1932

Abstract

Deserts are hostile environments to plant life due to exposure to abiotic stresses, including high temperature, heat, high light, low water availability, and poor soil quality. Desert plants have evolved to cope with these stresses, and for thousands of years humans have used these plants as sources of food, fiber, and medicine. Due to desertification, the amount of arable land is reduced every year; hence, the usage of these species as substitutes for some crops might become one of the solutions for food production and land remediation. Additionally, increasing our understanding of how these plants have adapted to their environment could aid in the generation of more resistant staple crops. In this review, we examine three desert plant species and discuss their developmental aspects, physiological adaptations, and genetic diversity and the related genomic resources available to date. We also address major environmental challenges and threats faced by these species as well as their potential use for improving food security through stimulating stress resistance in crops.

Keyword(s): agavedate palmdesertprickly pear
Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102338
2024-11-25
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102338.html?itemId=/content/journals/10.1146/annurev-genet-111523-102338&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abraham Juárez MJ, Hernández Cárdenas R, Santoyo Villa JN, O'Connor D, Sluis A, et al. 2015.. Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana. . J. Exp. Bot. 66:(13):3893905
    [Crossref] [Google Scholar]
  2. 2.
    Abraham-Juárez MJ, Martínez-Hernández A, Leyva-González MA, Herrera-Estrella L, Simpson J. 2010.. Class I KNOX genes are associated with organogenesis during bulbil formation in Agave tequilana. . J. Exp. Bot. 61:(14):405567
    [Crossref] [Google Scholar]
  3. 3.
    Abul-Soad AA, Jain SM, Jatoi MA. 2017.. Biodiversity and conservation of date palm. . In Biodiversity and Conservation of Woody Plants, ed. MR Ahuja, SM Jain , pp. 31353. Cham, Switz:.: Springer Int. Publ.
    [Google Scholar]
  4. 4.
    Ahumada L, Montenegro G, Trillo C, Uñates D, Bernardello G, Las Peñas ML. 2020.. Cytogenetics of tuna in Argentina (two forms of Opuntia ficus-indica (L.) Mill. and O. robusta J. C. Wendl., Cactaceae). . Genet. Resour. Crop Evol. 67:(3):64554
    [Crossref] [Google Scholar]
  5. 5.
    Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, et al. 2011.. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). . Nat. Biotechnol. 29:(6):52127
    [Crossref] [Google Scholar]
  6. 6.
    Al-Khalifah NS. 2006.. Metaxenia: influence of pollen on the maternal tissue of fruits of two cultivars of date palm (Phoenix dactylifera L.). . Bangladesh J. Bot. 35:(2):15161
    [Google Scholar]
  7. 7.
    Alotaibi KD, Alharbi HA, Yaish MW, Ahmed I, Alharbi SA, et al. 2023.. Date palm cultivation: a review of soil and environmental conditions and future challenges. . Land Degrad. Dev. 34:(9):243144
    [Crossref] [Google Scholar]
  8. 8.
    Anderies JM, Nelson BA, Kinzig AP. 2008.. Analyzing the impact of agave cultivation on famine risk in arid pre-Hispanic northern Mexico. . Hum. Ecol. 36:(3):40922
    [Crossref] [Google Scholar]
  9. 9.
    Angulo-Bejarano PI, Sharma A, Paredes-López O. 2019.. Factors affecting genetic transformation by particle bombardment of the prickly pear cactus (O. ficus-indica). . 3 Biotech 9:(3):98
    [Crossref] [Google Scholar]
  10. 10.
    Ashry I, Mao Y, Al-Fehaid Y, Al-Shawaf A, Al-Bagshi M, et al. 2020.. Early detection of red palm weevil using distributed optical sensor. . Sci. Rep. 10:(1):3155
    [Crossref] [Google Scholar]
  11. 11.
    Avila de Dios E, Delaye L, Simpson J. 2019.. Transcriptome analysis of bolting in A. tequilana reveals roles for florigen, MADS, fructans and gibberellins. . BMC Genom. 20:(1):473
    [Crossref] [Google Scholar]
  12. 12.
    Barbera G, Carimi F, Inglese P. 1993.. Effects of GA3 and shading on return bloom of prickly pear (Opuntia ficus-indica (L.) Miller). . J. S. Afr. Soc. Hort. Sci. 3(1):910
    [Google Scholar]
  13. 13.
    Barrow SC. 1998.. A monograph of Phoenix L. (Palmae: Coryphoideae). . Kew Bull. 53:(3):51375
    [Crossref] [Google Scholar]
  14. 14.
    Bautista-Montes E, Hernández-Soriano L, Simpson J. 2022.. Advances in the micropropagation and genetic transformation of Agave species. . Plants 11:(13):1757
    [Crossref] [Google Scholar]
  15. 15.
    Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, et al. 2002.. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. . Plant Cell 14:(8):173749
    [Crossref] [Google Scholar]
  16. 16.
