1932

Abstract

Pathogen diversity within an infected organism has traditionally been explored through the lens of genetic heterogeneity. Hallmark studies have characterized how genetic diversity within pathogen subpopulations contributes to treatment escape and infectious disease progression. However, recent studies have begun to reveal the mechanisms by which phenotypic heterogeneity is established within genetically identical populations of invading pathogens. Furthermore, exciting new work highlights how these phenotypically heterogeneous subpopulations contribute to a pathogen population better equipped to handle the complex and fluctuating environment of a host organism. In this review, we focus on how bacterial pathogens, including , , , and , establish and maintain phenotypic heterogeneity, and we explore recent work demonstrating causative links between this heterogeneity and infection outcome.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102459
2024-11-25
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102459.html?itemId=/content/journals/10.1146/annurev-genet-111523-102459&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acar M, Mettetal JT, van Oudenaarden A. 2008.. Stochastic switching as a survival strategy in fluctuating environments. . Nat. Genet. 40:(4):47175
    [Crossref] [Google Scholar]
  2. 2.
    Achim K, Pettit J-B, Saraiva LR, Gavriouchkina D, Larsson T, et al. 2015.. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. . Nat. Biotechnol. 33:(5):5039
    [Crossref] [Google Scholar]
  3. 3.
    Ackermann M. 2013.. Microbial individuality in the natural environment. . ISME J. 7:(3):46567
    [Crossref] [Google Scholar]
  4. 4.
    Ackermann M. 2015.. A functional perspective on phenotypic heterogeneity in microorganisms. . Nat. Rev. Microbiol. 13:(8):497508
    [Crossref] [Google Scholar]
  5. 5.
    Ackermann M, Stecher B, Freed NE, Songhet P, Hardt W-D, Doebeli M. 2008.. Self-destructive cooperation mediated by phenotypic noise. . Nature 454:(7207):98790
    [Crossref] [Google Scholar]
  6. 6.
    Aldridge BB, Fernandez-Suarez M, Heller D, Ambravaneswaran V, Irimia D, et al. 2012.. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. . Science 335:(6064):1004
    [Crossref] [Google Scholar]
  7. 7.
    Allison SD, Martiny JBH. 2008.. Colloquium paper: resistance, resilience, and redundancy in microbial communities. . PNAS 105:(Suppl. 1):1151219
    [Crossref] [Google Scholar]
  8. 8.
    Anetzberger C, Pirch T, Jung K. 2009.. Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio harveyi. . Mol. Microbiol. 73:(2):26777
    [Crossref] [Google Scholar]
  9. 9.
    Anetzberger C, Schell U, Jung K. 2012.. Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals. . BMC Microbiol. 12::209
    [Crossref] [Google Scholar]
  10. 10.
    Armbruster CR, Lee CK, Parker-Gilham J, de Anda J, Xia A, et al. 2019.. Heterogeneity in surface sensing suggests a division of labor in Pseudomonas aeruginosa populations. . eLife 8::e45084
    [Crossref] [Google Scholar]
  11. 11.
    Arnoldini M, Vizcarra IA, Peña-Miller R, Stocker N, Diard M, et al. 2014.. Bistable expression of virulence genes in Salmonella leads to the formation of an antibiotic-tolerant subpopulation. . PLOS Biol. 12:(8):e1001928
    [Crossref] [Google Scholar]
  12. 12.
    Avraham R, Haseley N, Brown D, Penaranda C, Jijon HB, et al. 2015.. Pathogen cell-to-cell variability drives heterogeneity in host immune responses. . Cell 162:(6):130921
    [Crossref] [Google Scholar]
  13. 13.
    Baker JJ, Abramovitch RB. 2018.. Genetic and metabolic regulation of Mycobacterium tuberculosis acid growth arrest. . Sci. Rep. 8:(1):4168
    [Crossref] [Google Scholar]
  14. 14.
    Bakshi S, Leoncini E, Baker C, Cañas-Duarte SJ, Okumus B, Paulsson J. 2021.. Tracking bacterial lineages in complex and dynamic environments with applications for growth control and persistence. . Nat. Microbiol. 6:(6):78391
    [Crossref] [Google Scholar]
  15. 15.
    Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, et al. 2019.. Definitions and guidelines for research on antibiotic persistence. . Nat. Rev. Microbiol. 17:(7):44148
    [Crossref] [Google Scholar]
  16. 16.
    Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. 2004.. Bacterial persistence as a phenotypic switch. . Science 305:(5690):162225
    [Crossref] [Google Scholar]
  17. 17.
    Balomenos AD, Stefanou V, Manolakos ES. 2021.. Analytics and visualization tools to characterize single-cell stochasticity using bacterial single-cell movie cytometry data. . BMC Bioinform. 22:(1):531
    [Crossref] [Google Scholar]
  18. 18.
    Baranowski C, Welsh MA, Sham L-T, Eskandarian HA, Lim HC, et al. 2018.. Maturing Mycobacterium smegmatis peptidoglycan requires non-canonical crosslinks to maintain shape. . eLife 7::e37516
    [Crossref] [Google Scholar]
  19. 19.
    Basan M, Honda T, Christodoulou D, Hörl M, Chang Y-F, et al. 2020.. A universal trade-off between growth and lag in fluctuating environments. . Nature 584:(7821):47074
    [Crossref] [Google Scholar]
  20. 20.
    Basiji DA, Ortyn WE, Liang L, Venkatachalam V, Morrissey P. 2007.. Cellular image analysis and imaging by flow cytometry. . Clin. Lab. Med. 27:(3):65370
    [Crossref] [Google Scholar]
  21. 21.
    Bellerose MM, Baek S-H, Huang C-C, Moss CE, Koh E-I, et al. 2019.. Common variants in the glycerol kinase gene reduce tuberculosis drug efficacy. . mBio 10:(4):e00663-19
    [Crossref] [Google Scholar]
  22. 22.
    Berg RD, Ramakrishnan L. 2012.. Insights into tuberculosis from the zebrafish model. . Trends Mol. Med. 18:(12):68990
    [Crossref] [Google Scholar]
  23. 23.
    Berger C, Premaraj N, Ravelli RBG, Knoops K, López-Iglesias C, Peters PJ. 2023.. Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology. . Nat. Methods 20:(4):499511
    [Crossref] [Google Scholar]
  24. 24.
    Bernard EM, Fearns A, Bussi C, Santucci P, Peddie CJ, et al. 2020.. M. tuberculosis infection of human iPSC-derived macrophages reveals complex membrane dynamics during xenophagy evasion. . J. Cell Sci. 134:(5):jcs252973
    [Crossref] [Google Scholar]
  25. 25.
    Blake WJ, Balázsi G, Kohanski MA, Isaacs FJ, Murphy KF, et al. 2006.. Phenotypic consequences of promoter-mediated transcriptional noise. . Mol. Cell 24:(6):85365
    [Crossref] [Google Scholar]
  26. 26.
