1932

Abstract

Although the majority of annotated new genes in a given genome appear to have arisen from duplication-related mechanisms, recent studies have shown that genes can also originate de novo from ancestrally nongenic sequences. Investigating de novo–originated genes offers rich opportunities to understand the origin and functions of new genes, their regulatory mechanisms, and the associated evolutionary processes. Such studies have uncovered unexpected and intriguing facets of gene origination, offering novel perspectives on the complexity of the genome and gene evolution. In this review, we provide an overview of the research progress in this field, highlight recent advancements, identify key technical and conceptual challenges, and underscore critical questions that remain to be addressed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102413
2024-11-25
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102413.html?itemId=/content/journals/10.1146/annurev-genet-111523-102413&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    An NA, Zhang J, Mo F, Luan X, Tian L, et al. 2023.. De novo genes with an lncRNA origin encode unique human brain developmental functionality. . Nat. Ecol. Evol. 7:(2):26478
    [Crossref] [Google Scholar]
  2. 2.
    Anderson DM, Anderson KM, Chang C-L, Makarewich CA, Nelson BR, et al. 2015.. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. . Cell 160:(4):595606
    [Crossref] [Google Scholar]
  3. 3.
    Anfinsen CB. 1973.. Principles that govern the folding of protein chains. . Science 181:(4096):22330
    [Crossref] [Google Scholar]
  4. 4.
    Ángyán AF, Perczel A, Gáspári Z. 2012.. Estimating intrinsic structural preferences of de novo emerging random-sequence proteins: Is aggregation the main bottleneck?. FEBS Lett. 586:(16):246872
    [Crossref] [Google Scholar]
  5. 5.
    Aspden JL, Eyre-Walker YC, Phillips RJ, Amin U, Mumtaz MAS, et al. 2014.. Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq. . eLife 3::e03528
    [Crossref] [Google Scholar]
  6. 6.
    Babina AM, Surkov S, Ye W, Jerlström-Hultqvist J, Larsson M, et al. 2023.. Rescue of Escherichia coli auxotrophy by de novo small proteins. . eLife 12::e78299
    [Crossref] [Google Scholar]
  7. 7.
    Basile W, Sachenkova O, Light S, Elofsson A. 2017.. High GC content causes orphan proteins to be intrinsically disordered. . PLOS Comput. Biol. 13:(3):e1005375
    [Crossref] [Google Scholar]
  8. 8.
    Begun DJ, Lindfors HA. 2005.. Rapid evolution of genomic Acp complement in the melanogaster subgroup of Drosophila. . Mol. Biol. Evol. 22:(10):201021
    [Crossref] [Google Scholar]
  9. 9.
    Begun DJ, Lindfors HA, Thompson ME, Holloway AK. 2006.. Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. . Genetics 172:(3):167581
    [Crossref] [Google Scholar]
  10. 10.
    Bekpen C, Xie C, Tautz D. 2018.. Dealing with the adaptive immune system during de novo evolution of genes from intergenic sequences. . BMC Evol. Biol. 18:(1):121
    [Crossref] [Google Scholar]
  11. 11.
    Bhave D, Tautz D. 2021.. Effects of the expression of random sequence clones on growth and transcriptome regulation in Escherichia coli. . Genes 13:(1):53
    [Crossref] [Google Scholar]
  12. 12.
    Blevins WR, Ruiz-Orera J, Messeguer X, Blasco-Moreno B, Villanueva-Cañas JL, et al. 2021.. Uncovering de novo gene birth in yeast using deep transcriptomics. . Nat. Commun. 12:(1):604
    [Crossref] [Google Scholar]
  13. 13.
    Broeils LA, Ruiz-Orera J, Snel B, Hubner N, van Heesch S. 2023.. Evolution and implications of de novo genes in humans. . Nat. Ecol. Evol. 7::80415
    [Crossref] [Google Scholar]
  14. 14.
    Broekaert WF, Terras FRG, Cammue BPA, Osborn RW. 1995.. Plant defensins: novel antimicrobial peptides as components of the host defense system. . Plant Physiol. 108:(4):135358
    [Crossref] [Google Scholar]
  15. 15.
    Bungard D, Copple JS, Yan J, Chhun JJ, Kumirov VK, et al. 2017.. Foldability of a natural de novo evolved protein. . Structure 25:(11):168796.e4
    [Crossref] [Google Scholar]
  16. 16.
    Cai J, Zhao R, Jiang H, Wang W. 2008.. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. . Genetics 179:(1):48796
    [Crossref] [Google Scholar]
  17. 17.
    Carroll SB. 2008.. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. . Cell 134:(1):2536
    [Crossref] [Google Scholar]
  18. 18.
    Carvunis A-R, Rolland T, Wapinski I, Calderwood MA, Yildirim MA, et al. 2012.. Proto-genes and de novo gene birth. . Nature 487:(7407):37074
    [Crossref] [Google Scholar]
  19. 19.
    Casola C. 2018.. From de novo to “de nono”: The majority of novel protein-coding genes identified with phylostratigraphy are old genes or recent duplicates. . Genome Biol. Evol. 10:(11):290618
    [Google Scholar]
  20. 20.
    Charlesworth B. 2009.. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. . Nat. Rev. Genet. 10:(3):195205
    [Crossref] [Google Scholar]
  21. 21.