    Cabrera-Toledo D, Vargas-Ponce O, Ascencio-Ramírez S, Valadez-Sandoval LM, Pérez-Alquicira J, et al. 2020.. Morphological and genetic variation in monocultures, forestry systems and wild populations of Agave maximiliana of western Mexico: implications for its conservation. . Front. Plant Sci. 11::817
    [Crossref] [Google Scholar]
  17. 17.
    Cancino-García VJ, Ramírez-Prado JH, De-la-Peña C. 2020.. Auxin perception in Agave is dependent on the species’ Auxin Response Factors. . Sci. Rep. 10:(1):3860
    [Crossref] [Google Scholar]
  18. 18.
    Castorena-Sánchez I, Escobedo RM, Quiroz A. 1991.. New cytotaxonomical determinants recognized in six taxa of Agave in the sections Rigidae and Sislanae. . Can. J. Bot. 69::125764
    [Crossref] [Google Scholar]
  19. 19.
    Cervantes-Pérez SA, Espinal-Centeno A, Oropeza-Aburto A, Caballero-Pérez J, Falcon F, et al. 2018.. Transcriptional profiling of the CAM plant Agave salmiana reveals conservation of a genetic program for regeneration. . Dev. Biol. 442:(1):2839
    [Crossref] [Google Scholar]
  20. 20.
    Colunga-GarciaMarin P. 2003.. The domestication of henequen (Agave fourcroydes Lem.). . In The Lowland Maya Area: Three Millennia at the Human-Wildland Interface, ed. A Gómez-Pompa, M Allen, SL Fedick, J Jiménez-Osornio , pp. 43946. New York:: Food Products Press
    [Google Scholar]
  21. 21.
    Colunga-GarcíaMarín P, Zizumbo-Villarreal D. 2007.. Tequila and other Agave spirits from west-central Mexico: current germplasm diversity, conservation and origin. . Biodivers. Conserv. 16:(6):165367
    [Crossref] [Google Scholar]
  22. 22.
    Conde LF. 1975.. Anatomical comparisons of five species of Opuntia (Cactaceae). . Ann. Mo. Bot. Gard. 62:(2):42573
    [Crossref] [Google Scholar]
  23. 23.
    Corbin KR, Byrt CS, Bauer S, DeBolt S, Chambers D, et al. 2015.. Prospecting for energy-rich renewable raw materials: Agave leaf case study. . PLOS ONE 10:(8):e0135382
    [Crossref] [Google Scholar]
  24. 24.
    Cortés-Romero C, Martínez-Hernández A, Mellado-Mojica E, López MG, Simpson J. 2012.. Molecular and functional characterization of novel fructosyltransferases and invertases from Agave tequilana. . PLOS ONE 7:(4):e35878
    [Crossref] [Google Scholar]
  25. 25.
    Crang R, Lyons-Sobaski S, Wise R. 2018.. Plant Anatomy: A Concept-Based Approach to the Structure of Seed Plants. Cham, Switz:.: Springer Int. Publ.
    [Google Scholar]
  26. 26.
    de Fátima Rosas-Cárdenas F, Caballero-Pérez J, Gutiérrez-Ramos X, Marsch-Martínez N, Cruz-Hernández A, de Folter S. 2015.. miRNA expression during prickly pear cactus fruit development. . Planta 241:(2):43548
    [Crossref] [Google Scholar]
  27. 27.
    de Lyra MCCP, Santos DC, Mondragon-Jacobo C, da Silva MLRB, Mergulhão ACES, Martínez-Romero E. 2013.. Molecular characteristics of prickly-pear cactus (Opuntia) based on internal transcribed spacer sequences (ITS) of Queretaro State-Mexico. . J. App. Biol. Biotech. 1:(1):610
    [Google Scholar]
  28. 28.
    Delgado Sandoval SC, Abraham Juárez MJ, Simpson J. 2012.. Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs. . Sex. Plant Reprod. 25:(1):1126
    [Crossref] [Google Scholar]
  29. 29.
    Deng G, Huang X, Xie L, Tan S, Gbokie T Jr., et al. 2019.. Identification and expression of SAUR genes in the CAM plant Agave. . Genes 10:(7):555
    [Crossref] [Google Scholar]
  30. 30.
    Djerbi M. 1982.. Bayoud disease in North Africa: history, distribution, diagnosis and control. . Date Palm J. 1:(2):15397
    [Google Scholar]
  31. 31.
    Dubrovsky JG, North GB, Nobel PS. 1998.. Root growth, developmental changes in the apex, and hydraulic conductivity for Opuntia ficus-indica during drought. . New Phytol. 138:(1):7582
    [Crossref] [Google Scholar]
  32. 32.
    Ehleringer JR, Phillips SL, Schuster WSF, Sandquist DR. 1991.. Differential utilization of summer rains by desert plants. . Oecologia 88:(3):43034
    [Crossref] [Google Scholar]
  33. 33.
    Eisner T, Nowicki S, Goetz M, Meinwald J. 1980.. Red cochineal dye (carminic acid): its role in nature. . Science 208:(4447):103942
    [Crossref] [Google Scholar]
  34. 34.
    Fabbri A, Cicala A, Tamburino A. 1996.. Anatomy of adventitious root formation in Opuntia ficus-indica cladodes. . J. Horticult. Sci. 71:(2):23542
    [Crossref] [Google Scholar]
  35. 35.
