1932

Abstract

The evolution of eusociality in Hymenoptera—encompassing bees, ants, and wasps—is characterized by multiple gains and losses of social living, making this group a prime model to understand the mechanisms that underlie social behavior and social complexity. Our review synthesizes insights into the evolutionary history and molecular basis of eusociality. We examine new evidence for key evolutionary hypotheses and molecular pathways that regulate social behaviors, highlighting convergent evolution on a shared molecular toolkit that includes the insulin/insulin-like growth factor signaling (IIS) and target of rapamycin (TOR) pathways, juvenile hormone and ecdysteroid signaling, and epigenetic regulation. We emphasize how the crosstalk among these nutrient-sensing and endocrine signaling pathways enables social insects to integrate external environmental stimuli, including social cues, with internal physiology and behavior. We argue that examining these pathways as an integrated regulatory circuit and exploring how the regulatory architecture of this circuit evolves alongside eusociality can open the door to understanding the origin of the complex life histories and behaviors of this group.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102510
2024-11-25
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102510.html?itemId=/content/journals/10.1146/annurev-genet-111523-102510&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Amdam GV, Norberg K, Fondrk MK, Page RE Jr. 2004.. Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bees. . PNAS 101:(31):1135055
    [Crossref] [Google Scholar]
  2. 2.
    Amsalem E, Teal P, Grozinger CM, Hefetz A. 2014.. Precocene-I inhibits juvenile hormone biosynthesis, ovarian activation, aggression and alters sterility signal production in bumble bee (Bombus terrestris) workers. . J. Exp. Biol. 217:(17):317885
    [Google Scholar]
  3. 3.
    Asahina K, Watanabe K, Duistermars BJ, Hoopfer E, González CR, et al. 2014.. Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. . Cell 156:(1–2):22135
    [Crossref] [Google Scholar]
  4. 4.
    Avalos A, Fang M, Pan H, Ramirez Lluch A, Lipka AE, et al. 2020.. Genomic regions influencing aggressive behavior in honey bees are defined by colony allele frequencies. . PNAS 117:(29):1713541
    [Crossref] [Google Scholar]
  5. 5.
    Babin PJ, Bogerd J, Kooiman FP, Van Marrewijk WJ, Van der Horst DJ. 1999.. Apolipophorin II/I, apolipoprotein B, vitellogenin, and microsomal triglyceride transfer protein genes are derived from a common ancestor. . J. Mol. Evol. 49:(1):15060
    [Crossref] [Google Scholar]
  6. 6.
    Badisco L, Van Wielendaele P, Vanden Broeck J. 2013.. Eat to reproduce: a key role for the insulin signaling pathway in adult insects. . Front. Physiol. 4::202
    [Crossref] [Google Scholar]
  7. 7.
    Batra SWT. 1966.. Nests and social behavior of halictine bees of India (Hymenoptera: Halictidae). . Indian J. Entomol. 28::37593
    [Google Scholar]
  8. 8.
    Baumann A, Fujiwara Y, Wilson TG. 2010.. Evolutionary divergence of the paralogs Methoprene tolerant (Met) and germ cell expressed (gce) within the genus Drosophila. . J. Insect Physiol. 56:(10):144555
    [Crossref] [Google Scholar]
  9. 9.
    Beggs KT, Glendining KA, Marechal NM, Vergoz V, Nakamura I, et al. 2007.. Queen pheromone modulates brain dopamine function in worker honey bees. . PNAS 104:(7):246064
    [Crossref] [Google Scholar]
  10. 10.
    Bell WJ. 1973.. Factors controlling initiation of vitellogenesis in a primitively social bee, Lasioglossum zephyrum (Hymenoptera: Halictidae). . Insectes Soc. 20:(3):25360
    [Crossref] [Google Scholar]
  11. 11.
    Bloch G, Borst DW, Huang Z-Y, Robinson GE, Cnaani J, Hefetz A. 2000.. Juvenile hormone titers, juvenile hormone biosynthesis, ovarian development and social environment in Bombus terrestris. . J. Insect Physiol. 46:(1):4757
    [Crossref] [Google Scholar]
  12. 12.
    Bohm MK. 1972.. Effects of environment and juvenile hormone on ovaries of the wasp, Polistes metricus. . J. Insect Physiol. 18:(10):187583
    [Crossref] [Google Scholar]
  13. 13.
    Bonasio R, Zhang G, Ye C, Mutti NS, Fang X, et al. 2010.. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. . Science 329:(5995):106871
    [Crossref] [Google Scholar]
  14. 14.
    Boomsma JJ, Gawne R. 2018.. Superorganismality and caste differentiation as points of no return: how the major evolutionary transitions were lost in translation. . Biol. Rev. Camb. Philos. Soc. 93:(1):2854
    [Crossref] [Google Scholar]
  15. 15.
    Bossert S, Murray EA, Almeida EAB, Brady SG, Blaimer BB, Danforth BN. 2019.. Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. . Mol. Phylogenet. Evol. 130::12131
    [Crossref] [Google Scholar]
  16. 16.
    Bourke AF. 2019.. Inclusive fitness and the major transitions in evolution. . Curr. Opin. Insect Sci. 34::6167
    [Crossref] [Google Scholar]
  17. 17.
    Brand N, Chapuisat M. 2012.. Born to be bee, fed to be worker? The caste system of a primitively eusocial insect. . Front. Zool. 9:(1):35
    [Crossref] [Google Scholar]
  18. 18.