    Charrier C, Joshi K, Coutinho-Budd J, Kim J-E, Lambert N, et al. 2012.. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. . Cell 149:(4):92335
    [Crossref] [Google Scholar]
  22. 22.
    Chen C-F, Foley J, Tang P-C, Li A, Jiang TX, et al. 2015.. Development, regeneration, and evolution of feathers. . Annu. Rev. Anim. Biosci. 3::16995
    [Crossref] [Google Scholar]
  23. 23.
    Chen J-Y, Shen QS, Zhou W-Z, Peng J, He BZ, et al. 2015.. Emergence, retention and selection: a trilogy of origination for functional de novo proteins from ancestral lncRNAs in primates. . PLOS Genet. 11:(7):e1005391
    [Crossref] [Google Scholar]
  24. 24.
    Chen R, Xiao N, Lu Y, Tao T, Huang Q, et al. 2023.. A de novo evolved gene contributes to rice grain shape difference between indica and japonica. . Nat. Commun. 14:(1):5906
    [Crossref] [Google Scholar]
  25. 25.
    Chen S, Krinsky BH, Long M. 2013.. New genes as drivers of phenotypic evolution. . Nat. Rev. Genet. 14:(9):64560
    [Crossref] [Google Scholar]
  26. 26.
    Chen S, Zhang YE, Long M. 2010.. New genes in Drosophila quickly become essential. . Science 330:(6011):168285
    [Crossref] [Google Scholar]
  27. 27.
    Chuong EB, Elde NC, Feschotte C. 2017.. Regulatory activities of transposable elements: from conflicts to benefits. . Nat. Rev. Genet. 18:(2):7186
    [Crossref] [Google Scholar]
  28. 28.
    Couso J-P, Patraquim P. 2017.. Classification and function of small open reading frames. . Nat. Rev. Mol. Cell Biol. 18:(9):57589
    [Crossref] [Google Scholar]
  29. 29.
    Cridland JM, Majane AC, Zhao L, Begun DJ. 2022.. Population biology of accessory gland-expressed de novo genes in Drosophila melanogaster. . Genetics 220:(1):iyab207
    [Crossref] [Google Scholar]
  30. 30.
    Cui X, Lv Y, Chen M, Nikoloski Z, Twell D, Zhang D. 2015.. Young genes out of the male: an insight from evolutionary age analysis of the pollen transcriptome. . Mol. Plant 8:(6):93545
    [Crossref] [Google Scholar]
  31. 31.
    Dennis MY, Nuttle X, Sudmant PH, Antonacci F, Graves TA, et al. 2012.. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. . Cell 149:(4):91222
    [Crossref] [Google Scholar]
  32. 32.
    Digianantonio KM, Hecht MH. 2016.. A protein constructed de novo enables cell growth by altering gene regulation. . PNAS 113:(9):24005
    [Crossref] [Google Scholar]
  33. 33.
    Ding Y, Zhao L, Yang S, Jiang Y, Chen Y, et al. 2010.. A young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several Y-linked male fertility genes. . PLOS Genet. 6:(12):e1001255
    [Crossref] [Google Scholar]
  34. 34.
    D'Lima NG, Ma J, Winkler L, Chu Q, Loh KH, et al. 2017.. A human microprotein that interacts with the mRNA decapping complex. . Nat. Chem. Biol. 13:(2):17480
    [Crossref] [Google Scholar]
  35. 35.
    Domazet-Loso T, Tautz D. 2003.. An evolutionary analysis of orphan genes in Drosophila. . Genome Res. 13:(10):221319
    [Crossref] [Google Scholar]
  36. 36.
    Donoghue MT, Keshavaiah C, Swamidatta SH, Spillane C. 2011.. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana. . BMC Evol. Biol. 11::47
    [Crossref] [Google Scholar]
  37. 37.
    Dujon B. 1996.. The yeast genome project: What did we learn?. Trends Genet. 12:(7):26370
    [Crossref] [Google Scholar]
  38. 38.
    Eichenlaub MP, Ettwiller L. 2011.. De novo genesis of enhancers in vertebrates. . PLOS Biol. 9:(11):e1001188
    [Crossref] [Google Scholar]
  39. 39.
    Fay JC. 2011.. Weighing the evidence for adaptation at the molecular level. . Trends Genet. 27:(9):34349
    [Crossref] [Google Scholar]
  40. 40.
    Finseth FR, Dong Y, Saunders A, Fishman L. 2015.. Duplication and adaptive evolution of a key centromeric protein in Mimulus, a genus with female meiotic drive. . Mol. Biol. Evol. 32:(10):2694706
    [Crossref] [Google Scholar]
  41. 41.
    Frumkin I, Laub MT. 2023.. Selection of a de novo gene that can promote survival of Escherichia coli by modulating protein homeostasis pathways. . Nat. Ecol. Evol. 7:(12):206779
    [Crossref] [Google Scholar]
  42. 42.
    Galindo MI, Pueyo JI, Fouix S, Bishop SA, Couso JP. 2007.. Peptides encoded by short ORFs control development and define a new eukaryotic gene family. . PLOS Biol. 5:(5):e106
    [Crossref] [Google Scholar]
  43. 43.
    Galupa R, Alvarez-Canales G, Borst NO, Fuqua T, Gandara L, et al. 2023.. Enhancer architecture and chromatin accessibility constrain phenotypic space during Drosophila development. . Dev. Cell 58:(1):5162.e4
    [Crossref] [Google Scholar]
  44. 44.