    Finch RA, Osborne JF. 1990.. Chromosome numbers and DNA amounts in agave variants. . East Afr. Agric. For. J. 55:(4):21318
    [Crossref] [Google Scholar]
  36. 36.
    Flores-Benítez S, Jiménez-Bremont JF, Rosales-Mendoza S, Argüello-Astorga GR, Castillo-Collazo R, Alpuche-Solís ÁG. 2007.. Genetic transformation of Agave salmiana by Agrobacterium tumefaciens and particle bombardment. . Plant Cell Tiss. Organ Cult. 91:(3):21524
    [Crossref] [Google Scholar]
  37. 37.
    Freeman TP. 1969.. The developmental anatomy of Opuntia basilaris. I. Embryo, root, and transition zone. . Am. J. Bot. 56:(9):106774
    [Crossref] [Google Scholar]
  38. 38.
    Fuller DQ. 2018.. Long and attenuated: comparative trends in the domestication of tree fruits. . Veget. Hist. Archaeobot. 27:(1):16576
    [Crossref] [Google Scholar]
  39. 39.
    García-Saucedo PA, Valdez-Morales M, Elena Valverde M, Cruz-Hernández A, Paredes-López O. 2005.. Plant regeneration of three Opuntia genotypes used as human food. . Plant Cell Tiss. Organ Cult. 80:(2):21519
    [Crossref] [Google Scholar]
  40. 40.
    Gentry HS. 2004.. Agaves of Continental North America. Tucson, AZ:: Univ. Arizona Press
    [Google Scholar]
  41. 41.
    Gibson AC, Nobel PS. 1986.. The Cactus Primer. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  42. 42.
    Good-Avila SV, Souza V, Gaut BS, Eguiarte LE. 2006.. Timing and rate of speciation in Agave (Agavaceae). . PNAS 103:(24):912429
    [Crossref] [Google Scholar]
  43. 43.
    Griffith MP. 2004.. The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence. . Am. J. Bot. 91:(11):191521
    [Crossref] [Google Scholar]
  44. 44.
    Gros-Balthazard M, Flowers JM, Hazzouri KM, Ferrand S, Aberlenc F, et al. 2021.. The genomes of ancient date palms germinated from 2,000 y old seeds. . PNAS 118:(19):e2025337118
    [Crossref] [Google Scholar]
  45. 45.
    Gros-Balthazard M, Galimberti M, Kousathanas A, Newton C, Ivorra S, et al. 2017.. The discovery of wild date palms in Oman reveals a complex domestication history involving centers in the Middle East and Africa. . Curr. Biol. 27:(14):221118.e8
    [Crossref] [Google Scholar]
  46. 46.
    Gros-Balthazard M, Newton C, Ivorra S, Pierre M-H, Pintaud J-C, Terral J-F. 2016.. The domestication syndrome in Phoenix dactylifera seeds: toward the identification of wild date palm populations. . PLOS ONE 11:(3):e0152394
    [Crossref] [Google Scholar]
  47. 47.
    Gross SM, Martin JA, Simpson J, Abraham-Juarez MJ, Wang Z, Visel A. 2013.. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana. . BMC Genom. 14:(1):563
    [Crossref] [Google Scholar]
  48. 48.
    Gutiérrez Aguilarr PR, Gil-Vega KC, Simpson J. 2014.. Development of an Agrobacterium tumefasciens mediated transformation protocol for two Agave species by organogenesis. . In Sustainable and Integral Exploitation of Agave, ed. A Gutiérrez-Mora , pp. 3235. Mexico City:: CIATEJ
    [Google Scholar]
  49. 49.
    Hazzouri KM, Flowers JM, Visser HJ, Khierallah HSM, Rosas U, et al. 2015.. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. . Nat. Commun. 6:(1):8824
    [Crossref] [Google Scholar]
  50. 50.
    Hazzouri KM, Gros-Balthazard M, Flowers JM, Copetti D, Lemansour A, et al. 2019.. Genome-wide association mapping of date palm fruit traits. . Nat. Commun. 10:(1):4680
    [Crossref] [Google Scholar]
  51. 51.
    Heyduk K, McKain MR, Lalani F, Leebens-Mack J. 2016.. Evolution of a CAM anatomy predates the origins of Crassulacean acid metabolism in the Agavoideae (Asparagaceae). . Mol. Phylogenet. Evol. 105::10213
    [Crossref] [Google Scholar]
  52. 52.
    Huang X, Xiao M, Xi J, He C, Zheng J, et al. 2019.. De novo transcriptome assembly of Agave H11648 by Illumina sequencing and identification of cellulose synthase genes in Agave species. . Genes 10:(2):103
    [Crossref] [Google Scholar]
  53. 53.
    Jin G, Huang X, Chen T, Qin X, Xi J, Yi K. 2020.. The complete chloroplast genome of agave hybrid 11648. . Mitochondrial DNA B Resour. 5:(3):234546
    [Crossref] [Google Scholar]
  54. 54.