    Blake WJ, KÆrn M, Cantor CR, Collins JJ. 2003.. Noise in eukaryotic gene expression. . Nature 422:(6932):63337
    [Crossref] [Google Scholar]
  27. 27.
    Blango MG, Mulvey MA. 2009.. Bacterial landlines: contact-dependent signaling in bacterial populations. . Curr. Opin. Microbiol. 12:(2):17781
    [Crossref] [Google Scholar]
  28. 28.
    Blattman SB, Jiang W, Oikonomou P, Tavazoie S. 2020.. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing. . Nat. Microbiol. 5:(10):1192201
    [Crossref] [Google Scholar]
  29. 29.
    Bloom DE, Kuhn M, Prettner K. 2022.. Modern infectious diseases: macroeconomic impacts and policy responses. . J. Econ. Lit. 60::85131
    [Crossref] [Google Scholar]
  30. 30.
    Bódi Z, Farkas Z, Nevozhay D, Kalapis D, Lázár V, et al. 2017.. Phenotypic heterogeneity promotes adaptive evolution. . PLOS Biol. 15:(5):e2000644
    [Crossref] [Google Scholar]
  31. 31.
    Boot M, Rego EH. 2019.. Drug susceptibility of individual mycobacterial cells. . In Persister Cells and Infectious Disease, ed. K Lewis , pp. 24772. Cham, Switz:.: Springer
    [Google Scholar]
  32. 32.
    Bowden SD, Rowley G, Hinton JCD, Thompson A. 2009.. Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar Typhimurium. . Infect. Immun. 77:(7):311726
    [Crossref] [Google Scholar]
  33. 33.
    Bücker R, Heroven AK, Becker J, Dersch P, Wittmann C. 2014.. The pyruvate-tricarboxylic acid cycle node. . J. Biol. Chem. 289:(43):3011432
    [Crossref] [Google Scholar]
  34. 34.
    Budzik JM, Swaney DL, Jimenez-Morales D, Johnson JR, Garelis NE, et al. 2020.. Dynamic post-translational modification profiling of Mycobacterium tuberculosis-infected primary macrophages. . eLife 9::e51461
    [Crossref] [Google Scholar]
  35. 35.
    Bumann D. 2015.. Heterogeneous host-pathogen encounters: Act locally, think globally. . Cell Host Microbe 17:(1):1319
    [Crossref] [Google Scholar]
  36. 36.
    Bussi C, Gutierrez MG. 2019.. Mycobacterium tuberculosis infection of host cells in space and time. . FEMS Microbiol. Rev. 43:(4):34161
    [Crossref] [Google Scholar]
  37. 37.
    Cadena AM, Fortune SM, Flynn JL. 2017.. Heterogeneity in tuberculosis. . Nat. Rev. Immunol. 17:(11):691702
    [Crossref] [Google Scholar]
  38. 38.
    Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, et al. 2014.. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. . J. Immunol. 192:(8):362636
    [Crossref] [Google Scholar]
  39. 39.
    Casadesús J, Low DA. 2013.. Programmed heterogeneity: epigenetic mechanisms in bacteria. . J. Biol. Chem. 288:(20):1392935
    [Crossref] [Google Scholar]
  40. 40.
    Chang C-H, Curtis JD, Maggi LB, Faubert B, Villarino AV, et al. 2013.. Posttranscriptional control of T cell effector function by aerobic glycolysis. . Cell 153:(6):123951
    [Crossref] [Google Scholar]
  41. 41.
    Chaudhuri S, Li L, Zimmerman M, Chen Y, Chen Y-X, et al. 2018.. Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation. . eLife 7::e36782
    [Crossref] [Google Scholar]
  42. 42.
    Chin CY, Tipton KA, Farokhyfar M, Burd EM, Weiss DS, Rather PN. 2018.. A high-frequency phenotypic switch links bacterial virulence and environmental survival in Acinetobacter baumannii. . Nat. Microbiol. 3:(5):56369
    [Crossref] [Google Scholar]
  43. 43.
    Choi Y-J, Aliota MT, Mayhew GF, Erickson SM, Christensen BM. 2014.. Dual RNA-seq of parasite and host reveals gene expression dynamics during filarial worm–mosquito interactions. . PLOS Negl. Trop. Dis. 8:(5):e2905
    [Crossref] [Google Scholar]
  44. 44.
    Choudhary D, Lagage V, Foster KR, Uphoff S. 2023.. Phenotypic heterogeneity in the bacterial oxidative stress response is driven by cell-cell interactions. . Cell Rep. 42:(3):112168
    [Crossref] [Google Scholar]
  45. 45.
    Chung ES, Johnson WC, Aldridge BB. 2022.. Types and functions of heterogeneity in mycobacteria. . Nat. Rev. Microbiol. 20:(9):52941
    [Crossref] [Google Scholar]
  46. 46.
    Cohen D. 1966.. Optimizing reproduction in a randomly varying environment. . J. Theor. Biol. 12:(1):11929
    [Crossref] [Google Scholar]
  47. 47.
    Cohen SB, Gern BH, Delahaye JL, Adams KN, Plumlee CR, et al. 2018.. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. . Cell Host Microbe 24:(3):43946.e4
    [Crossref] [Google Scholar]
  48. 48.
    Czechowska K, McKeithen-Mead S, Al Moussawi K, Kazmierczak BI. 2014.. Cheating by type 3 secretion system-negative Pseudomonas aeruginosa during pulmonary infection. . PNAS 111:(21):78016
    [Crossref] [Google Scholar]
  49. 49.
    Dalebroux ZD, Miller SI. 2014.. Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity. . Curr. Opin. Microbiol. 17::10613
    [Crossref] [Google Scholar]
  50. 50.
    Davidsen T, Tønjum T. 2006.. Meningococcal genome dynamics. . Nat. Rev. Microbiol. 4:(1):1122
    [Crossref] [Google Scholar]
  51. 51.
    Delincé MJ, Bureau J-B, López-Jiménez AT, Cosson P, Soldati T, McKinney JD. 2016.. A microfluidic cell-trapping device for single-cell tracking of host–microbe interactions. . Lab Chip 16:(17):327685
    [Crossref] [Google Scholar]
  52. 52.
    Demangel C, Surace L. 2023.. Host-pathogen interactions from a metabolic perspective: methods of investigation. . Microbes Infect. In press. https://doi.org/10.1016/j.micinf.2023.105267
    [Google Scholar]
  53. 53.
    Dhar N, McKinney J, Manina G. 2016.. Phenotypic heterogeneity in Mycobacterium tuberculosis. . Microbiol. Spectr. 4:(6). https://doi.org/10.1128/microbiolspec.tbtb2-0021-2016
    [Crossref] [Google Scholar]
  54. 54.
    Diard M, Garcia V, Maier L, Remus-Emsermann MNP, Regoes RR, et al. 2013.. Stabilization of cooperative virulence by the expression of an avirulent phenotype. . Nature 494:(7437):35356
    [Crossref] [Google Scholar]
  55. 55.
