932

Abstract

Plants are exposed to temperature conditions that fluctuate over different time scales, including those inherent to global warming. In the face of these variations, plants sense temperature to adjust their functions and minimize the negative consequences. Transcriptome responses underlie changes in growth, development, and biochemistry (thermomorphogenesis and acclimation to extreme temperatures). We are only beginning to understand temperature sensation by plants. Multiple thermosensors convey complementary temperature information to a given signaling network to control gene expression. Temperature-induced changes in protein or transcript structure and/or in the dynamics of biomolecular condensates are the core sensing mechanisms of known thermosensors, but temperature impinges on their activities via additional indirect pathways. The diversity of plant responses to temperature anticipates that many new thermosensors and eventually novel sensing mechanisms will be uncovered soon.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102327
2024-11-25
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102327.html?itemId=/content/journals/10.1146/annurev-genet-111523-102327&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alberti S, Gladfelter A, Mittag T. 2019.. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. . Cell 176::41934
    [Crossref] [Google Scholar]
  2. 2.
    Albertos P, Dündar G, Schenk P, Carrera S, Cavelius P, et al. 2022.. Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants. . EMBO J. 41::e108664
    [Crossref] [Google Scholar]
  3. 3.
    Antoniou-Kourounioti RL, Hepworth J, Heckmann A, Duncan S, Qüesta J, et al. 2018.. Temperature sensing is distributed throughout the regulatory network that controls FLC epigenetic silencing in vernalization. . Cell Syst. 7::64355.e9
    [Crossref] [Google Scholar]
  4. 4.
    Anwer MU, Boikoglou E, Herrero E, Hallstein M, Davis AM, et al. 2014.. Natural variation reveals that intracellular distribution of ELF3 protein is associated with function in the circadian clock. . eLife 3::e02206
    [Crossref] [Google Scholar]
  5. 5.
    Arico D, Legris M, Castro L, Garcia CF, Laino A, et al. 2019.. Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis. . Plant Cell Environ. 42::255466
    [Crossref] [Google Scholar]
  6. 6.
    Bauer D, Viczián A, Kircher S, Nobis T, Nitschke R, et al. 2004.. Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. . Plant Cell 16::143345
    [Crossref] [Google Scholar]
  7. 7.
    Berry S, Dean C. 2015.. Environmental perception and epigenetic memory: mechanistic insight through FLC. . Plant J. 83::13348
    [Crossref] [Google Scholar]
  8. 8.
    Bianchimano L, De Luca MB, Borniego MB, Iglesias MJ, Casal JJ. 2023.. Temperature regulation of auxin-related gene expression and its implications for plant growth. . J. Exp. Bot. 74::701533
    [Crossref] [Google Scholar]
  9. 9.
    Blanco-Touriñán N, Legris M, Minguet EG, Costigliolo-Rojas C, Nohales MA, et al. 2020.. COP1 destabilizes DELLA proteins in Arabidopsis. . PNAS 117::1379299
    [Crossref] [Google Scholar]
  10. 10.
    Bohn L, Huang J, Weidig S, Yang Z, Heidersberger C, et al. 2024.. The temperature sensor TWA1 is required for thermotolerance in Arabidopsis. . Nature 629::112632
    [Crossref] [Google Scholar]
  11. 11.
    Borniego MB, Costigliolo-Rojas C, Casal JJ. 2022.. Shoot thermosensors do not fulfil the same function in the root. . New Phytol. 236::914
    [Crossref] [Google Scholar]
  12. 12.
    Botto JF, Sánchez RA, Whitelam GC, Casal JJ. 1996.. Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis. . Plant Physiol. 110::43944
    [Crossref] [Google Scholar]
  13. 13.
    Box MS, Huang BE, Domijan M, Jaeger KE, Khattak AK, et al. 2015.. ELF3 controls thermoresponsive growth in Arabidopsis. . Curr. Biol. 25::19499
    [Crossref] [Google Scholar]
  14. 14.