    Kiesling R. 1998.. Origen, domesticación y distribución de Opuntia ficus-indica. . J. Prof. Assoc. Cactus Dev. 3:. https://doi.org/10.56890/jpacd.v3i.159
    [Google Scholar]
  55. 55.
    Klimova A, Ruiz Mondragón KY, Aguirre-Planter E, Valiente A, Lira R, Eguiarte LE. 2023.. Genomic analysis unveils reduced genetic variability but increased proportion of heterozygotic genotypes of the intensively managed mezcal agave, Agave angustifolia. . Am. J. Bot. 110:(8):e16216
    [Crossref] [Google Scholar]
  56. 56.
    Klimova A, Ruiz Mondragón KY, Molina Freaner F, Aguirre-Planter E, Eguiarte LE. 2022.. Genomic analyses of wild and cultivated bacanora agave (Agave angustifolia var. pacifica) reveal inbreeding, few signs of cultivation history and shallow population structure. . Plants 11:(11):1426
    [Crossref] [Google Scholar]
  57. 57.
    Kondo T, Watson GW. 2022.. A list of scale insect agricultural pests. . In Encyclopedia of Scale Insect Pests, ed. T Kondo, GW Watson , pp. 837. Wallingford, UK:: CABI Int.
    [Google Scholar]
  58. 58.
    Krueger RR. 2001.. Date palm germplasm: overview and utilization in the USA. . In Proceedings International Conference on Date Palms, 124800 (Abstr.) https://www.ars.usda.gov/research/publications/publication/?seqNo115=124800
    [Google Scholar]
  59. 59.
    Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, et al. 2007.. Direct control of shoot meristem activity by a cytokinin-activating enzyme. . Nature 445:(7128):65255
    [Crossref] [Google Scholar]
  60. 60.
    Kuti JO. 1990.. Screening opuntia accessions for resistance to cottony cochineal insects (Dactylopius species). . HortScience 25:(9):1076
    [Crossref] [Google Scholar]
  61. 61.
    Labra M, Grassi F, Bardini M, Imazio S, Guiggi A, et al. 2003.. Genetic relationships in Opuntia Mill. genus (Cactaceae) detected by molecular marker. . Plant Sci. 165:(5):112936
    [Crossref] [Google Scholar]
  62. 62.
    Liu D, Hu R, Zhang J, Guo H-B, Cheng H, et al. 2021.. Overexpression of an Agave phosphoenolpyruvate carboxylase improves plant growth and stress tolerance. . Cells 10:(3):582
    [Crossref] [Google Scholar]
  63. 63.
    Livera-Muñoz M, Muratalla-Lúa A, Flores-Almaraz R, Ortiz-Hernández YD, González-Hernández VA, et al. 2024.. Parthenocarpic cactus pears (Opuntia spp.) with edible sweet peel and long shelf life. . Horticulturae 10:(1):39
    [Crossref] [Google Scholar]
  64. 64.
    Maceda-López LF, Góngora-Castillo EB, Ibarra-Laclette E, Morán-Velázquez DC, Girón Ramírez A, et al. 2022.. Transcriptome mining provides insights into cell wall metabolism and fiber lignification in Agave tequilana Weber. . Plants 11:(11):1496
    [Crossref] [Google Scholar]
  65. 65.
    Majure LC, Puente R, Pinkava DJ. 2012.. Miscellaneous chromosome numbers in Opuntieae Dc. (Cactaceae) with a compilation of counts for the group. . Haseltonia 2012:(18):6778
    [Crossref] [Google Scholar]
  66. 66.
    Mallona I, Egea-Cortines M, Weiss J. 2011.. Conserved and divergent rhythms of crassulacean acid metabolism-related and core clock gene expression in the cactus Opuntia ficus-indica. . Plant Physiol. 156:(4):197889
    [Crossref] [Google Scholar]
  67. 67.
    Marini L, Grassi C, Fino P, Calamai A, Masoni A, et al. 2020.. The effects of gibberellic acid and emasculation treatments on seed and fruit production in the prickly pear (Opuntia ficus-indica (L.) Mill.) cv. “Gialla.”. Horticulturae 6:(3):46
    [Crossref] [Google Scholar]
  68. 68.
    Mathew LS, Seidel MA, George B, Mathew S, Spannagl M, et al. 2015.. A genome-wide survey of date palm cultivars supports two major subpopulations in Phoenix dactylifera. . G3 5:(7):142938
    [Crossref] [Google Scholar]
  69. 69.
    Mazzeo G, Nucifora S, Russo A, Suma P. 2019.. Dactylopius opuntiae, a new prickly pear cactus pest in the Mediterranean: an overview. . Entomol. Exp. Appl. 167:(1):5972
    [Crossref] [Google Scholar]
  70. 70.
    McKain MR, Wickett N, Zhang Y, Ayyampalayam S, McCombie WR, et al. 2012.. Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae). . Am. J. Bot. 99:(2):397406
    [Crossref] [Google Scholar]
  71. 71.
    Men X, Shi J, Liang W, Zhang Q, Lian G, et al. 2017.. Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice. . J. Exp. Bot. 68:(3):51326
    [Google Scholar]
  72. 72.