    Dillon LAL, Suresh R, Okrah K, Corrada Bravo H, Mosser DM, El-Sayed NM. 2015.. Simultaneous transcriptional profiling of Leishmania major and its murine macrophage host cell reveals insights into host-pathogen interactions. . BMC Genom. 16::1108
    [Crossref] [Google Scholar]
  56. 56.
    Dubnau D, Losick R. 2006.. Bistability in bacteria. . Mol. Microbiol. 61:(3):56472
    [Crossref] [Google Scholar]
  57. 57.
    Dulberger CL, Rubin EJ, Boutte CC. 2020.. The mycobacterial cell envelope—a moving target. . Nat. Rev. Microbiol. 18:(1):4759
    [Crossref] [Google Scholar]
  58. 58.
    Ehlers S, Schaible UE. 2013.. The granuloma in tuberculosis: dynamics of a host–pathogen collusion. . Front. Immun. 3::411
    [Crossref] [Google Scholar]
  59. 59.
    Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, et al. 2001.. Reprogramming of the macrophage transcriptome in response to interferon-γ and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. . J. Exp. Med. 194:(8):112340
    [Crossref] [Google Scholar]
  60. 60.
    Elkington P, Polak ME, Reichmann MT, Leslie A. 2022.. Understanding the tuberculosis granuloma: the matrix revolutions. . Trends Mol. Med. 28:(2):14354
    [Crossref] [Google Scholar]
  61. 61.
    Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002.. Stochastic gene expression in a single cell. . Science 297:(5584):118386
    [Crossref] [Google Scholar]
  62. 62.
    Escoll P, Mondino S, Rolando M, Buchrieser C. 2016.. Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. . Nat. Rev. Microbiol. 14:(1):519
    [Crossref] [Google Scholar]
  63. 63.
    Eskandarian HA, Chen Y-X, Toniolo C, Belardinelli JM, Palcekova Z, et al. 2024.. Mechanical morphotype switching as an adaptive response in mycobacteria. . Sci. Adv. 10:(1):eadh7957
    [Crossref] [Google Scholar]
  64. 64.
    Everts B, Amiel E, Huang SC-C, Smith AM, Chang C-H, et al. 2014.. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. . Nat. Immunol. 15:(4):32332
    [Crossref] [Google Scholar]
  65. 65.
    Fortune SM, Jaeger A, Sarracino DA, Chase MR, Sassetti CM, et al. 2005.. Mutually dependent secretion of proteins required for mycobacterial virulence. . PNAS 102:(30):1067681
    [Crossref] [Google Scholar]
  66. 66.
    Galagan JE. 2014.. Genomic insights into tuberculosis. . Nat. Rev. Genet. 15:(5):30720
    [Crossref] [Google Scholar]
  67. 67.
    Gao W, Monk IR, Tobias NJ, Gladman SL, Seemann T, et al. 2015.. Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus. . Microb. Genom. 1:(2):e000026
    [Google Scholar]
  68. 68.
    García-Pastor L, Puerta-Fernández E, Casadesús J. 2019.. Bistability and phase variation in Salmonella enterica. . Biochim. Biophys. Acta Gene Regul. Mech. 1862:(7):75258
    [Crossref] [Google Scholar]
  69. 69.
    Garg N, Wang M, Hyde E, da Silva RR, Melnik AV, et al. 2017.. Three-dimensional microbiome and metabolome cartography of a diseased human lung. . Cell Host Microbe 22:(5):70516.e4
    [Crossref] [Google Scholar]
  70. 70.
    Gasperotti A, Brameyer S, Fabiani F, Jung K. 2020.. Phenotypic heterogeneity of microbial populations under nutrient limitation. . Curr. Opin. Biotechnol. 62::16067
    [Crossref] [Google Scholar]
  71. 71.
    Giovannini D, Cappelli G, Jiang L, Castilletti C, Colone A, et al. 2012.. A new Mycobacterium tuberculosis smooth colony reduces growth inside human macrophages and represses PDIM Operon gene expression. Does an heterogeneous population exist in intracellular mycobacteria?. Microb. Pathog. 53:(3–4):13546
    [Crossref] [Google Scholar]
  72. 72.
    Gomes MC, Mostowy S. 2020.. The case for modeling human infection in zebrafish. . Trends Microbiol. 28:(1):1018
    [Crossref] [Google Scholar]
  73. 73.
    Goodwin S, McPherson JD, McCombie WR. 2016.. Coming of age: ten years of next-generation sequencing technologies. . Nat. Rev. Genet. 17:(6):33351
    [Crossref] [Google Scholar]
  74. 74.
    Grant AJ, Restif O, McKinley TJ, Sheppard M, Maskell DJ, Mastroeni P. 2008.. Modelling within-host spatiotemporal dynamics of invasive bacterial disease. . PLOS Biol. 6:(4):e74
    [Crossref] [Google Scholar]
  75. 75.
    Grassart A, Malardé V, Gobaa S, Sartori-Rupp A, Kerns J, et al. 2019.. Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting Shigella infection. . Cell Host Microbe 26:(3):43544.e4
    [Crossref] [Google Scholar]
  76. 76.
    Greenwood DJ, Dos Santos MS, Huang S, Russell MRG, Collinson LM, et al. 2019.. Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. . Science 364:(6447):127982
    [Crossref] [Google Scholar]
  77. 77.
    Grimbergen AJ, Siebring J, Solopova A, Kuipers OP. 2015.. Microbial bet-hedging: the power of being different. . Curr. Opin. Microbiol. 25::6772
    [Crossref] [Google Scholar]
  78. 78.
    Gwin CM, Gupta KR, Lu Y, Shao L, Rego EH. 2023.. Spatial segregation and aging of metabolic processes underlie phenotypic heterogeneity in mycobacteria. . bioRxiv 2023.12.01.569614. https://www.biorxiv.org/content/10.1101/2023.12.01.569614v2
  79. 79.
    Hallet B. 2001.. Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria. . Curr. Opin. Microbiol. 4:(5):57081
    [Crossref] [Google Scholar]
  80. 80.
    Hammer ND, Cassat JE, Noto MJ, Lojek LJ, Chadha AD, et al. 2014.. Inter- and intraspecies metabolite exchange promotes virulence of antibiotic-resistant Staphylococcus aureus. . Cell Host Microbe 16:(4):53137
    [Crossref] [Google Scholar]
  81. 81.
    Hatzios SK, Abel S, Martell J, Hubbard T, Sasabe J, et al. 2016.. Chemoproteomic profiling of host and pathogen enzymes active in cholera. . Nat. Chem. Biol. 12:(4):26874
    [Crossref] [Google Scholar]
  82. 82.
    Häussler S, Tümmler B, Weissbrodt H, Rohde M, Steinmetz I. 1999.. Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. . Clin. Infect. Dis. 29:(3):62125
    [Crossref] [Google Scholar]
  83. 83.