    Burgie ES, Gannam ZTK, McLoughlin KE, Sherman CD, Holehouse AS, et al. 2021.. Differing biophysical properties underpin the unique signaling potentials within the plant phytochrome photoreceptor families. . PNAS 118::e2105649118
    [Crossref] [Google Scholar]
  15. 15.
    Burgie ES, Vierstra RD. 2014.. Phytochromes: an atomic perspective on photoactivation and signaling. . Plant Cell 26::456883
    [Crossref] [Google Scholar]
  16. 16.
    Burko Y, Willige BC, Seluzicki A, Novák O, Ljung K, Chory J. 2022.. PIF7 is a master regulator of thermomorphogenesis in shade. . Nat. Commun. 13::4942
    [Crossref] [Google Scholar]
  17. 17.
    Casal JJ. 2013.. Photoreceptor signaling networks in plant responses to shade. . Annu. Rev. Plant Biol. 64::40327
    [Crossref] [Google Scholar]
  18. 18.
    Casal JJ, Balasubramanian S. 2019.. Thermomorphogenesis. . Annu. Rev. Plant Biol. 70::32146
    [Crossref] [Google Scholar]
  19. 19.
    Chen D, Lyu M, Kou X, Li J, Yang Z, et al. 2022.. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. . Mol. Cell 82::301529.e6
    [Crossref] [Google Scholar]
  20. 20.
    Chen M, Galvão RM, Li M, Burger B, Bugea J, et al. 2010.. Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. . Cell 141::123040
    [Crossref] [Google Scholar]
  21. 21.
    Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F, et al. 2020.. An RNA thermoswitch regulates daytime growth in Arabidopsis. . Nat. Plants 6::52232
    [Crossref] [Google Scholar]
  22. 22.
    Clack T, Mathews S, Sharrock RA. 1994.. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. . Plant Mol. Biol. 25::41327
    [Crossref] [Google Scholar]
  23. 23.
    Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, et al. 2007.. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. . Science 316::103033
    [Crossref] [Google Scholar]
  24. 24.
    Costigliolo Rojas C, Bianchimano L, Oh J, Romero Montepaone S, Tarkowská D, et al. 2022.. Organ-specific COP1 control of BES1 stability adjusts plant-growth patterns under shade or warmth. . Dev. Cell 57::200925
    [Crossref] [Google Scholar]
  25. 25.
    De Lucas M, Davière J-M, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, et al. 2008.. A molecular framework for light and gibberellin control of cell elongation. . Nature 451::48084
    [Crossref] [Google Scholar]
  26. 26.
    Delker C, Sonntag L, James G, Janitza P, Ibañez C, et al. 2014.. The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. . Cell Rep. 9::198389
    [Crossref] [Google Scholar]
  27. 27.
    Ding L, Wang S, Song Z-T, Jiang Y, Han J-J, et al. 2018.. Two B-box domain proteins, BBX18 and BBX23, interact with ELF3 and regulate thermomorphogenesis in Arabidopsis. . Cell Rep. 25::171828.e4
    [Crossref] [Google Scholar]
  28. 28.
    Ding Y, Yang S. 2022.. Surviving and thriving: how plants perceive and respond to temperature stress. . Dev. Cell 57::94758
    [Crossref] [Google Scholar]
  29. 29.
    Enderle B, Sheerin DJ, Paik I, Kathare PK, Schwenk P, et al. 2017.. PCH1 and PCHL promote photomorphogenesis in plants by controlling phytochrome B dark reversion. . Nat. Commun. 8::2221
    [Crossref] [Google Scholar]
  30. 30.
    Ezer D, Jung J-H, Lan H, Biswas S, Gregoire L, et al. 2017.. The evening complex coordinates environmental and endogenous signals in Arabidopsis. . Nat. Plants 3::17087
    [Crossref] [Google Scholar]
  31. 31.
    Findlay KMW, Jenkins GI. 2016.. Regulation of UVR8 photoreceptor dimer/monomer photo-equilibrium in Arabidopsis plants grown under photoperiodic conditions. . Plant Cell Environ. 39::170614
    [Crossref] [Google Scholar]
  32. 32.