    Milosavljević I, El-Shafie HAF, Faleiro JR, Hoddle CD, Lewis M, Hoddle MS. 2019.. Palmageddon: the wasting of ornamental palms by invasive palm weevils, Rhynchophorus spp. . J. Pest Sci. 92:(1):14356
    [Crossref] [Google Scholar]
  73. 73.
    Molina-Freaner F, Eguiarte LE. 2003.. The pollination biology of two paniculate agaves (Agavaceae) from northwestern Mexico: contrasting roles of bats as pollinators. . Am. J. Bot. 90:(7):101624
    [Crossref] [Google Scholar]
  74. 74.
    Mondragón KYR, Klimova A, Aguirre-Planter E, Valiente-Banuet A, Lira R, et al. 2023.. Differences in the genomic diversity, structure, and inbreeding patterns in wild and managed populations of Agave potatorum Zucc. used in the production of Tobalá mezcal in Southern Mexico. . PLOS ONE 18:(11):e0294534
    [Crossref] [Google Scholar]
  75. 75.
    Monja-Mio KM, Herrera-Alamillo MA, Sánchez-Teyer LF, Robert ML. 2019.. Breeding strategies to improve production of agave (Agave spp.). . In Advances in Plant Breeding Strategies: Industrial and Food Crops: Volume 6, ed. JM Al-Khayri, SM Jain, DV Johnson , pp. 31962. Cham, Switz:.: Springer Int. Publ.
    [Google Scholar]
  76. 76.
    Montenegro G, Acosta MC, Caeiro L, Varone L, Las Peñas ML. 2024.. Tracing the geographic origins of two forms of Opuntia ficus-indica cultivated in Argentina using haplotype diversity patterns, and cytogenetic and morphological analyses. . Genet Resour. Crop Evol. https://doi.org/10.1007/s10722-024-01876-w
    [Google Scholar]
  77. 77.
    Moreno S, Esqueda M, Martínez J, Palomino G. 2007.. Nuclear genome size and karyotype of Agave angustifolia and A. rhodacantha from Sonora, México. . Rev. Fitotec. Mex. 30::1323
    [Google Scholar]
  78. 78.
    Morreeuw ZP, Escobedo-Fregoso C, Ríos-González LJ, Castillo-Quiroz D, Reyes AG. 2021.. Transcriptome-based metabolic profiling of flavonoids in Agave lechuguilla waste biomass. . Plant Sci. 305::110748
    [Crossref] [Google Scholar]
  79. 79.
    Najjar Z, Stathopoulos C, Chockchaisawasdee S. 2020.. Utilization of date by-products in the food industry. . Emirates J. Food Agric. 32::80815
    [Crossref] [Google Scholar]
  80. 80.
    Newton C, Gros-Balthazard M, Ivorra S, Paradis L, Pintaud J-C, Terral J-F. 2013.. Phoenix dactylifera and P. sylvestris in northwestern India: a glimpse of their complex relationships. . Palms 57::37
    [Google Scholar]
  81. 81.
    Nixon RW. 1951.. The date palm—“Tree of Life”in the subtropical deserts. . Econ. Bot. 5:(3):274301
    [Crossref] [Google Scholar]
  82. 82.
    Nobel PS. 1991.. Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. . New Phytol. 119:(2):183205
    [Crossref] [Google Scholar]
  83. 83.
    Nobel PS. 2002.. Cacti: Biology and Uses. Berkeley, CA:: Univ. Calif. Press
    [Google Scholar]
  84. 84.
    Nobel PS. 2003.. Environmental Biology of Agaves and Cacti. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  85. 85.
    Nobel PS, García-Moya E, Quero E. 1992.. High annual productivity of certain agaves and cacti under cultivation. . Plant Cell Environ. 15:(3):32935
    [Crossref] [Google Scholar]
  86. 86.
    Nobel PS, McDaniel RG. 1988.. Low temperature tolerances, nocturnal acid accumulation, and biomass increases for seven species of agave. . J. Arid Environ. 15:(2):14755
    [Crossref] [Google Scholar]
  87. 87.
    Nobel PS, Sanderson J. 1984.. Rectifier-like activities of roots of two desert succulents. . J. Exp. Bot. 35:(5):72737
    [Crossref] [Google Scholar]
  88. 88.
    North GB, Brinton EK, Garrett TY. 2008.. Contractile roots in succulent monocots: convergence, divergence and adaptation to limited rainfall. . Plant Cell Environ. 31:(8):117989
    [Crossref] [Google Scholar]
  89. 89.
    North GB, Nobel PS. 1991.. Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of Agave deserti (Agavaceae). . Am. J. Bot. 78:(7):90615
    [Crossref] [Google Scholar]
  90. 90.
    North GB, Nobel PS. 1992.. Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica. . New Phytol. 120:(1):919
    [Crossref] [Google Scholar]
  91. 91.
    North GB, Nobel PS. 1995.. Hydraulic conductivity of concentric root tissues of Agave deserti Engelm. under wet and drying conditions. . New Phytol. 130:(1):4757
    [Crossref] [Google Scholar]
  92. 92.