    Hautefort I, Proença MJ, Hinton JCD. 2003.. Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. . Appl. Environ. Microbiol. 69:(12):748091
    [Crossref] [Google Scholar]
  84. 84.
    Heroven AK, Nagel G, Tran HJ, Parr S, Dersch P. 2004.. RovA is autoregulated and antagonizes H-NS-mediated silencing of invasin and rovA expression in Yersinia pseudotuberculosis. . Mol. Microbiol. 53:(3):87188
    [Crossref] [Google Scholar]
  85. 85.
    Herrera N, Odermatt PD, Voorhies M, Nakagawa R, Sil A, et al. 2021.. The ESX-1 secretion system senses bacterial contact and prepares mycobacteria for environmental adaptation. . bioRxiv 2021.10.17.464699. https://www.biorxiv.org/content/10.1101/2021.10.17.464699v1
  86. 86.
    Hill PWS, Moldoveanu AL, Sargen M, Ronneau S, Glegola-Madejska I, et al. 2021.. The vulnerable versatility of Salmonella antibiotic persisters during infection. . Cell Host Microbe 29:(12):175773.e10
    [Crossref] [Google Scholar]
  87. 87.
    Hite JL, Cressler CE. 2018.. Resource-driven changes to host population stability alter the evolution of virulence and transmission. . Philos. Trans. R. Soc. B 373:(1745):20170087
    [Crossref] [Google Scholar]
  88. 88.
    Hocher A, Laursen SP, Radford P, Tyson J, Lambert C, et al. 2023.. Histones with an unconventional DNA-binding mode in vitro are major chromatin constituents in the bacterium Bdellovibrio bacteriovorus. . Nat. Microbiol. 8:(11):200619
    [Crossref] [Google Scholar]
  89. 89.
    Homberger C, Hayward RJ, Barquist L, Vogel J. 2023.. Improved bacterial single-cell RNA-seq through automated MATQ-seq and Cas9-based removal of rRNA reads. . mBio 14:(2):e0355722
    [Crossref] [Google Scholar]
  90. 90.
    Howden BP, Giulieri SG, Wong Fok Lung T, Baines SL, Sharkey LK, et al. 2023.. Staphylococcus aureus host interactions and adaptation. . Nat. Rev. Microbiol. 21:(6):38095
    [Crossref] [Google Scholar]
  91. 91.
    Huang F, Sirinakis G, Allgeyer ES, Schroeder LK, Duim WC, et al. 2016.. Ultra-high resolution 3D imaging of whole cells. . Cell 166:(4):102840
    [Crossref] [Google Scholar]
  92. 92.
    Huemer M, Mairpady Shambat S, Bergada-Pijuan J, Söderholm S, Boumasmoud M, et al. 2021.. Molecular reprogramming and phenotype switching in Staphylococcus aureus lead to high antibiotic persistence and affect therapy success. . PNAS 118:(7):e2014920118
    [Crossref] [Google Scholar]
  93. 93.
    Huh D, Paulsson J. 2011.. Non-genetic heterogeneity from stochastic partitioning at cell division. . Nat. Genet. 43:(2):95100
    [Crossref] [Google Scholar]
  94. 94.
    Hui S, Cowan AJ, Zeng X, Yang L, TeSlaa T, et al. 2020.. Quantitative fluxomics of circulating metabolites. . Cell Metab. 32:(4):67688.e4
    [Crossref] [Google Scholar]
  95. 95.
    Imdahl F, Vafadarnejad E, Homberger C, Saliba A-E, Vogel J. 2020.. Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria. . Nat. Microbiol. 5:(10):12026
    [Crossref] [Google Scholar]
  96. 96.
    Jäger S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, et al. 2011.. Global landscape of HIV–human protein complexes. . Nature 481:(7381):36570
    [Crossref] [Google Scholar]
  97. 97.
    Javid B, Sorrentino F, Toosky M, Zheng W, Pinkham JT, et al. 2014.. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. . PNAS 111:(3):113237
    [Crossref] [Google Scholar]
  98. 98.
    Jha AK, Huang SC-C, Sergushichev A, Lampropoulou V, Ivanova Y, et al. 2015.. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. . Immunity 42:(3):41930
    [Crossref] [Google Scholar]
  99. 99.
    Jiang H, Favaro E, Goulbourne CN, Rakowska PD, Hughes GM, et al. 2014.. Stable isotope imaging of biological samples with high resolution secondary ion mass spectrometry and complementary techniques. . Methods 68:(2):31724
    [Crossref] [Google Scholar]
  100. 100.
    Jiang X, Hall AB, Arthur TD, Plichta DR, Covington CT, et al. 2019.. Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut. . Science 363:(6423):18187
    [Crossref] [Google Scholar]
  101. 101.
    Kahl B, Herrmann M, Everding AS, Koch HG, Becker K, et al. 1998.. Persistent infection with small colony variant strains of Staphylococcus aureus in patients with cystic fibrosis. . J. Infect. Dis. 177:(4):102329
    [Crossref] [Google Scholar]
  102. 102.
    Kaloyanova D, Vogels M, van Balkom BWM, Helms JB. 2015.. Quantitative proteomic identification of host factors involved in the Salmonella typhimurium infection cycle. . Methods Mol. Biol. 1225::2945
    [Crossref] [Google Scholar]
  103. 103.
    Kazmierczak BI, Schniederberend M, Jain R. 2015.. Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence. . Curr. Opin. Microbiol. 28::7882
    [Crossref] [Google Scholar]
  104. 104.
    Kieser KJ, Rubin EJ. 2014.. How sisters grow apart: mycobacterial growth and division. . Nat. Rev. Microbiol. 12:(8):55062
    [Crossref] [Google Scholar]
  105. 105.
    Kimura A, Hansen EJ. 1986.. Antigenic and phenotypic variations of Haemophilus influenzae type b lipopolysaccharide and their relationship to virulence. . Infect. Immun. 51:(1):6979
    [Crossref] [Google Scholar]
  106. 106.
    Klockgether J, Tümmler B. 2017.. Recent advances in understanding Pseudomonas aeruginosa as a pathogen. . F1000Res. 6::1261
    [Crossref] [Google Scholar]
  107. 107.
    Kotte O, Volkmer B, Radzikowski JL, Heinemann M. 2014.. Phenotypic bistability in Escherichia coli’s central carbon metabolism. . Mol. Syst. Biol. 10:(7):736
    [Crossref] [Google Scholar]
  108. 108.
    Kröger C, Srikumar S, Ellwart J, Fuchs TM. 2011.. Bistability in myo-inositol utilization by Salmonella enterica serovar Typhimurium. . J. Bacteriol. 193:(6):142735
    [Crossref] [Google Scholar]
  109. 109.