    Fiorucci AS, Galvão VC, Ince , Boccaccini A, Goyal A, et al. 2020.. PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings. . New Phytol. 226::5058
    [Crossref] [Google Scholar]
  33. 33.
    Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, et al. 2011.. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. . PNAS 108::2023135
    [Crossref] [Google Scholar]
  34. 34.
    Fujii Y, Tanaka H, Konno N, Ogasawara Y, Hamashima N, et al. 2017.. Phototropin perceives temperature based on the lifetime of its photoactivated state. . PNAS 114::920611
    [Crossref] [Google Scholar]
  35. 35.
    Galvāo VC, Fiorucci AS, Trevisan M, Franco-Zorilla JM, Goyal A, et al. 2019.. PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis. . Nat. Commun. 10::4005
    [Crossref] [Google Scholar]
  36. 36.
    Gangappa SN, Kumar SV. 2017.. DET1 and HY5 control PIF4-mediated thermosensory elongation growth through distinct mechanisms. . Cell Rep. 18::34451
    [Crossref] [Google Scholar]
  37. 37.
    Gray WM, Östin A, Sandberg G, Romano CP, Estelle M. 1998.. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. . PNAS 95::7197202
    [Crossref] [Google Scholar]
  38. 38.
    Guihur A, Rebeaud ME, Goloubinoff P. 2022.. How do plants feel the heat and survive?. Trends Biochem. Sci. 47::82438
    [Crossref] [Google Scholar]
  39. 39.
    Guo X, Zhang D, Wang Z, Xu S, Batistič O, et al. 2023.. Cold-induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice. . EMBO J. 42::e110518
    [Crossref] [Google Scholar]
  40. 40.
    Hahm J, Kim K, Qiu Y, Chen M. 2020.. Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. . Nat. Commun. 11::1660
    [Crossref] [Google Scholar]
  41. 41.
    Hayes S, Schachtschabel J, Mishkind M, Munnik T, Arisz SA. 2021.. Hot topic: thermosensing in plants. . Plant Cell Environ. 44::201833
    [Crossref] [Google Scholar]
  42. 42.
    Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, et al. 2012.. EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. . Plant Cell 24::42843
    [Crossref] [Google Scholar]
  43. 43.
    Huang H, Alvarez S, Bindbeutel R, Shen Z, Naldrett MJ, et al. 2016.. Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry. . Mol. Cell Proteom. 15::20117
    [Crossref] [Google Scholar]
  44. 44.
    Huang H, McLoughlin KE, Sorkin ML, Burgie ES, Bindbeutel RK, et al. 2019.. PCH1 regulates light, temperature, and circadian signaling as a structural component of phytochrome B-photobodies in Arabidopsis. . PNAS 116::86038
    [Crossref] [Google Scholar]
  45. 45.
    Huang H, Yoo CY, Bindbeutel R, Goldsworthy J, Tielking A, et al. 2016.. PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis. . eLife 5::e13292
    [Crossref] [Google Scholar]
  46. 46.
    Huang R, Zheng R, He J, Zhou Z, Wang J, et al. 2019.. Noncanonical auxin signaling regulates cell division pattern during lateral root development. . PNAS 116::2128590
    [Crossref] [Google Scholar]
  47. 47.
    Huq E, Al-Sady B, Quail PH. 2003.. Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis. . Plant J. 35::66064
    [Crossref] [Google Scholar]
  48. 48.
    Hutin S, Kumita JR, Strotmann VI, Dolata A, Ling WL, et al. 2023.. Phase separation and molecular ordering of the prion-like domain of the thermosensory protein EARLY FLOWERING 3. . PNAS 120::e2304714120
    [Crossref] [Google Scholar]
  49. 49.
    Jiang B, Shi Y, Peng Y, Jia Y, Yan Y, et al. 2020.. Cold-induced CBF–PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. . Mol. Plant 13::894906
    [Crossref] [Google Scholar]
  50. 50.