    North GB, Nobel PS. 1998.. Water uptake and structural plasticity along roots of a desert succulent during prolonged drought. . Plant Cell Environ. 21:(7):70513
    [Crossref] [Google Scholar]
  93. 93.
    Ochoa-Alfaro AE, Rodríguez-Kessler M, Pérez-Morales MB, Delgado-Sánchez P, Cuevas-Velazquez CL, et al. 2012.. Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library. . Planta 235:(3):56578
    [Crossref] [Google Scholar]
  94. 94.
    Palomino G, Dolezel J, Méndez I, Rubluo A. 2012.. Nuclear genome size analysis of Agave tequilana Weber. . Caryologia 56::3746
    [Crossref] [Google Scholar]
  95. 95.
    Pinkava DJ, Baker MA, Parfitt BD, Mohlenbrock MW, Worthington RD. 1985.. Chromosome numbers in some cacti of western North America—V. . Syst. Bot. 10:(4):47183
    [Crossref] [Google Scholar]
  96. 96.
    Qin X, Yang X, Huang X, Huang X, Peng X, et al. 2021.. The complete chloroplast genome of Agave fourcroydes. . Mitochondrial DNA B Resour. 6:(8):232627
    [Crossref] [Google Scholar]
  97. 97.
    Qin X, Yang X, Huang X, Jin G, Yang X, et al. 2021.. The complete chloroplast genome of Agave angustifolia. . Mitochondrial DNA B Resour. 6:(11):323637
    [Crossref] [Google Scholar]
  98. 98.
    Ramos LC, Báez M, Fuchs J, Houben A, Carvalho R, Pedrosa-Harand A. 2023.. Differential repeat accumulation in the bimodal karyotype of Agave L. . Genes 14:(2):491
    [Crossref] [Google Scholar]
  99. 99.
    Reyes-Agüero JA, Aguirre Rivera JR, Flores Flores JL. 2005.. Variación morfológica de Opuntia (cactaceae) en relación con su domesticación en la altiplanicie meridional de México. . Interciencia 30:(8):47684
    [Google Scholar]
  100. 100.
    Rivera-Lugo M, García-Mendoza A, Simpson J, Solano E, Gil-Vega K. 2018.. Taxonomic implications of the morphological and genetic variation of cultivated and domesticated populations of the Agave angustifolia complex (Agavoideae, Asparagaceae) in Oaxaca, Mexico. . Plant Syst. Evol. 304:(8):96979
    [Crossref] [Google Scholar]
  101. 101.
    Robert ML, Lim KY, Hanson L, Sanchez-Teyer F, Bennett MD. 2008.. Wild and agronomically important Agave species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. . Bot. J. Linnean Soc. 158:(2):21522
    [Crossref] [Google Scholar]
  102. 102.
    Rodríguez Hernández G, Morales Domínguez F, Gutiérrez Campos R, Aguilar Espinosa S, Molphe-Balch EP. 2007.. Generación de raíces transformadas de Agave salmiana otto y su colonización por Glomus intraradices. . Rev. Fitotec. Mex. 30:(3):21522
    [Google Scholar]
  103. 103.
    Ruiz Mondragon KY, Aguirre-Planter E, Gasca-Pineda J, Klimova A, Trejo-Salazar R-E, et al. 2022.. Conservation genomics of Agave tequilana Weber var. azul: low genetic differentiation and heterozygote excess in the tequila agave from Jalisco, Mexico. . PeerJ 10::e14398
    [Crossref] [Google Scholar]
  104. 104.
    Salas-Muñoz S, Gómez-Anduro G, Delgado-Sánchez P, Rodríguez-Kessler M, Jiménez-Bremont JF. 2012.. The Opuntia streptacantha OpsHSP18 gene confers salt and osmotic stress tolerance in Arabidopsis thaliana. . Int. J. Mol. Sci. 13:(8):1015475
    [Crossref] [Google Scholar]
  105. 105.
    Sallon S, Cherif E, Chabrillange N, Solowey E, Gros-Balthazard M, et al. 2020.. Origins and insights into the historic Judean date palm based on genetic analysis of germinated ancient seeds and morphometric studies. . Sci. Adv. 6:(6):eaax0384
    [Crossref] [Google Scholar]
  106. 106.
    Sallon S, Solowey E, Cohen Y, Korchinsky R, Egli M, et al. 2008.. Germination, genetics, and growth of an ancient date seed. . Science 320:(5882):1464
    [Crossref] [Google Scholar]
  107. 107.
    Salomón-Torres R, Krueger R, García-Vázquez JP, Villa-Angulo R, Villa-Angulo C, et al. 2021.. Date palm pollen: features, production, extraction and pollination methods. . Agronomy 11:(3):504
    [Crossref] [Google Scholar]
  108. 108.
    Serra AT, Poejo J, Matias AA, Bronze MR, Duarte CMM. 2013.. Evaluation of Opuntia spp. derived products as antiproliferative agents in human colon cancer cell line (HT29). . Food Res. Int. 54:(1):892901
    [Crossref] [Google Scholar]
  109. 109.