    Kuchina A, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, et al. 2021.. Microbial single-cell RNA sequencing by split-pool barcoding. . Science 371:(6531):eaba5257
    [Crossref] [Google Scholar]
  110. 110.
    Kühn S, Bergqvist J, Gil M, Valenzuela C, Barrio L, et al. 2020.. Actin assembly around the Shigella-containing vacuole promotes successful infection. . Cell Rep. 31:(6):107638
    [Crossref] [Google Scholar]
  111. 111.
    Kussell E, Leibler S. 2005.. Phenotypic diversity, population growth, and information in fluctuating environments. . Science 309:(5743):207578
    [Crossref] [Google Scholar]
  112. 112.
    Laventie B-J, Sangermani M, Estermann F, Manfredi P, Planes R, et al. 2019.. A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. . Cell Host Microbe 25:(1):14052.e6
    [Crossref] [Google Scholar]
  113. 113.
    Lavin RC, Tan S. 2022.. Spatial relationships of intra-lesion heterogeneity in Mycobacterium tuberculosis microenvironment, replication status, and drug efficacy. . PLOS Pathog. 18:(3):e1010459
    [Crossref] [Google Scholar]
  114. 114.
    Lerner TR, Queval CJ, Fearns A, Repnik U, Griffiths G, Gutierrez MG. 2018.. Phthiocerol dimycocerosates promote access to the cytosol and intracellular burden of Mycobacterium tuberculosis in lymphatic endothelial cells. . BMC Biol. 16:(1):1
    [Crossref] [Google Scholar]
  115. 115.
    Levy SF, Ziv N, Siegal ML. 2012.. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. . PLOS Biol. 10:(5):e1001325
    [Crossref] [Google Scholar]
  116. 116.
    Lewis K. 2010.. Persister cells. . Annu. Rev. Microbiol. 64::35772
    [Crossref] [Google Scholar]
  117. 117.
    Lienard J, Nobs E, Lovins V, Movert E, Valfridsson C, Carlsson F. 2020.. The Mycobacterium marinum ESX-1 system mediates phagosomal permeabilization and type I interferon production via separable mechanisms. . PNAS 117:(2):116066
    [Crossref] [Google Scholar]
  118. 118.
    Lin CK, Lee DSW, McKeithen-Mead S, Emonet T, Kazmierczak B. 2021.. A primed subpopulation of bacteria enables rapid expression of the type 3 secretion system in Pseudomonas aeruginosa. . mBio 12:(3):e0083121
    [Crossref] [Google Scholar]
  119. 119.
    Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, et al. 2014.. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. . Nat. Med. 20:(1):7579
    [Crossref] [Google Scholar]
  120. 120.
    Logsdon MM, Aldridge BB. 2018.. Stable regulation of cell cycle events in mycobacteria: insights from inherently heterogeneous bacterial populations. . Front. Microbiol. 9::514
    [Crossref] [Google Scholar]
  121. 121.
    Longo SK, Guo MG, Ji AL, Khavari PA. 2021.. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. . Nat. Rev. Genet. 22:(10):62744
    [Crossref] [Google Scholar]
  122. 122.
    López-Jiménez AT, Cardenal-Muñoz E, Leuba F, Gerstenmaier L, Barisch C, et al. 2018.. The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection. . PLOS Pathog. 14:(12):e1007501
    [Crossref] [Google Scholar]
  123. 123.
    López-Jiménez AT, Mostowy S. 2021.. Emerging technologies and infection models in cellular microbiology. . Nat. Commun. 12:(1):6764
    [Crossref] [Google Scholar]
  124. 124.
    Łoś JM, Łoś M, Węgrzyn A, Węgrzyn G. 2012.. Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. . Front. Cell Infect. Microbiol. 2::166
    [Google Scholar]
  125. 125.
    Lowy FD. 1998.. Staphylococcus aureus infections. . N. Engl. J. Med. 339:(8):52032
    [Crossref] [Google Scholar]
  126. 126.
    Ma P, Amemiya HM, He LL, Gandhi SJ, Nicol R, et al. 2023.. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. . Cell 186:(4):87791.e14
    [Crossref] [Google Scholar]
  127. 127.
    MacGilvary NJ, Tan S. 2018.. Fluorescent Mycobacterium tuberculosis reporters: illuminating host–pathogen interactions. . Pathog. Dis. 76:(3):fty017
    [Crossref] [Google Scholar]
  128. 128.
    Manina G, Griego A, Singh LK, McKinney JD, Dhar N. 2019.. Preexisting variation in DNA damage response predicts the fate of single mycobacteria under stress. . EMBO J. 38:(22):e101876
    [Crossref] [Google Scholar]
  129. 129.
    Manner C, Dias Teixeira R, Saha D, Kaczmarczyk A, Zemp R, et al. 2023.. A genetic switch controls Pseudomonas aeruginosa surface colonization. . Nat. Microbiol. 8:(8):152033
    [Crossref] [Google Scholar]
  130. 130.
    McCaffrey EF, Donato M, Keren L, Chen Z, Delmastro A, et al. 2022.. The immunoregulatory landscape of human tuberculosis granulomas. . Nat. Immunol. 23:(2):31829
    [Crossref] [Google Scholar]
  131. 131.
    Medaglia C, Giladi A, Stoler-Barak L, De Giovanni M, Salame TM, et al. 2017.. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. . Science 358:(6370):162226
    [Crossref] [Google Scholar]
  132. 132.
    Meeker ND, Trede NS. 2008.. Immunology and zebrafish: spawning new models of human disease. . Dev. Comp. Immunol. 32:(7):74557
    [Crossref] [Google Scholar]
  133. 133.
    Meynell GG, Stocker BA. 1957.. Some hypotheses on the aetiology of fatal infections in partially resistant hosts and their application to mice challenged with Salmonella paratyphi-B or Salmonella typhimurium by intraperitoneal injection. . J. Gen. Microbiol. 16:(1):3858
    [Crossref] [Google Scholar]
  134. 134.
    Mirrashidi KM, Elwell CA, Verschueren E, Johnson JR, Frando A, et al. 2015.. Global mapping of the Inc-human interactome reveals that retromer restricts Chlamydia infection. . Cell Host Microbe 18:(1):10921
    [Crossref] [Google Scholar]
  135. 135.
    Mitosch K, Beyß M, Phapale P, Drotleff B, Nöh K, et al. 2023.. A pathogen-specific isotope tracing approach reveals metabolic activities and fluxes of intracellular Salmonella. . PLOS Biol. 21:(8):e3002198
    [Crossref] [Google Scholar]
  136. 136.
    Muñoz JF, Delorey T, Ford CB, Li BY, Thompson DA, et al. 2019.. Coordinated host-pathogen transcriptional dynamics revealed using sorted subpopulations and single macrophages infected with Candida albicans. . Nat. Commun. 10:(1):1607
    [Crossref] [Google Scholar]
  137. 137.
    Murdoch CC, Skaar EP. 2022.. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. . Nat. Rev. Microbiol. 20:(11):65770
    [Crossref] [Google Scholar]
  138. 138.