    Jiang Y, Yang C, Huang S, Xie F, Xu Y, et al. 2019.. The ELF3-PIF7 interaction mediates the circadian gating of the shade response in Arabidopsis. . iScience 22::28898
    [Crossref] [Google Scholar]
  51. 51.
    Jin H, Lin J, Zhu Z. 2020.. PIF4 and HOOKLESS1 impinge on common transcriptome and isoform regulation in thermomorphogenesis. . Plant Commun. 1::100034
    [Crossref] [Google Scholar]
  52. 52.
    Johanson West J, Lister C, Michaels S, Amasino R, Dean CU. 2000.. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. . Science 290::34447
    [Crossref] [Google Scholar]
  53. 53.
    Jung J-H, Barbosa AD, Hutin S, Kumita JR, Gao M, et al. 2020.. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. . Nature 585::25660
    [Crossref] [Google Scholar]
  54. 54.
    Jung J-H, Domijan M, Klose C, Biswas S, Ezer D, et al. 2016.. Phytochromes function as thermosensors in Arabidopsis. . Science 354::88689
    [Crossref] [Google Scholar]
  55. 55.
    Kaiserli E, Páldi K, O'Donnell L, Batalov O, Pedmale UV, et al. 2015.. Integration of light and photoperiodic signaling in transcriptional nuclear foci. . Dev. Cell 35::31121
    [Crossref] [Google Scholar]
  56. 56.
    Kerbler SM, Wigge PA. 2023.. Temperature sensing in plants. . Annu. Rev. Plant Biol. 74::34166
    [Crossref] [Google Scholar]
  57. 57.
    Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y, et al. 2009.. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. . Plant Physiol. 151::204657
    [Crossref] [Google Scholar]
  58. 58.
    Kim C, Kwon Y, Jeong J, Kang M, Lee GS, et al. 2023.. Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins. . Nat. Commun. 14::1708
    [Crossref] [Google Scholar]
  59. 59.
    Kim H-J, Kim Y-K, Park J-Y, Kim J. 2002.. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. . Plant J. 29::693704
    [Crossref] [Google Scholar]
  60. 60.
    Klose C, Nagy F, Schäfer E. 2020.. Thermal reversion of plant phytochromes. . Mol. Plant 13::38697
    [Crossref] [Google Scholar]
  61. 61.
    Klose C, Venezia F, Hussong A, Kircher S, Schäfer E, Fleck C. 2015.. Systematic analysis of how phytochrome B dimerization determines its specificity. . Nat. Plants 1::15090
    [Crossref] [Google Scholar]
  62. 62.
    Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, et al. 2009.. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. . Curr. Biol. 19::40813
    [Crossref] [Google Scholar]
  63. 63.
    Larran AS, Pajoro A, Qüesta JI. 2023.. Is winter coming? Impact of the changing climate on plant responses to cold temperature. . Plant Cell Environ. 46::317593
    [Crossref] [Google Scholar]
  64. 64.
    Lee CM, Thomashow MF. 2012.. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. . PNAS 109::1505459
    [Crossref] [Google Scholar]
  65. 65.
    Lee S, Paik I, Huq E. 2020.. SPAs promote thermomorphogenesis by regulating the phyB-PIF4 module in Arabidopsis. . Development 147::dev189233
    [Crossref] [Google Scholar]
  66. 66.
    Legris M, Klose C, Burgie E, Costigliolo Rojas C, Neme M, et al. 2016.. Phytochrome B integrates light and temperature signals in Arabidopsis. . Science 354::897900
    [Crossref] [Google Scholar]
  67. 67.
    Leivar P, Martín G, Soy J, Dalton-Roesler J, Quail PH, Monte E. 2020.. Phytochrome-imposed inhibition of PIF7 activity shapes photoperiodic growth in Arabidopsis together with PIF1, 3, 4 and 5. . Physiol. Plant 169::45266
    [Crossref] [Google Scholar]
  68. 68.
    Leivar P, Monte E, Al-Sady B, Carle C, Storer A, et al. 2008.. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. . Plant Cell 20::33752
    [Crossref] [Google Scholar]
  69. 69.