    Gegenbaur C. 1872.. Untersuchungen Zur Vergleichenden Anatomie der Wirbelthiere Leipzig, Ger.:: W. Engelmann
    [Google Scholar]
  45. 45.
    Gilad Y, Man O, Pääbo S, Lancet D. 2003.. Human specific loss of olfactory receptor genes. . PNAS 100:(6):332427
    [Crossref] [Google Scholar]
  46. 46.
    Glassford WJ, Johnson WC, Dall NR, Smith SJ, Liu Y, et al. 2015.. Co-option of an ancestral Hox-regulated network underlies a recently evolved morphological novelty. . Dev. Cell 34:(5):52031
    [Crossref] [Google Scholar]
  47. 47.
    Goldman N, Yang Z. 1994.. A codon-based model of nucleotide substitution for protein-coding DNA sequences. . Mol. Biol. Evol. 11:(5):72536
    [Google Scholar]
  48. 48.
    Gossmann TI, Woolfit M, Eyre-Walker A. 2011.. Quantifying the variation in the effective population size within a genome. . Genetics 189:(4):1389402
    [Crossref] [Google Scholar]
  49. 49.
    Grandchamp A, Kühl L, Lebherz M, Brüggemann K, Parsch J, Bornberg-Bauer E. 2023.. Population genomics reveals mechanisms and dynamics of de novo expressed open reading frame emergence in Drosophila melanogaster. . Genome Res. 33:(6):87290
    [Crossref] [Google Scholar]
  50. 50.
    Green EW, Fedele G, Giorgini F, Kyriacou CP. 2014.. A Drosophila RNAi collection is subject to dominant phenotypic effects. . Nat. Methods 11:(3):22223
    [Crossref] [Google Scholar]
  51. 51.
    Gubala AM, Schmitz JF, Kearns MJ, Vinh TT, Bornberg-Bauer E, et al. 2017.. The Goddard and Saturn genes are essential for Drosophila male fertility and may have arisen de novo. . Mol. Biol. Evol. 34:(5):106682
    [Google Scholar]
  52. 52.
    Hahn MW. 2009.. Distinguishing among evolutionary models for the maintenance of gene duplicates. . J. Hered. 100:(5):60517
    [Crossref] [Google Scholar]
  53. 53.
    Hardison R. 1998.. Hemoglobins from bacteria to man: evolution of different patterns of gene expression. . J. Exp. Biol. 201:(Part 8):1099117
    [Crossref] [Google Scholar]
  54. 54.
    Heames B, Buchel F, Aubel M, Tretyachenko V, Loginov D, et al. 2023.. Experimental characterization of de novo proteins and their unevolved random-sequence counterparts. . Nat. Ecol. Evol. 7:(4):57080
    [Crossref] [Google Scholar]
  55. 55.
    Heames B, Schmitz J, Bornberg-Bauer E. 2020.. A continuum of evolving de novo genes drives protein-coding novelty in Drosophila. . J. Mol. Evol. 88:(4):38298
    [Crossref] [Google Scholar]
  56. 56.
    Heinen TJAJ, Staubach F, Häming D, Tautz D. 2009.. Emergence of a new gene from an intergenic region. . Curr. Biol. 19:(18):152731
    [Crossref] [Google Scholar]
  57. 57.
    Honeyman JN, Simon EP, Robine N, Chiaroni-Clarke R, Darcy DG, et al. 2014.. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. . Science 343:(6174):101014
    [Crossref] [Google Scholar]
  58. 58.
    Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. 2009.. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. . Science 324:(5924):21823
    [Crossref] [Google Scholar]
  59. 59.
    Ingolia NT, Lareau LF, Weissman JS. 2011.. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. . Cell 147:(4):789802
    [Crossref] [Google Scholar]
  60. 60.
    Jacob F. 1977.. Evolution and tinkering. . Science 196:(4295):116166
    [Crossref] [Google Scholar]
  61. 61.
    Ji Z, Song R, Regev A, Struhl K. 2015.. Many lncRNAs, 5′UTRs, and pseudogenes are translated and some are likely to express functional proteins. . eLife 4::e08890
    [Crossref] [Google Scholar]
  62. 62.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596:(7873):58389
    [Crossref] [Google Scholar]
  63. 63.
    Kelley M, Wu D, Fay RR. 2006.. Development of the Inner Ear. New York:: Springer
    [Google Scholar]
  64. 64.
    Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TCG. 2009.. More than just orphans: Are taxonomically-restricted genes important in evolution?. Trends Genet. 25:(9):40413
    [Crossref] [Google Scholar]
  65. 65.
    Knopp M, Andersson DI. 2018.. No beneficial fitness effects of random peptides. . Nat. Ecol. Evol. 2::104647
    [Crossref] [Google Scholar]
  66. 66.
    Knopp M, Babina AM, Gudmundsdóttir JS, Douglass MV, Trent MS, Andersson DI. 2021.. A novel type of colistin resistance genes selected from random sequence space. . PLOS Genet. 17:(1):e1009227
    [Crossref] [Google Scholar]
  67. 67.
    Knopp M, Gudmundsdottir JS, Nilsson T, König F, Warsi O, et al. 2019.. De novo emergence of peptides that confer antibiotic resistance. . MBio 10:(3):e00837-19
    [Crossref] [Google Scholar]
  68. 68.