    Nagel G, Lahrz A, Dersch P. 2001.. Environmental control of invasin expression in Yersinia pseudotuberculosis is mediated by regulation of RovA, a transcriptional activator of the SlyA/Hor family. . Mol. Microbiol. 41:(6):124969
    [Crossref] [Google Scholar]
  139. 139.
    Nakatani RJ, Itabashi M, Yamada TG, Hiroi NF, Funahashi A. 2022.. Intercellular interaction mechanisms promote diversity in intracellular ATP concentration in Escherichia coli populations. . Sci. Rep. 12:(1):17946
    [Crossref] [Google Scholar]
  140. 140.
    Newsom SN, McCall L-I. 2018.. Metabolomics: eavesdropping on silent conversations between hosts and their unwelcome guests. . PLOS Pathog. 14:(4):e1006926
    [Crossref] [Google Scholar]
  141. 141.
    Nuss AM, Schuster F, Roselius L, Klein J, Bücker R, et al. 2016.. A precise temperature-responsive bistable switch controlling Yersinia virulence. . PLOS Pathog. 12:(12):e1006091
    [Crossref] [Google Scholar]
  142. 142.
    Ohta K, Hirashima S, Miyazono Y, Togo A, Nakamura K. 2021.. Correlation of organelle dynamics between light microscopic live imaging and electron microscopic 3D architecture using FIB-SEM. . Microscopy 70:(2):16170
    [Crossref] [Google Scholar]
  143. 143.
    Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. 2002.. Regulation of noise in the expression of a single gene. . Nat. Genet. 31:(1):6973
    [Crossref] [Google Scholar]
  144. 144.
    Pérez PD, Hagen SJ. 2010.. Heterogeneous response to a quorum-sensing signal in the luminescence of individual Vibrio fischeri. . PLOS ONE 5:(11):e15473
    [Crossref] [Google Scholar]
  145. 145.
    Personnic N, Striednig B, Lezan E, Manske C, Welin A, et al. 2019.. Quorum sensing modulates the formation of virulent Legionella persisters within infected cells. . Nat. Commun. 10:(1):5216
    [Crossref] [Google Scholar]
  146. 146.
    Peyrusson F, Varet H, Nguyen TK, Legendre R, Sismeiro O, et al. 2020.. Intracellular Staphylococcus aureus persisters upon antibiotic exposure. . Nat. Commun. 11:(1):2200
    [Crossref] [Google Scholar]
  147. 147.
    Pisu D, Huang L, Narang V, Theriault M, Lê-Bury G, et al. 2021.. Single cell analysis of M. tuberculosis phenotype and macrophage lineages in the infected lung. . J. Exp. Med. 218:(9):e20210615
    [Crossref] [Google Scholar]
  148. 148.
    Pittman KJ, Aliota MT, Knoll LJ. 2014.. Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection. . BMC Genom. 15:(1):806
    [Crossref] [Google Scholar]
  149. 149.
    Plener L, Lorenz N, Reiger M, Ramalho T, Gerland U, Jung K. 2015.. The phosphorylation flow of the Vibrio harveyi quorum-sensing cascade determines levels of phenotypic heterogeneity in the population. . J. Bacteriol. 197:(10):174756
    [Crossref] [Google Scholar]
  150. 150.
    Price MS, Betancourt-Quiroz M, Price JL, Toffaletti DL, Vora H, et al. 2011.. Cryptococcus neoformans requires a functional glycolytic pathway for disease but not persistence in the host. . mBio 2:(3):e00103-11
    [Crossref] [Google Scholar]
  151. 151.
    Rahbari KM, Chang JC, Federle MJ. 2021.. A Streptococcus quorum sensing system enables suppression of innate immunity. . mBio 12:(3):e03400-20
    [Crossref] [Google Scholar]
  152. 152.
    Rees P, Summers HD, Filby A, Carpenter AE, Doan M. 2022.. Imaging flow cytometry. . Nat. Rev. Methods Primers 2:(1):86
    [Crossref] [Google Scholar]
  153. 153.
    Rego EH, Audette RE, Rubin EJ. 2017.. Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. . Nature 546:(7656):15357
    [Crossref] [Google Scholar]
  154. 154.
    Rendeiro AF, Ravichandran H, Bram Y, Chandar V, Kim J, et al. 2021.. The spatial landscape of lung pathology during COVID-19 progression. . Nature 593:(7860):56469
    [Crossref] [Google Scholar]
  155. 155.
    Reuven P, Eldar A. 2011.. Macromotives and microbehaviors: the social dimension of bacterial phenotypic variability. . Curr. Opin. Genet. Dev. 21:(6):75967
    [Crossref] [Google Scholar]
  156. 156.
    Reyes Ruiz LM, Williams CL, Tamayo R. 2020.. Enhancing bacterial survival through phenotypic heterogeneity. . PLOS Pathog. 16:(5):e1008439
    [Crossref] [Google Scholar]
  157. 157.
    Roca FJ, Whitworth LJ, Redmond S, Jones AA, Ramakrishnan L. 2019.. TNF induces pathogenic programmed macrophage necrosis in tuberculosis through a mitochondrial-lysosomal-endoplasmic reticulum circuit. . Cell 178:(6):134461.e11
    [Crossref] [Google Scholar]
  158. 158.
    Roth JR, Kugelberg E, Reams AB, Kofoid E, Andersson DI. 2006.. Origin of mutations under selection: the adaptive mutation controversy. . Annu. Rev. Microbiol. 60::477501
    [Crossref] [Google Scholar]
  159. 159.
    Russell DG, Huang L, VanderVen BC. 2019.. Immunometabolism at the interface between macrophages and pathogens. . Nat. Rev. Immunol. 19:(5):291304
    [Crossref] [Google Scholar]
  160. 160.
    Rutherford ST, Bassler BL. 2012.. Bacterial quorum sensing: its role in virulence and possibilities for its control. . Cold Spring Harb. Perspect. Med. 2:(11):a012427
    [Crossref] [Google Scholar]
  161. 161.
    Rutschmann O, Toniolo C, McKinney JD. 2022.. Preexisting heterogeneity of inducible nitric oxide synthase expression drives differential growth of Mycobacterium tuberculosis in macrophages. . mBio 13:(5):e0225122
    [Crossref] [Google Scholar]
  162. 162.
    Safi H, Gopal P, Lingaraju S, Ma S, Levine C, et al. 2019.. Phase variation in Mycobacterium tuberculosis glpK produces transiently heritable drug tolerance. . PNAS 116:(39):1966574
    [Crossref] [Google Scholar]
  163. 163.
    Sakatos A, Babunovic GH, Chase MR, Dills A, Leszyk J, et al. 2018.. Posttranslational modification of a histone-like protein regulates phenotypic resistance to isoniazid in mycobacteria. . Sci. Adv. 4:(5):eaao1478
    [Crossref] [Google Scholar]
  164. 164.