    Li L, Ljung K, Breton G, Li L, Ljung K, et al. 2012.. Linking photoreceptor excitation to changes in plant architecture. . Genes Dev. 26::78590
    [Crossref] [Google Scholar]
  70. 70.
    Li Z, Jiang D, He Y. 2018.. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production. . Nat. Plants 4::83646
    [Crossref] [Google Scholar]
  71. 71.
    Lin J, Shi J, Zhang Z, Zhong B, Zhu Z. 2022.. Plant AFC2 kinase desensitizes thermomorphogenesis through modulation of alternative splicing. . iScience 25::104051
    [Crossref] [Google Scholar]
  72. 72.
    Lippmann R, Babben S, Menger A, Delker C, Quint M. 2019.. Development of wild and cultivated plants under global warming conditions. . Curr. Biol. 29::R132638
    [Crossref] [Google Scholar]
  73. 73.
    Love MI, Huber W, Anders S. 2014.. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. . Genome Biol. 15::550
    [Crossref] [Google Scholar]
  74. 74.
    Ma Y, Dai X, Xu Y, Luo W, Zheng X, et al. 2015.. COLD1 confers chilling tolerance in rice. . Cell 160::120921
    [Crossref] [Google Scholar]
  75. 75.
    Martínez C, Espinosa-Ruíz A, de Lucas M, Bernardo-García S, Franco-Zorrilla JM, Prat S. 2018.. PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. . EMBO J. 37::e99552
    [Crossref] [Google Scholar]
  76. 76.
    Martinière A, Shvedunova M, Thomson AJW, Evans NH, Penfield S, et al. 2011.. Homeostasis of plasma membrane viscosity in fluctuating temperatures. . New Phytol. 192::32837
    [Crossref] [Google Scholar]
  77. 77.
    Matsushita T, Mochizuki N, Nagatani A. 2003.. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. . Nature 424::57174
    [Crossref] [Google Scholar]
  78. 78.
    Medzihradszky M, Bindics J, Ádám É, Viczián A, Klement É, et al. 2013.. Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis. . Plant Cell 25::53544
    [Crossref] [Google Scholar]
  79. 79.
    Mizuno T, Nomoto Y, Oka H, Kitayama M, Takeuchi A, et al. 2014.. Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana. . Plant Cell Physiol. 55::95876
    [Crossref] [Google Scholar]
  80. 80.
    Murcia G, Enderle B, Hiltbrunner A, Casal JJ. 2020.. Phytochrome B and PCH1 protein dynamics store night temperature information. . Plant J. 105::2233
    [Crossref] [Google Scholar]
  81. 81.
    Murcia G, Nieto C, Sellaro R, Prat S, Casal JJ. 2022.. Hysteresis in PHYTOCHROME-INTERACTING FACTOR 4 and EARLY-FLOWERING 3 dynamics dominates warm daytime memory in Arabidopsis. . Plant Cell 34::2188204
    [Crossref] [Google Scholar]
  82. 82.
    Namgung Y, Lee HG, Lee H, Seo PJ. 2023.. Heat-induced leaf epidermal cell damage triggers autophagy-mediated mesophyll cell expansion in Arabidopsis. . Plant Commun. 5::100770
    [Crossref] [Google Scholar]
  83. 83.
    Ni W, Xu S-L, Tepperman JM, Stanley DJ, Maltby DA, et al. 2014.. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. . Science 344::116064
    [Crossref] [Google Scholar]
  84. 84.
    Nieto C, Catalán P, Luengo LM, Legris M, López-Salmerón V, et al. 2022.. COP1 dynamics integrate conflicting seasonal light and thermal cues in the control of Arabidopsis elongation. . Sci. Adv. 8::eabp8412
    [Crossref] [Google Scholar]
  85. 85.
    Nieto C, López-Salmerón V, Davière J-M, Prat S. 2015.. ELF3-PIF4 interaction regulates plant growth independently of the Evening Complex. . Curr. Biol. 25::18793
    [Crossref] [Google Scholar]
  86. 86.