    Knowles DG, Mclysaght A. 2009.. Recent de novo origin of human protein-coding genes. . Genome Res. 19:(10):175259
    [Crossref] [Google Scholar]
  69. 69.
    Kondo T, Hashimoto Y, Kato K, Inagaki S, Hayashi S, Kageyama Y. 2007.. Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA. . Nat. Cell Biol. 9:(6):66065
    [Crossref] [Google Scholar]
  70. 70.
    Kosinski L, Aviles N, Gomez K, Masel J. 2022.. Random peptides rich in small and disorder-promoting amino acids are less likely to be harmful. . Genome Biol. Evol. 14:(6):evac085
    [Crossref] [Google Scholar]
  71. 71.
    Kryazhimskiy S, Plotkin JB. 2008.. The population genetics of dN/dS. . PLOS Genet. 4:(12):e1000304
    [Crossref] [Google Scholar]
  72. 72.
    Kuzmin E, Taylor JS, Boone C. 2022.. Retention of duplicated genes in evolution. . Trends Genet. 38:(1):5972
    [Crossref] [Google Scholar]
  73. 73.
    Ladoukakis E, Pereira V, Magny EG, Eyre-Walker A, Couso JP. 2011.. Hundreds of putatively functional small open reading frames in Drosophila. . Genome Biol. 12:(11):R118
    [Crossref] [Google Scholar]
  74. 74.
    Lange A, Patel PH, Heames B, Damry AM, Saenger T, et al. 2021.. Structural and functional characterization of a putative de novo gene in Drosophila. . Nat. Commun. 12:(1):1667
    [Crossref] [Google Scholar]
  75. 75.
    Lazzaro BP, Zasloff M, Rolff J. 2020.. Antimicrobial peptides: application informed by evolution. . Science 368:(6490):eaau5480
    [Crossref] [Google Scholar]
  76. 76.
    Lee U, Mozeika SM, Zhao L. 2024.. A synergistic, cultivator model of de novo gene origination. . Genome Biol. Evol. 16:(6):evae103
    [Crossref] [Google Scholar]
  77. 77.
    Levine MT, Jones CD, Kern AD, Lindfors HA, Begun DJ. 2006.. Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. . PNAS 103:(26):993539
    [Crossref] [Google Scholar]
  78. 78.
    Li C-Y, Zhang Y, Wang Z, Zhang Y, Cao C, et al. 2010.. A human-specific de novo protein-coding gene associated with human brain functions. . PLOS Comput. Biol. 6:(3):e1000734
    [Crossref] [Google Scholar]
  79. 79.
    Li D, Dong Y, Jiang Y, Jiang H, Cai J, Wang W. 2010.. A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. . Cell Res. 20:(4):40820
    [Crossref] [Google Scholar]
  80. 80.
    Li D, Yan Z, Lu L, Jiang H, Wang W. 2014.. Pleiotropy of the de novo-originated gene MDF1. . Sci. Rep. 2:(4):7280
    [Crossref] [Google Scholar]
  81. 81.
    Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, et al. 2016.. The ecology and evolutionary dynamics of meiotic drive. . Trends Ecol. Evol. 31:(4):31526
    [Crossref] [Google Scholar]
  82. 82.
    Long M, Betrán E, Thornton K, Wang W. 2003.. The origin of new genes: glimpses from the young and old. . Nat. Rev. Genet. 4:(11):86575
    [Crossref] [Google Scholar]
  83. 83.
    Long M, VanKuren NW, Chen S, Vibranovski MD. 2013.. New gene evolution: little did we know. . Annu. Rev. Genet. 47::30733
    [Crossref] [Google Scholar]
  84. 84.
    Lu J, Fu Y, Kumar S, Shen Y, Zeng K, et al. 2008.. Adaptive evolution of newly emerged micro-RNA genes in Drosophila. . Mol. Biol. Evol. 25:(5):92938
    [Crossref] [Google Scholar]
  85. 85.
    Lu J, Shen Y, Wu Q, Kumar S, He B, et al. 2008.. The birth and death of microRNA genes in Drosophila. . Nat. Genet. 40:(3):35155
    [Crossref] [Google Scholar]
  86. 86.
    Lykke-Andersen S, Jensen TH. 2015.. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. . Nat. Rev. Mol. Cell Biol. 16:(11):66577
    [Crossref] [Google Scholar]
  87. 87.
    Lynch M, Conery JS, Sarmiento J. 2000.. The evolutionary fate and consequences of duplicate genes. . Science 290:(November):115155
    [Crossref] [Google Scholar]
  88. 88.
    Mackowiak SD, Zauber H, Bielow C, Thiel D, Kutz K, et al. 2015.. Extensive identification and analysis of conserved small ORFs in animals. . Genome Biol. 16:(1):179
    [Crossref] [Google Scholar]
  89. 89.
    Majic P, Payne JL. 2020.. Enhancers facilitate the birth of de novo genes and gene integration into regulatory networks. . Mol. Biol. Evol. 37:(4):116578
    [Crossref] [Google Scholar]
  90. 90.
    McDonald JH, Kreitman M. 1991.. Adaptive protein evolution at the Adh locus in Drosophila. . Nature 351:(6328):65254
    [Crossref] [Google Scholar]
  91. 91.
    Meyer RS, Purugganan MD. 2013.. Evolution of crop species: genetics of domestication and diversification. . Nat. Rev. Genet. 14:(12):84052
    [Crossref] [Google Scholar]
  92. 92.