    Sanchez KG, Ferrell MJ, Chirakos AE, Nicholson KR, Abramovitch RB, et al. 2020.. EspM is a conserved transcription factor that regulates gene expression in response to the ESX-1 system. . mBio 11:(1):e02807-19
    [Crossref] [Google Scholar]
  165. 165.
    Sánchez-Romero MA, Casadesús J. 2020.. The bacterial epigenome. . Nat. Rev. Microbiol. 18:(1):720
    [Crossref] [Google Scholar]
  166. 166.
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A. 2015.. Spatial reconstruction of single-cell gene expression data. . Nat. Biotechnol. 33:(5):495502
    [Crossref] [Google Scholar]
  167. 167.
    Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, et al. 2022.. The biofilm life cycle: expanding the conceptual model of biofilm formation. . Nat. Rev. Microbiol. 20:(10):60820
    [Crossref] [Google Scholar]
  168. 168.
    Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, et al. 2019.. Super-resolution microscopy demystified. . Nat. Cell Biol. 21:(1):7284
    [Crossref] [Google Scholar]
  169. 169.
    Schnettger L, Rodgers A, Repnik U, Lai RP, Pei G, et al. 2017.. A Rab20-dependent membrane trafficking pathway controls M. tuberculosis replication by regulating phagosome spaciousness and integrity. . Cell Host Microbe 21:(5):61928.e5
    [Crossref] [Google Scholar]
  170. 170.
    Schröter L, Dersch P. 2019.. Phenotypic diversification of microbial pathogens—cooperating and preparing for the future. . J. Mol. Biol. 431:(23):464555
    [Crossref] [Google Scholar]
  171. 171.
    Selkrig J, Li N, Hausmann A, Mangan MSJ, Zietek M, et al. 2020.. Spatiotemporal proteomics uncovers cathepsin-dependent macrophage cell death during Salmonella infection. . Nat. Microbiol. 5:(9):111933
    [Crossref] [Google Scholar]
  172. 172.
    Sheppard M, Webb C, Heath F, Mallows V, Emilianus R, et al. 2003.. Dynamics of bacterial growth and distribution within the liver during Salmonella infection. . Cell Microbiol. 5:(9):593600
    [Crossref] [Google Scholar]
  173. 173.
    Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, et al. 2012.. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. . PLOS Pathog. 8:(2):e1002507
    [Crossref] [Google Scholar]
  174. 174.
    Smith JM. 1982.. Evolution and the Theory of Games. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  175. 175.
    Smith VH. 2007.. Microbial diversity–productivity relationships in aquatic ecosystems. . FEMS Microbiol. Ecol. 62:(2):18186
    [Crossref] [Google Scholar]
  176. 176.
    Snijder B, Sacher R, Rämö P, Damm E-M, Liberali P, Pelkmans L. 2009.. Population context determines cell-to-cell variability in endocytosis and virus infection. . Nature 461:(7263):52023
    [Crossref] [Google Scholar]
  177. 177.
    Solomon SL, Bryson BD. 2023.. Single-cell analysis reveals a weak macrophage subpopulation response to Mycobacterium tuberculosis infection. . Cell Rep. 42:(11):113418
    [Crossref] [Google Scholar]
  178. 178.
    Srikhanta YN, Fox KL, Jennings MP. 2010.. The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. . Nat. Rev. Microbiol. 8:(3):196206
    [Crossref] [Google Scholar]
  179. 179.
    Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, et al. 2007.. Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. . PLOS Biol. 5:(10):217789
    [Crossref] [Google Scholar]
  180. 180.
    Stewart MK, Cummings LA, Johnson ML, Berezow AB, Cookson BT. 2011.. Regulation of phenotypic heterogeneity permits Salmonella evasion of the host caspase-1 inflammatory response. . PNAS 108:(51):2074247
    [Crossref] [Google Scholar]
  181. 181.
    Striednig B, Hilbi H. 2022.. Bacterial quorum sensing and phenotypic heterogeneity: how the collective shapes the individual. . Trends Microbiol. 30:(4):37989
    [Crossref] [Google Scholar]
  182. 182.
    Striednig B, Lanner U, Niggli S, Katic A, Vormittag S, et al. 2021.. Quorum sensing governs a transmissive Legionella subpopulation at the pathogen vacuole periphery. . EMBO Rep. 22:(9):e52972
    [Crossref] [Google Scholar]
  183. 183.
    Strong MJ, Xu G, Coco J, Baribault C, Vinay DS, et al. 2013.. Differences in gastric carcinoma microenvironment stratify according to EBV infection intensity: implications for possible immune adjuvant therapy. . PLOS Pathog. 9:(5):e1003341
    [Crossref] [Google Scholar]
  184. 184.
    Süel GM, Kulkarni RP, Dworkin J, Garcia-Ojalvo J, Elowitz MB. 2007.. Tunability and noise dependence in differentiation dynamics. . Science 315:(5819):171619
    [Crossref] [Google Scholar]
  185. 185.
    Takhaveev V, Heinemann M. 2018.. Metabolic heterogeneity in clonal microbial populations. . Curr. Opin. Microbiol. 45::3038
    [Crossref] [Google Scholar]
  186. 186.
    Tanner JR, Kingsley RA. 2018.. Evolution of Salmonella within hosts. . Trends Microbiol. 26:(12):98698
    [Crossref] [Google Scholar]
  187. 187.
    Thacker VV, Dhar N, Sharma K, Barrile R, Karalis K, McKinney JD. 2020.. A lung-on-chip model of early Mycobacterium tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. . eLife 9::e59961
    [Crossref] [Google Scholar]
  188. 188.
    Thammavongsa V, Kim HK, Missiakas D, Schneewind O. 2015.. Staphylococcal manipulation of host immune responses. . Nat. Rev. Microbiol. 13:(9):52943
    [Crossref] [Google Scholar]
  189. 189.
    Thattai M, van Oudenaarden A. 2004.. Stochastic gene expression in fluctuating environments. . Genetics 167:(1):52330
    [Crossref] [Google Scholar]
  190. 190.
    Tierney L, Linde J, Müller S, Brunke S, Molina JC, et al. 2012.. An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. . Front. Microbiol. 3::85
    [Crossref] [Google Scholar]
  191. 191.
    Tipton KA, Dimitrova D, Rather PN. 2015.. Phase-variable control of multiple phenotypes in Acinetobacter baumannii strain AB5075. . J. Bacteriol. 197:(15):259399
    [Crossref] [Google Scholar]
  192. 192.
    Tobin DM, Ramakrishnan L. 2008.. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. . Cell Microbiol. 10:(5):102739
    [Crossref] [Google Scholar]
  193. 193.
    Toniolo C, Delincé M, McKinney JD. 2018.. A microfluidic cell-trapping device to study dynamic host-microbe interactions at the single-cell level. . Methods Cell Biol. 147::199213
    [Crossref] [Google Scholar]
  194. 194.