    Nito K, Wong CCL, Yates JR III, Chory J. 2013.. Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors. . Cell Rep. 3::197079
    [Crossref] [Google Scholar]
  87. 87.
    Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, et al. 2011.. The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth. . Nature 475::398402
    [Crossref] [Google Scholar]
  88. 88.
    Oh E, Zhu JY, Wang ZY. 2012.. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. . Nat. Cell Biol. 14::8029
    [Crossref] [Google Scholar]
  89. 89.
    Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. 2017.. Transcriptional regulatory network of plant heat stress response. . Trends Plant Sci. 22::5365
    [Crossref] [Google Scholar]
  90. 90.
    Pacheco JM, Song L, Kuběnová L, Ovečka M, Berdion Gabarain V, et al. 2023.. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana. . New Phytol. 238::16985
    [Crossref] [Google Scholar]
  91. 91.
    Palágyi A, Terecskei K, Ádám É, Kevei É, Kircher S, et al. 2010.. Functional analysis of amino-terminal domains of the photoreceptor phytochrome B. . Plant Physiol. 153::183445
    [Crossref] [Google Scholar]
  92. 92.
    Parent B, Tardieu F. 2012.. Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. . New Phytol. 194::76074
    [Crossref] [Google Scholar]
  93. 93.
    Park E, Kim Y, Choi G. 2018.. Phytochrome B requires PIF degradation and sequestration to induce light responses across a wide range of light conditions. . Plant Cell 30::127792
    [Crossref] [Google Scholar]
  94. 94.
    Park E, Park J, Kim J, Nagatani A, Lagarias JC, Choi G. 2012.. Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters. . Plant J. 72::53746
    [Crossref] [Google Scholar]
  95. 95.
    Park Y-J, Lee H-J, Ha J-H, Kim JY, Park C-M. 2017.. COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. . New Phytol. 215::26980
    [Crossref] [Google Scholar]
  96. 96.
    Perrella G, Bäurle I, van Zanten M. 2022.. Epigenetic regulation of thermomorphogenesis and heat stress tolerance. . New Phytol. 234::114460
    [Crossref] [Google Scholar]
  97. 97.
    Pham VN, Kathare PK, Huq E. 2018.. Phytochromes and Phytochrome Interacting Factors. . Plant Physiol. 176::102538
    [Crossref] [Google Scholar]
  98. 98.
    Podolec R, Demarsy E, Ulm R. 2021.. Perception and signaling of ultraviolet-B radiation in plants. . Annu. Rev. Plant Biol. 72::793822
    [Crossref] [Google Scholar]
  99. 99.
    Ponnu J, Hoecker U. 2021.. Illuminating the COP1/SPA ubiquitin ligase: fresh insights into its structure and functions during plant photomorphogenesis. . Front. Plant Sci. 12::662793
    [Crossref] [Google Scholar]
  100. 100.
    Qiu Y, Li M, Kim RJ-A, Moore CM, Chen M. 2019.. Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. . Nat. Commun. 10::140
    [Crossref] [Google Scholar]
  101. 101.
    Quint M, Delker C, Balasubramanian S, Balcerowicz M, Casal JJ, et al. 2023.. 25 Years of thermomorphogenesis research: milestones and perspectives. . Trends Plant Sci. 28::1098100
    [Crossref] [Google Scholar]
  102. 102.
    Raschke A, Ibañez C, Ullrich KK, Anwer MU, Becker S, et al. 2015.. Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin responses. . BMC Plant Biol. 15::197
    [Crossref] [Google Scholar]
  103. 103.
    Rausenberger J, Hussong A, Kircher S, Kirchenbauer D, Timmer J, et al. 2010.. An integrative model for phytochrome B mediated photomorphogenesis: from protein dynamics to physiology. . PLOS ONE 5::e10721
    [Crossref] [Google Scholar]
  104. 104.
    Reichert P, Caudron F. 2021.. Mnemons and the memorization of past signaling events. . Curr. Opin. Cell Biol. 69::12735
    [Crossref] [Google Scholar]
  105. 105.