    Seubert E. 1997.. Root anatomy of palms: I. Coryphoideae. . Flora 192:(1):81103
    [Crossref] [Google Scholar]
  110. 110.
    Sexauer M, Shen D, Schön M, Andersen TG, Markmann K. 2021.. Visualizing polymeric components that define distinct root barriers across plant lineages. . Development 148:(23):dev199820
    [Crossref] [Google Scholar]
  111. 111.
    Sidana J, Singh B, Sharma OP. 2016.. Saponins of Agave: Chemistry and bioactivity. . Phytochemistry 130::2246
    [Crossref] [Google Scholar]
  112. 112.
    Silos-Espino H, Valdez-Ortiz A, Rascón-Cruz Q, Rodríguez-Salazar E, Paredes-López O. 2006.. Genetic transformation of prickly-pear cactus (Opuntia ficus-indica) by Agrobacterium tumefaciens. . Plant Cell Tiss. Organ Cult. 86:(3):397403
    [Crossref] [Google Scholar]
  113. 113.
    Singh R, Low E-TL, Ooi LC-L, Ong-Abdullah M, Nookiah R, et al. 2014.. The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB. . Nat. Commun. 5:(1):4106
    [Crossref] [Google Scholar]
  114. 114.
    Smeriglio A, Bonasera S, Germanò MP, D'Angelo V, Barreca D, et al. 2019.. Opuntia ficus-indica (L.) Mill. fruit as source of betalains with antioxidant, cytoprotective, and anti-angiogenic properties. . Phytother. Res. 33:(5):152637
    [Crossref] [Google Scholar]
  115. 115.
    Snyman H, Fouché HJ, Avenant PL, Ratsèle C. 2007.. Frost sensitivity of Opuntia ficus-indica and O. robusta in a semiarid climate of South Africa. . J. Prof. Assoc. Cactus Cactus Dev. 9::121
    [Google Scholar]
  116. 116.
    Stambouli-Essassi S, Zakraoui M, Bouzid S, Harzallah-Skhiri F. 2017.. Sexual propagation of the tunisian spinescent Opuntia ficus-indica (L.) Mill., morphogenetic deployment and polymorphism. . Not. Bot. Horti Agrobotan. Cluj-Napoca. 45::5058
    [Crossref] [Google Scholar]
  117. 117.
    Statista. 2024.. Leading producers of dates worldwide in 2022 (in thousand metric tons). . Statista. https://www.statista.com/statistics/811299/leading-producers-of-dates-worldwide/
    [Google Scholar]
  118. [Google Scholar]
  119. 119.
    Stintzing FC, Schieber A, Carle R. 2003.. Evaluation of colour properties and chemical quality parameters of cactus juices. . Eur. Food Res. Technol. 216:(4):30311
    [Crossref] [Google Scholar]
  120. 120.
    Sugimoto K, Jiao Y, Meyerowitz EM. 2010.. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. . Dev. Cell 18:(3):46371
    [Crossref] [Google Scholar]
  121. 121.
    Suma P, La Pergola A, Longo S, Soroker V. 2014.. The use of sniffing dogs for the detection of Rhynchophorus ferrugineus. . Phytoparasitica 42:(2):26974
    [Crossref] [Google Scholar]
  122. 122.
    Swingle WT. 1928.. Metaxenia in the date palm: possibly a hormone action by the embryo or endosperm. . J. Heredity 19:(6):25768
    [Crossref] [Google Scholar]
  123. 123.
    Tengberg M. 2012.. Beginnings and early history of date palm garden cultivation in the Middle East. . J. Arid Environ. 86::13947
    [Crossref] [Google Scholar]
  124. 124.
    Tetreault D, McCulligh C, Lucio C. 2021.. Distilling agro-extractivism: agave and tequila production in Mexico. . J. Agrarian Change 21:(2):21941
    [Crossref] [Google Scholar]
  125. 125.
    Tooulakou G, Giannopoulos A, Nikolopoulos D, Bresta P, Dotsika E, et al. 2016.. Alarm photosynthesis: calcium oxalate crystals as an internal CO2 source in plants. . Plant Physiol. 171:(4):257785
    [Crossref] [Google Scholar]
  126. 126.
    Torres I, Casas A, Vega E, Martínez-Ramos M, Delgado-Lemus A. 2015.. Population dynamics and sustainable management of mescal agaves in Central Mexico: Agave potatorum in the Tehuacán-Cuicatlán Valley. . Econ. Bot. 69:(1):2641
    [Crossref] [Google Scholar]
  127. 127.
    Torres MF, Mathew LS, Ahmed I, Al-Azwani IK, Krueger R, et al. 2018.. Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix. . Nat. Commun. 9:(1):3969
    [Crossref] [Google Scholar]
  128. 128.
    UNCCD (U. N. Conv. Combat Desertification). 2023.. At least 100 million hectares of healthy land now lost each year. Press Release, Oct. 24. https://www.unccd.int/news-stories/press-releases/least-100-million-hectares-healthy-land-now-lost-each-year
    [Google Scholar]
  129. 129.