    Troha K, Ayres JS. 2020.. Metabolic adaptations to infections at the organismal level. . Trends Immunol. 41:(2):11325
    [Crossref] [Google Scholar]
  195. 195.
    Tsai CN, Coombes BK. 2019.. The role of the host in driving phenotypic heterogeneity in Salmonella. . Trends Microbiol. 27:(6):50823
    [Crossref] [Google Scholar]
  196. 196.
    Tucey TM, Verma J, Harrison PF, Snelgrove SL, Lo TL, et al. 2018.. Glucose homeostasis is important for immune cell viability during Candida challenge and host survival of systemic fungal infection. . Cell Metab. 27:(5):9881006.e7
    [Crossref] [Google Scholar]
  197. 197.
    Tuchscherr L, Medina E, Hussain M, Völker W, Heitmann V, et al. 2011.. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. . EMBO Mol. Med. 3:(3):12941
    [Crossref] [Google Scholar]
  198. 198.
    Urbaniec J, Xu Y, Hu Y, Hingley-Wilson S, McFadden J. 2022.. Phenotypic heterogeneity in persisters: a novel “hunker” theory of persistence. . FEMS Microbiol. Rev. 46:(1):fuab042
    [Crossref] [Google Scholar]
  199. 199.
    Valverde S, Vidiella B, Montañez R, Fraile A, Sacristán S, García-Arenal F. 2020.. Coexistence of nestedness and modularity in host–pathogen infection networks. . Nat. Ecol. Evol. 4:(4):56877
    [Crossref] [Google Scholar]
  200. 200.
    Veening J-W, Smits WK, Kuipers OP. 2008.. Bistability, epigenetics, and bet-hedging in bacteria. . Annu. Rev. Microbiol. 62::193210
    [Crossref] [Google Scholar]
  201. 201.
    Vijay S, Vinh DN, Hai HT, Ha VTN, Dung VTM, et al. 2017.. Influence of stress and antibiotic resistance on cell-length distribution in Mycobacterium tuberculosis clinical isolates. . Front. Microbiol. 8::2296
    [Crossref] [Google Scholar]
  202. 202.
    Vitko NP, Grosser MR, Khatri D, Lance TR, Richardson AR. 2016.. Expanded glucose import capability affords Staphylococcus aureus optimized glycolytic flux during infection. . mBio 7:(3):e00296-16
    [Crossref] [Google Scholar]
  203. 203.
    Vulin C, Leimer N, Huemer M, Ackermann M, Zinkernagel AS. 2018.. Prolonged bacterial lag time results in small colony variants that represent a sub-population of persisters. . Nat. Commun. 9:(1):4074
    [Crossref] [Google Scholar]
  204. 204.
    Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, et al. 2013.. Dynamic persistence of antibiotic-stressed mycobacteria. . Science 339::9195
    [Crossref] [Google Scholar]
  205. 205.
    Wang Z, Han Q-Q, Zhou M-T, Chen X, Guo L. 2016.. Protein turnover analysis in Salmonella Typhimurium during infection by dynamic SILAC, Topograph, and quantitative proteomics. . J. Basic Microbiol. 56:(7):80111
    [Crossref] [Google Scholar]
  206. 206.
    Weigel WA, Dersch P. 2018.. Phenotypic heterogeneity: a bacterial virulence strategy. . Microbes Infect. 20:(9–10):57077
    [Crossref] [Google Scholar]
  207. 207.
    Weiner A, Enninga J. 2019.. The pathogen–host interface in three dimensions: correlative FIB/SEM applications. . Trends Microbiol. 27:(5):42639
    [Crossref] [Google Scholar]
  208. 208.
    Westermann AJ, Barquist L, Vogel J. 2017.. Resolving host–pathogen interactions by dual RNA-seq. . PLOS Pathog. 13:(2):e1006033
    [Crossref] [Google Scholar]
  209. 209.
    Westermann AJ, Gorski SA, Vogel J. 2012.. Dual RNA-seq of pathogen and host. . Nat. Rev. Microbiol. 10:(9):61830
    [Crossref] [Google Scholar]
  210. 210.
    Westermann AJ, Vogel J. 2021.. Cross-species RNA-seq for deciphering host–microbe interactions. . Nat. Rev. Genet. 22:(6):36178
    [Crossref] [Google Scholar]
  211. 211.
    Wickersham M, Wachtel S, Wong Fok Lung T, Soong G, Jacquet R, et al. 2017.. Metabolic stress drives keratinocyte defenses against Staphylococcus aureus infection. . Cell Rep. 18:(11):274251
    [Crossref] [Google Scholar]
  212. 212.
    Wolf DM, Vazirani VV, Arkin AP. 2005.. Diversity in times of adversity: probabilistic strategies in microbial survival games. . J. Theor. Biol. 234:(2):22753
    [Crossref] [Google Scholar]
  213. 213.
    Woodhouse SD, Narayan R, Latham S, Lee S, Antrobus R, et al. 2010.. Transcriptome sequencing, microarray, and proteomic analyses reveal cellular and metabolic impact of hepatitis C virus infection in vitro. . Hepatology 52:(2):44353
    [Crossref] [Google Scholar]
  214. 214.
    World Health Organ. 2022.. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022. Geneva, Switz.:: World Health Organ.
    [Google Scholar]
  215. 215.
    World Health Organ. 2022.. Global Tuberculosis Report 2022. Geneva, Switz.:: World Health Organ.
    [Google Scholar]
  216. 216.
    Wu L, Luo Y. 2021.. Bacterial quorum-sensing systems and their role in intestinal bacteria-host crosstalk. . Front. Microbiol. 12::611413
    [Crossref] [Google Scholar]
  217. 217.
    Xie YL, de Jager VR, Chen RY, Dodd LE, Paripati P, et al. 2021.. Fourteen-day PET/CT imaging to monitor drug combination activity in treated individuals with tuberculosis. . Sci. Transl. Med. 13:(579):eabd7618
    [Crossref] [Google Scholar]
  218. 218.
    Yang L, Xie M, Yang M, Yu Y, Zhu S, et al. 2014.. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. . Nat. Commun. 5:(1):4436
    [Crossref] [Google Scholar]
  219. 219.
    Zhang Y, Lara-Tejero M, Bewersdorf J, Galán JE. 2017.. Visualization and characterization of individual type III protein secretion machines in live bacteria. . PNAS 114:(23):6098103
    [Crossref] [Google Scholar]
  220. 220.
    Zimmermann M, Kogadeeva M, Gengenbacher M, McEwen G, Mollenkopf H-J, et al. 2017.. Integration of metabolomics and transcriptomics reveals a complex diet of Mycobacterium tuberculosis during early macrophage infection. . mSystems 2:(4):e00057-17
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102459
Loading
/content/journals/10.1146/annurev-genet-111523-102459
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error