    Romero-Montepaone S, Poodts S, Fischbach P, Sellaro R, Zurbriggen MD, Casal JJ. 2020.. Shade avoidance responses become more aggressive in warm environments. . Plant Cell Environ. 43::162536
    [Crossref] [Google Scholar]
  106. 106.
    Romero-Montepaone S, Sellaro R, Hernando CE, Costigliolo-Rojas C, Bianchimano L, et al. 2021.. Functional convergence of growth responses to shade and warmth in Arabidopsis. . New Phytol. 231::1890905
    [Crossref] [Google Scholar]
  107. 107.
    Ronald J, Wilkinson AJ, Davis SJ. 2021.. EARLY FLOWERING3 sub-nuclear localization responds to changes in ambient temperature. . Plant Physiol. 187::235255
    [Crossref] [Google Scholar]
  108. 108.
    Samtani H, Sharma A, Khurana JP, Khurana P. 2022.. Thermosensing in plants: deciphering the mechanisms involved in heat sensing and their role in thermoresponse and thermotolerance. . Environ. Exp. Bot. 203::105041
    [Crossref] [Google Scholar]
  109. 109.
    Schäfer E, Schmidt W. 1974.. Temperature dependence of phytochrome dark reactions. . Planta 116::25766
    [Crossref] [Google Scholar]
  110. 110.
    Sellaro R, Smith RW, Legris M, Fleck C, Casal JJ. 2019.. Phytochrome B dynamics departs from photoequilibrium in the field. . Plant. Cell Environ. 42::60617
    [Crossref] [Google Scholar]
  111. 111.
    Silva CS, Nayak A, Lai X, Hutin S, Hugouvieux V, et al. 2020.. Molecular mechanisms of Evening Complex activity in Arabidopsis. . PNAS 117::69019
    [Crossref] [Google Scholar]
  112. 112.
    Su Y, Lagarias JC. 2007.. Light-independent phytochrome signaling mediated by dominant GAF domain tyrosine mutants of Arabidopsis phytochromes in transgenic plants. . Plant Cell 19::212439
    [Crossref] [Google Scholar]
  113. 113.
    Sun J, Qi L, Li Y, Chu J, Li C. 2012.. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. . PLOS Genet. 8::e1002594
    [Crossref] [Google Scholar]
  114. 114.
    Susila H, Jurić S, Liu L, Gawarecka K, Chung KS, et al. 2021.. Florigen sequestration in cellular membranes modulates temperature-responsive flowering. . Science 373::113742
    [Crossref] [Google Scholar]
  115. 115.
    Tajima T, Oda A, Nakagawa M, Kamada H, Mizoguchi T. 2007.. Natural variation of polyglutamine repeats of a circadian clock gene ELF3 in Arabidopsis. . Plant Biotechnol. 24::23740
    [Crossref] [Google Scholar]
  116. 116.
    Tan W, Chen J, Yue X, Chai S, Liu W, et al. 2023.. The heat response regulators HSFA1s promote Arabidopsis thermomorphogenesis via stabilizing PIF4 during the day. . Sci. Adv. 9::eadh1738
    [Crossref] [Google Scholar]
  117. 117.
    Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, et al. 2014.. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. . PLOS Genet. 10::e1004416
    [Crossref] [Google Scholar]
  118. 118.
    Trupkin SA, Legris M, Buchovsky AS, Tolava Rivero MB, Casal JJ. 2014.. Phytochrome B nuclear bodies respond to the low red to far-red ratio and to the reduced irradiance of canopy shade in Arabidopsis. . Plant Physiol. 165::1698708
    [Crossref] [Google Scholar]
  119. 119.
    Undurraga SF, Press MO, Legendre M, Bujdoso N, Bale J, et al. 2012.. Background-dependent effects of polyglutamine variation in the Arabidopsis thaliana gene ELF3. . PNAS 109::1936367
    [Crossref] [Google Scholar]
  120. 120.