    Montañés JC, Huertas M, Messeguer X, Albà MM. 2023.. Evolutionary trajectories of new duplicated and putative de novo genes. . Mol. Biol. Evol. 40:(5):msad098
    [Crossref] [Google Scholar]
  93. 93.
    Moyers BA, Zhang J. 2016.. Evaluating phylostratigraphic evidence for widespread de novo gene birth in genome evolution. . Mol. Biol. Evol. 33:(5):124556
    [Crossref] [Google Scholar]
  94. 94.
    Mudge JM, Ruiz-Orera J, Prensner JR, Brunet MA, Calvet F, et al. 2022.. Standardized annotation of translated open reading frames. . Nat. Biotechnol. 40:(7):99499
    [Crossref] [Google Scholar]
  95. 95.
    Murugesan SN, Connahs H, Matsuoka Y, Das Gupta M, Tiong GJL, et al. 2022.. Butterfly eyespots evolved via cooption of an ancestral gene-regulatory network that also patterns antennae, legs, and wings. . PNAS 119:(8):e2108661119
    [Crossref] [Google Scholar]
  96. 96.
    Neme R, Amador C, Yildirim B, McConnell E, Tautz D. 2017.. Random sequences are an abundant source of bioactive RNAs or peptides. . Nat. Ecol. Evol. 1:(6):0127
    [Crossref] [Google Scholar]
  97. 97.
    Neme R, Tautz D. 2013.. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. . BMC Genom. 14:(1):117
    [Crossref] [Google Scholar]
  98. 98.
    Neme R, Tautz D. 2014.. Evolution: dynamics of de novo gene emergence. . Curr. Biol. 24:(6):R23840
    [Crossref] [Google Scholar]
  99. 99.
    Neme R, Tautz D. 2016.. Fast turnover of genome transcription across evolutionary time exposes entire non-coding DNA to de novo gene emergence. . eLife 5::e09977
    [Crossref] [Google Scholar]
  100. 100.
    Nuckolls NL, Bravo Núñez MA, Eickbush MT, Young JM, Lange JJ, et al. 2017.. wtf genes are prolific dual poison-antidote meiotic drivers. . eLife 6::e26033
    [Crossref] [Google Scholar]
  101. 101.
    Ohno S. 1970.. Evolution by Gene Duplication. Berlin/Heidelberg, Ger.:: Springer
    [Google Scholar]
  102. 102.
    Olson MV. 1999.. When less is more: gene loss as an engine of evolutionary change. . Am. J. Hum. Genet. 64:(1):1823
    [Crossref] [Google Scholar]
  103. 103.
    Ouspenskaia T, Law T, Clauser KR, Klaeger S, Sarkizova S, et al. 2022.. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. . Nat. Biotechnol. 40:(2):20917
    [Crossref] [Google Scholar]
  104. 104.
    Öztürk-Çolak A, Marygold SJ, Antonazzo G, Attrill H, Goutte-Gattat D, et al. 2024.. FlyBase: updates to the Drosophila genes and genomes database. . Genetics 227:(1):iyad211
    [Crossref] [Google Scholar]
  105. 105.
    Palmieri N, Kosiol C, Schlötterer C. 2014.. The life cycle of Drosophila orphan genes. . eLife 3::e01311
    [Crossref] [Google Scholar]
  106. 106.
    Pavesi A, Magiorkinis G, Karlin DG. 2013.. Viral proteins originated de novo by overprinting can be identified by codon usage: application to the “gene nursery” of Deltaretroviruses. . PLOS Comput. Biol. 9:(8):e1003162
    [Crossref] [Google Scholar]
  107. 107.
    Peng J, Zhao L. 2024.. The origin and structural evolution of de novo genes in Drosophila. . Nat. Commun. 15:(1):810
    [Crossref] [Google Scholar]
  108. 108.
    Petrov DA, Hartl DL. 1998.. High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. . Mol. Biol. Evol. 15:(3):293302
    [Crossref] [Google Scholar]
  109. 109.
    Prabh N, Rödelsperger C. 2019.. De novo, divergence, and mixed origin contribute to the emergence of orphan genes in Pristionchus nematodes. . G3 9:(7):227786
    [Crossref] [Google Scholar]
  110. 110.
    Prensner JR, Abelin JG, Kok LW, Clauser KR, Mudge JM, et al. 2023.. What can Ribo-seq, immunopeptidomics, and proteomics tell us about the noncanonical proteome?. Mol. Cell Proteom. 22:(9):100631
    [Crossref] [Google Scholar]
  111. 111.
    Pueyo JI, Couso JP. 2008.. The 11-aminoacid long Tarsal-less peptides trigger a cell signal in Drosophila leg development. . Dev. Biol. 324:(2):192201
    [Crossref] [Google Scholar]
  112. 112.
    Randall JG, Gatesy J, Springer MS. 2022.. Molecular evolutionary analyses of tooth genes support sequential loss of enamel and teeth in baleen whales (Mysticeti). . Mol. Phylogenet. Evol. 171::107463
    [Crossref] [Google Scholar]
  113. 113.
    Reinhardt JA, Wanjiru BM, Brant AT, Saelao P, Begun DJ, Jones CD. 2013.. De novo ORFs in Drosophila are important to organismal fitness and evolved rapidly from previously non-coding sequences. . PLOS Genet. 9:(10):e1003860
    [Crossref] [Google Scholar]
  114. 114.