    Univ. Arizona Coop. Ext. 2008.. Problems and pests of agave, aloe, cactus and yucca. Rep. AZ1399, Univ. Ariz. Coop. Ext., Coll. Agric. Life Sci., Univ. Ariz., Tucson
    [Google Scholar]
  130. 130.
    Valadez-Moctezuma E, Samah S, Luna-Paez A. 2015.. Genetic diversity of Opuntia spp. varieties assessed by classical marker tools (RAPD and ISSR). . Plant Syst. Evol. 301:(2):73747
    [Crossref] [Google Scholar]
  131. 131.
    Valadez-Moctezuma E, Samah S, Mascorro-Gallardo J, Marbán-Mendoza N, Aranda-Osorio G, et al. 2022.. The first transcriptomic analyses of fruits and cladodes for comparison between three species of Opuntia. . Genet. Resourc. Crop Evol. 70::95170
    [Google Scholar]
  132. 132.
    Vasconselos JJH, Moreno AQ, Robert ML, Teyer LFS. In vitro polyploidy induction of two Agave species. . In Sustainable and Integral Exploitation of Agave, ed. A Gutiérrez-Mora , pp. 4045. Mexico City:: CIATEJ
    [Google Scholar]
  133. 133.
    Vogt E, Schönherr J, Schmidt HW. 1983.. Water permeability of periderm membranes isolated enzymatically from potato tubers (Solanum tuberosum L.). . Planta 158:(4):294301
    [Crossref] [Google Scholar]
  134. 134.
    Wang J, Rani N, Jakhar S, Redhu R, Kumar S, et al. 2023.. Opuntia ficus-indica (L.) Mill.—anticancer properties and phytochemicals: current trends and future perspectives. . Front. Plant Sci. 14::1236123
    [Crossref] [Google Scholar]
  135. 135.
    Wang X, Huang X, Chen L, Xie Z, Tan S, et al. 2023.. Transcriptome sequencing of Agave amaniensis reveals shoot-related expression patterns of Expansin A genes in Agave. . Plants 12:(10):2020
    [Crossref] [Google Scholar]
  136. 136.
    Wattendorff J. 1976.. Ultrastructure of the suberized styloid crystal cells in Agave leaves. . Planta 128:(2):16365
    [Crossref] [Google Scholar]
  137. 137.
    Xiao TT, Raygoza AA, Pérez JC, Kirschner G, Deng Y, et al. 2019.. Emergent protective organogenesis in date palms: a morpho-devo-dynamic adaptive strategy during early development. . Plant Cell 31:(8):175166
    [Crossref] [Google Scholar]
  138. 138.
    Xu B, Tan S, Qin X, Huang X, Xi J, et al. 2022.. The complete chloroplast genome of Agave amaniensis (Asparagales: Asparagaceae: Agavoideae). . Mitochondrial DNA B Resour. 7:(8):151921
    [Crossref] [Google Scholar]
  139. 139.
    Yamaki S, Nagato Y, Kurata N, Nonomura K. 2011.. Ovule is a lateral organ finally differentiated from the terminating floral meristem in rice. . Dev. Biol. 351:(1):20816
    [Crossref] [Google Scholar]
  140. 140.
    Yang X, Huang X, Tan S, Chen T, Qin X, et al. 2021.. The complete chloroplast genome of Agave sisalana. . Mitochondrial DNA B Resour. 6:(7):185556
    [Crossref] [Google Scholar]
  141. 141.
    Yang X, Wu D, Shi J, He Y, Pinot F, et al. 2014.. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. . J. Integr. Plant Biol. 56:(10):97994
    [Crossref] [Google Scholar]
  142. 142.
    Yang Z, Yang Q, Liu Q, Li X, Wang L, et al. 2024.. A chromosome-level genome assembly of Agave hybrid NO.11648 provides insights into the CAM photosynthesis. . Horticult. Res. 11:(2):uhad269
    [Crossref] [Google Scholar]
  143. 143.
    Younuskunju S, Mohamoud YA, Mathew LS, Mayer KFX, Suhre K, Malek JA. 2023.. Genome-wide association of dry (Tamar) date palm fruit color. . Plant Genome 16:(4):e20373
    [Crossref] [Google Scholar]
  144. 144.
    Zaid A, De Wet PF. 1999.. Botanical and systematic description of date palm. . In Date Palm Cultivation, ed. A Zaid , pp. 128. Rome:: Food Agric. Organ. U. N.
    [Google Scholar]
  145. 145.
    Zhang Y, Patankar H, Aljedaani F, Blilou I. 2024.. A framework for date palm (Phoenix dactylifera L.) tissue regeneration and stable transformation. . Physiol. Plantarum 176:(1):e14189
    [Crossref] [Google Scholar]
  146. 146.
    Zou D, Brewer M, Garcia F, Feugang JM, Wang J, et al. 2005.. Cactus pear: a natural product in cancer chemoprevention. . Nutr. J. 4:(1):25
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102338
Loading
/content/journals/10.1146/annurev-genet-111523-102338
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error