    Van Buskirk EK, Reddy AK, Nagatani A, Chen M. 2014.. Photobody localization of phytochrome B is tightly correlated with prolonged and light-dependent inhibition of hypocotyl elongation in the dark. . Plant Physiol. 165::595607
    [Crossref] [Google Scholar]
  121. 121.
    Viczián A, Ádám É, Staudt AM, Lambert D, Klement E, et al. 2020.. Differential phosphorylation of the N-terminal extension regulates phytochrome B signaling. . New Phytol. 225::163550
    [Crossref] [Google Scholar]
  122. 122.
    Vu LD, Gevaert K, De Smet I. 2019.. Feeling the heat: searching for plant thermosensors. . Trends Plant Sci. 24::21019
    [Crossref] [Google Scholar]
  123. 123.
    Willige BC, Zander M, Yoo CY, Phan A, Garza RM, et al. 2021.. PHYTOCHROME-INTERACTING FACTORs trigger environmentally responsive chromatin dynamics in plants. . Nat. Genet. 53::95561
    [Crossref] [Google Scholar]
  124. 124.
    Wu J, Wang W, Xu P, Pan J, Zhang T, et al. 2019.. phyB interacts with BES1 to regulate brassinosteroid signaling in Arabidopsis. . Plant Cell Physiol. 60::35366
    [Crossref] [Google Scholar]
  125. 125.
    Xia C, Liang G, Chong K, Xu Y. 2023.. The COG1-OsSERL2 complex senses cold to trigger signaling network for chilling tolerance in japonica rice. . Nat. Commun. 14::3104
    [Crossref] [Google Scholar]
  126. 126.
    Xie Y, Liu W, Liang W, Ling X, Ma J, et al. 2023.. Phytochrome B inhibits the activity of phytochrome-interacting factor 7 involving phase separation. . Cell Rep. 42::113562
    [Crossref] [Google Scholar]
  127. 127.
    Xue M, Zhang H, Zhao F, Zhao T, Li H, Jiang D. 2021.. The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis. . Mol. Plant. 14::1799813
    [Crossref] [Google Scholar]
  128. 128.
    Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani A. 1999.. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. . J. Cell Biol. 145::43745
    [Crossref] [Google Scholar]
  129. 129.
    Yang X, Guan H, Yang Y, Zhang Y, Su W, et al. 2023.. Extra- and intranuclear heat perception and triggering mechanisms in plants. . Front. Plant Sci. 14::1276649
    [Crossref] [Google Scholar]
  130. 130.
    Zeng Y, Wang J, Huang S, Xie Y, Zhu T, et al. 2023.. HSP90s are required for hypocotyl elongation during skotomorphogenesis and thermomorphogenesis via the COP1–ELF3–PIF4 pathway in Arabidopsis. . New Phytol. 239::125365
    [Crossref] [Google Scholar]
  131. 131.
    Zhao Y, Antoniou-Kourounioti RL, Calder G, Dean C, Howard M. 2020.. Temperature-dependent growth contributes to long-term cold sensing. . Nature 583::82529
    [Crossref] [Google Scholar]
  132. 132.
    Zhou Y, Park S-H, Soh MY, Chua N-H. 2021.. Ubiquitin-specific proteases UBP12 and UBP13 promote shade avoidance response by enhancing PIF7 stability. . PNAS 118::e2103633118
    [Crossref] [Google Scholar]
  133. 133.
    Zhu J, Cao X, Deng X. 2023.. Epigenetic and transcription factors synergistically promote the high temperature response in plants. . Trends Biochem. Sci. 48::788800
    [Crossref] [Google Scholar]
  134. 134.
    Zhu P, Lister C, Dean C. 2021.. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. . Nature 599::65761
    [Crossref] [Google Scholar]
  135. 135.
    Zhu S, Gu J, Yao J, Li Y, Zhang Z, et al. 2022.. Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis. . Dev. Cell 57::58397.e6
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102327
Loading
/content/journals/10.1146/annurev-genet-111523-102327
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error