    Rice G, Barmina O, Hu K, Kopp A. 2018.. Evolving doublesex expression correlates with the origin and diversification of male sexual ornaments in the Drosophila immigrans species group. . Evol. Dev. 20:(2):7888
    [Crossref] [Google Scholar]
  115. 115.
    Rivard EL, Ludwig AG, Patel PH, Grandchamp A, Arnold SE, et al. 2021.. A putative de novo evolved gene required for spermatid chromatin condensation in Drosophila melanogaster. . PLOS Genet. 17:(9):e1009787
    [Crossref] [Google Scholar]
  116. 116.
    Ruiz-Orera J, Albà MM. 2019.. Translation of small open reading frames: roles in regulation and evolutionary innovation. . Trends Genet. 35:(3):18698
    [Crossref] [Google Scholar]
  117. 117.
    Ruiz-Orera J, Hernandez-Rodriguez J, Chiva C, Sabidó E, Kondova I, et al. 2015.. Origins of de novo genes in human and chimpanzee. . PLOS Genet. 11:(12):e1005721
    [Crossref] [Google Scholar]
  118. 118.
    Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM. 2014.. Long non-coding RNAs as a source of new peptides. . eLife 3::e03523
    [Crossref] [Google Scholar]
  119. 119.
    Ruiz-Orera J, Verdaguer-Grau P, Villanueva-Cañas JL, Messeguer X, Albà MM. 2018.. Translation of neutrally evolving peptides provides a basis for de novo gene evolution. . Nat. Ecol. Evol. 2:(5):89096
    [Crossref] [Google Scholar]
  120. 120.
    Sabath N, Wagner A, Karlin D. 2012.. Evolution of viral proteins originated de novo by overprinting. . Mol. Biol. Evol. 29:(12):376780
    [Crossref] [Google Scholar]
  121. 121.
    Saghatelian A, Couso JP. 2015.. Discovery and characterization of smORF-encoded bioactive polypeptides. . Nat. Chem. Biol. 11:(12):90916
    [Crossref] [Google Scholar]
  122. 122.
    Sandler L, Novitski E. 1957.. Meiotic drive as an evolutionary force. . Am. Nat. 91:(857):10510
    [Crossref] [Google Scholar]
  123. 123.
    Sanfilippo P, Wen J, Lai EC. 2017.. Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species. . Genome Biol. 18:(1):229
    [Crossref] [Google Scholar]
  124. 124.
    Savard J, Marques-Souza H, Aranda M, Tautz D. 2006.. A segmentation gene in tribolium produces a polycistronic mRNA that codes for multiple conserved peptides. . Cell 126:(3):55969
    [Crossref] [Google Scholar]
  125. 125.
    Schlötterer C. 2015.. Genes from scratch—the evolutionary fate of de novo genes. . Trends Genet. 31:(4):21519
    [Crossref] [Google Scholar]
  126. 126.
    Schmitz JF, Ullrich KK, Bornberg-Bauer E. 2018.. Incipient de novo genes can evolve from frozen accidents that escaped rapid transcript turnover. . Nat. Ecol. Evol. 2:(10):162632
    [Crossref] [Google Scholar]
  127. 127.
    Siepel A. 2009.. Darwinian alchemy: human genes from noncoding DNA. . Genome Res. 19:(10):169395
    [Crossref] [Google Scholar]
  128. 128.
    Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J, et al. 2012.. Peptidomic discovery of short open reading frame-encoded peptides in human cells. . Nat. Chem. Biol. 9:(1):5964
    [Crossref] [Google Scholar]
  129. 129.
    Slingsby C, Wistow GJ, Clark AR. 2013.. Evolution of crystallins for a role in the vertebrate eye lens. . Protein Sci. 22:(4):36780
    [Crossref] [Google Scholar]
  130. 130.
    Stephens SG. 1951.. Possible significance of duplication in evolution. . In Advances in Genetics, Vol. 4, ed. M Demerec , pp. 24765. Cambridge, MA:: Academic Press
    [Google Scholar]
  131. 131.
    Storz G, Wolf YI, Ramamurthi KS. 2014.. Small proteins can no longer be ignored. . Annu. Rev. Biochem. 83::75377
    [Crossref] [Google Scholar]
  132. 132.
    Storz JF. 2016.. Gene duplication and evolutionary innovations in hemoglobin-oxygen transport. . Physiology 31:(3):22332
    [Crossref] [Google Scholar]
  133. 133.
    Suenaga Y, Islam SMR, Alagu J, Kaneko Y, Kato M, et al. 2014.. NCYM, a cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3β resulting in the stabilization of MYCN in human neuroblastomas. . PLOS Genet. 10:(1):e1003996
    [Crossref] [Google Scholar]
  134. 134.
    Suenaga Y, Nakatani K, Nakagawara A. 2020.. De novo evolved gene product NCYM in the pathogenesis and clinical outcome of human neuroblastomas and other cancers. . Jpn. J. Clin. Oncol. 50:(8):83946
    [Crossref] [Google Scholar]
  135. 135.
    Taboada C, Brunetti AE, Lyra ML, Fitak RR, Faigón Soverna A, et al. 2020.. Multiple origins of green coloration in frogs mediated by a novel biliverdin-binding serpin. . PNAS 117:(31):1857481
    [Crossref] [Google Scholar]
  136. 136.
    Takeda T, Shirai K, Kim Y-W, Higuchi-Takeuchi M, Shimizu M, et al. 2023.. A de novo gene originating from the mitochondria controls floral transition in Arabidopsis thaliana. . Plant Mol. Biol. 111:(1–2):189203
    [Crossref] [Google Scholar]
  137. 137.
    Tani H, Torimura M, Akimitsu N. 2013.. The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. . PLOS ONE 8:(1):e55684
    [Crossref] [Google Scholar]
  138. 138.
    Taskiran II, Spanier KI, Dickmänken H, Kempynck N, Pančíková A, et al. 2023.. Cell-type-directed design of synthetic enhancers. . Nature 626::21220
    [Crossref] [Google Scholar]
  139. 139.
    Tautz D. 2014.. The discovery of de novo gene evolution. . Perspect. Biol. Med. 57:(1):14961
    [Crossref] [Google Scholar]
  140. 140.
    Thompson A, May MR, Moore BR, Kopp A. 2020.. A hierarchical Bayesian mixture model for inferring the expression state of genes in transcriptomes. . PNAS 117:(32):1933946
    [Crossref] [Google Scholar]
  141. 141.
    Tournamille C, Colin Y, Cartron JP, Le Van Kim C. 1995.. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. . Nat. Genet. 10:(2):22428
    [Crossref] [Google Scholar]
  142. 142.
    Tretyachenko V, Vymětal J, Bednárová L, Kopecký V Jr., Hofbauerová K, et al. 2017.. Random protein sequences can form defined secondary structures and are well-tolerated in vivo. . Sci. Rep. 7:(1):15449
    [Crossref] [Google Scholar]
  143. 143.
    Vabulas RM, Raychaudhuri S, Hayer-Hartl M, Hartl FU. 2010.. Protein folding in the cytoplasm and the heat shock response. . Cold Spring Harb. Perspect. Biol. 2:(12):a004390
    [Crossref] [Google Scholar]
  144. 144.
    Vakirlis N, Acar O, Hsu B, Castilho Coelho N, Van Oss SB, et al. 2020.. De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences. . Nat. Commun. 11:(1):781
    [Crossref] [Google Scholar]
  145. 145.
    Vakirlis N, Carvunis A-R, McLysaght A. 2020.. Synteny-based analyses indicate that sequence divergence is not the main source of orphan genes. . eLife 9::e53500
    [Crossref] [Google Scholar]
  146. 146.
    Vakirlis N, Hebert AS, Opulente DA, Achaz G, Hittinger CT, et al. 2018.. A molecular portrait of de novo genes in yeasts. . Mol. Biol. Evol. 35:(3):63145
    [Crossref] [Google Scholar]
  147. 147.
    Vakirlis N, Vance Z, Duggan KM, McLysaght A. 2022.. De novo birth of functional microproteins in the human lineage. . Cell Rep. 41:(12):111808
    [Crossref] [Google Scholar]
  148. 148.
    Van Oss SB, Carvunis A-R. 2019.. De novo gene birth. . PLOS Genet. 15:(5):e1008160
    [Crossref] [Google Scholar]
  149. 149.
    Vedanayagam J, Herbette M, Mudgett H, Lin C-J, Lai C-M, et al. 2023.. Essential and recurrent roles for hairpin RNAs in silencing de novo sex chromosome conflict in Drosophila simulans. . PLOS Biol. 21:(6):e3002136
    [Crossref] [Google Scholar]
  150. 150.
    Wacholder A, Parikh SB, Coelho NC, Acar O, Houghton C, et al. 2023.. A vast evolutionarily transient translatome contributes to phenotype and fitness. . Cell Syst. 14:(5):36381.e8
    [Crossref] [Google Scholar]
  151. 151.
    Wagstaff BJ, Begun DJ. 2005.. Comparative genomics of accessory gland protein genes in Drosophila melanogaster and D. pseudoobscura. . Mol. Biol. Evol. 22:(4):81832
    [Crossref] [Google Scholar]
  152. 152.
    Wang Y, Tang X, Lu J. 2023.. Convergent and divergent evolution of microRNA-mediated regulation in metazoans. . Biol. Rev. Camb. Philos. Soc. 99:(2):52545
    [Crossref] [Google Scholar]
  153. 153.
    Wang Z, Zhang J. 2011.. Impact of gene expression noise on organismal fitness and the efficacy of natural selection. . PNAS 108:(16):E6776
    [Google Scholar]
  154. 154.
    Weisman CM, Eddy SR. 2017.. Gene evolution: getting something from nothing. . Curr. Biol. 27:(13):R66163
    [Crossref] [Google Scholar]
  155. 155.
    Weisman CM, Murray AW, Eddy SR. 2020.. Many, but not all, lineage-specific genes can be explained by homology detection failure. . PLOS Biol. 18:(11):e3000862
    [Crossref] [Google Scholar]
  156. 156.
    Weisman CM, Murray AW, Eddy SR. 2022.. Mixing genome annotation methods in a comparative analysis inflates the apparent number of lineage-specific genes. . Curr. Biol. 32:(12):263239.e2
    [Crossref] [Google Scholar]
  157. 157.
    Wilson BA, Foy SG, Neme R, Masel J. 2017.. Young genes are highly disordered as predicted by the preadaptation hypothesis of de novo gene birth. . Nat. Ecol. Evol. 1:(6):0146
    [Crossref] [Google Scholar]
  158. 158.
    Wilson BA, Masel J. 2011.. Putatively noncoding transcripts show extensive association with ribosomes. . Genome Biol. Evol. 3::124552
    [Crossref] [Google Scholar]
  159. 159.
    Wilson DS, Keefe AD, Szostak JW. 2001.. The use of mRNA display to select high-affinity protein-binding peptides. . PNAS 98:(7):375055
    [Crossref] [Google Scholar]
  160. 160.
    Witt E, Benjamin S, Svetec N, Zhao L. 2019.. Testis single-cell RNA-seq reveals the dynamics of de novo gene transcription and germline mutational bias in Drosophila. . eLife 8::e47138
    [Crossref] [Google Scholar]
  161. 161.
    Witt E, Langer CB, Svetec N, Zhao L. 2023.. Transcriptional and mutational signatures of the Drosophila ageing germline. . Nat. Ecol. Evol. 7:(3):44049
    [Crossref] [Google Scholar]
  162. 162.
    Witt E, Svetec N, Benjamin S, Zhao L. 2021.. Transcription factors drive opposite relationships between gene age and tissue specificity in male and female Drosophila gonads. . Mol. Biol. Evol. 38:(5):210415
    [Crossref] [Google Scholar]
  163. 163.
    Wu X, Sharp PA. 2013.. Divergent transcription: a driving force for new gene origination?. Cell 155:(5):99096
    [Crossref] [Google Scholar]
  164. 164.
    Xia S, VanKuren NW, Chen C, Zhang L, Kemkemer C, et al. 2021.. Genomic analyses of new genes and their phenotypic effects reveal rapid evolution of essential functions in Drosophila development. . PLOS Genet. 17:(7):e1009654
    [Crossref] [Google Scholar]
  165. 165.
    Xie C, Bekpen C, Künzel S, Keshavarz M, Krebs-Wheaton R, et al. 2019.. A de novo evolved gene in the house mouse regulates female pregnancy cycles. . eLife 8::e44392
    [Crossref] [Google Scholar]
  166. 166.
    Xie C, Bekpen C, Künzel S, Keshavarz M, Krebs-Wheaton R, et al. 2020.. Dedicated transcriptomics combined with power analysis lead to functional understanding of genes with weak phenotypic changes in knockout lines. . PLOS Comput. Biol. 16:(11):e1008354
    [Crossref] [Google Scholar]
  167. 167.
    Xie C, Zhang YE, Chen J-Y, Liu C-J, Zhou W-Z, et al. 2012.. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs. . PLOS Genet. 8:(9):e1002942
    [Crossref] [Google Scholar]
  168. 168.
    Yona AH, Alm EJ, Gore J. 2018.. Random sequences rapidly evolve into de novo promoters. . Nat. Commun. 9:(1):1530
    [Crossref] [Google Scholar]
  169. 169.
    Young RS, Hayashizaki Y, Andersson R, Sandelin A, Kawaji H, et al. 2015.. The frequent evolutionary birth and death of functional promoters in mouse and human. . Genome Res. 25:(10):154657
    [Crossref] [Google Scholar]
  170. 170.
    Zhang D, Leng L, Chen C, Huang J, Zhang Y, et al. 2022.. Dosage sensitivity and exon shuffling shape the landscape of polymorphic duplicates in Drosophila and humans. . Nat. Ecol. Evol. 6:(3):27387
    [Crossref] [Google Scholar]
  171. 171.
    Zhang L, Ren Y, Yang T, Li G, Chen J, et al. 2019.. Rapid evolution of protein diversity by de novo origination in Oryza. . Nat. Ecol. Evol. 3:(4):67990
    [Crossref] [Google Scholar]
  172. 172.
    Zhao L, Saelao P, Jones CD, Begun DJ. 2014.. Origin and spread of de novo genes in Drosophila melanogaster populations. . Science 343:(6172):76972
    [Crossref] [Google Scholar]
  173. 173.
    Zhao M, Ren C, Yang H, Feng X, Jiang X, et al. 2007.. Transcriptional profiling of human embryonic stem cells and embryoid bodies identifies HESRG, a novel stem cell gene. . Biochem. Biophys. Res. Commun. 362:(4):91622
    [Crossref] [Google Scholar]
  174. 174.
    Zheng EB, Zhao L. 2022.. Protein evidence of unannotated ORFs in Drosophila reveals diversity in the evolution and properties of young proteins. . eLife 11::e78772
    [Crossref] [Google Scholar]
  175. 175.
    Zhou Q, Zhang GG-J, Zhang Y, Xu S, Zhao R, et al. 2008.. On the origin of new genes in Drosophila. . Genome Res. 182007::144655
    [Crossref] [Google Scholar]
  176. 176.
    Zhuang X, Yang C, Murphy KR, Cheng C-HC. 2019.. Molecular mechanism and history of non-sense to sense evolution of antifreeze glycoprotein gene in northern gadids. . PNAS 116:(10):44005
    [Crossref] [Google Scholar]
  177. 177.
    Zünd D, Gruber AR, Zavolan M, Mühlemann O. 2013.. Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3′ UTRs. . Nat. Struct. Mol. Biol. 20:(8):93643
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102413
Loading
/content/journals/10.1146/annurev-genet-111523-102413
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error