    Brankatschk M, Eaton S. 2010.. Lipoprotein particles cross the blood–brain barrier in Drosophila. . J. Neurosci. 30:(31):1044147
    [Crossref] [Google Scholar]
  19. 19.
    Branstetter MG, Danforth BN, Pitts JP, Faircloth BC, Ward PS, et al. 2017.. Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. . Curr. Biol. 27:(7):101925
    [Crossref] [Google Scholar]
  20. 20.
    Brent CS, Penick CA, Trobaugh B, Moore D, Liebig J. 2016.. Induction of a reproductive-specific cuticular hydrocarbon profile by a juvenile hormone analog in the termite Zootermopsis nevadensis. . Chemoecology 26:(5):195203
    [Crossref] [Google Scholar]
  21. 21.
    Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E. 2001.. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. . Curr. Biol. 11:(4):21321
    [Crossref] [Google Scholar]
  22. 22.
    Cardoso-Junior CAM, Ronai I, Hartfelder K, Oldroyd BP. 2020.. Queen pheromone modulates the expression of epigenetic modifier genes in the brain of honeybee workers. . Biol. Lett. 16:(12):20200440
    [Crossref] [Google Scholar]
  23. 23.
    Chandra V, Fetter-Pruneda I, Oxley PR, Ritger AL, McKenzie SK, et al. 2018.. Social regulation of insulin signaling and the evolution of eusociality in ants. . Science 361:(6400):398402
    [Crossref] [Google Scholar]
  24. 24.
    Chell JM, Brand AH. 2010.. Nutrition-responsive glia control exit of neural stem cells from quiescence. . Cell 143:(7):116173
    [Crossref] [Google Scholar]
  25. 25.
    Colgan TJ, Carolan JC, Bridgett SJ, Sumner S, Blaxter ML, Brown MJ. 2011.. Polyphenism in social insects: insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator. , Bombus terrestris. BMC Genom. 12::623
    [Crossref] [Google Scholar]
  26. 26.
    Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y, et al. 2007.. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. . PNAS 104:(17):712833
    [Crossref] [Google Scholar]
  27. 27.
    Costa CP, Okamoto N, Orr M, Yamanaka N, Woodard SH. 2022.. Convergent loss of prothoracicotropic hormone, a canonical regulator of development, in social bee evolution. . Front. Physiol. 13::831928
    [Crossref] [Google Scholar]
  28. 28.
    Cuvillier-Hot V, Lenoir A. 2006.. Biogenic amine levels, reproduction and social dominance in the queenless ant Streblognathus peetersi. . Naturwissenschaften 93:(3):14953
    [Crossref] [Google Scholar]
  29. 29.
    de Azevedo SV, Hartfelder K. 2008.. The insulin signaling pathway in honey bee (Apis mellifera) caste development—differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. . J. Insect Physiol. 54:(6):106471
    [Crossref] [Google Scholar]
  30. 30.
    Duncan EJ, Hyink O, Dearden PK. 2016.. Notch signalling mediates reproductive constraint in the adult worker honeybee. . Nat. Commun. 7::12427
    [Crossref] [Google Scholar]
  31. 31.
    Favreau E, Geist KS, Wyatt CDR, Toth AL, Sumner S, Rehan SM. 2023.. Co-expression gene networks and machine-learning algorithms unveil a core genetic toolkit for reproductive division of labour in rudimentary insect societies. . Genome Biol. Evol. 15:(1):evac174
    [Crossref] [Google Scholar]
  32. 32.
    Fetter-Pruneda I, Hart T, Ulrich Y, Gal A, Oxley PR, et al. 2021.. An oxytocin/vasopressin-related neuropeptide modulates social foraging behavior in the clonal raider ant. . PLOS Biol. 19:(6):e3001305
    [Crossref] [Google Scholar]
  33. 33.
    Gadagkar R, Bhagavan S, Chandrashekara K, Vinutha C. 1991.. The role of larval nutrition in pre-imaginal biasing of caste in the primitively eusocial wasp Ropalidia marginata (Hymenoptera: Vespidae). . Ecol. Entomol. 16:(4):43540
    [Crossref] [Google Scholar]
  34. 34.
    Gallo VP, Accordi F, Chimenti C, Civinini A, Crivellato E. 2016.. Catecholaminergic system of invertebrates: comparative and evolutionary aspects in comparison with the octopaminergic system. . Int. Rev. Cell Mol. Biol. 322::36394
    [Crossref] [Google Scholar]
  35. 35.
    Gao X, Zhang Y, Arrazola P, Hino O, Kobayashi T, et al. 2002.. Tsc tumour suppressor proteins antagonize amino-acid–TOR signalling. . Nat. Cell Biol. 4:(9):699704
    [Crossref] [Google Scholar]
  36. 36.
    Ghaninia M, Haight K, Berger SL, Reinberg D, Zwiebel LJ, et al. 2017.. Chemosensory sensitivity reflects reproductive status in the ant Harpegnathos saltator. . Sci. Rep. 7:(1):3732
    [Crossref] [Google Scholar]
  37. 37.
    Gibbs J, Brady SG, Kanda K, Danforth BN. 2012.. Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae). . Mol. Phylogenet. Evol. 65:(3):92639
    [Crossref] [Google Scholar]
  38. 38.
    Glastad KM, Arsenault SV, Vertacnik KL, Geib SM, Kay S, et al. 2017.. Variation in DNA methylation is not consistently reflected by sociality in Hymenoptera. . Genome Biol. Evol. 9:(6):168798
    [Crossref] [Google Scholar]
  39. 39.
    Glastad KM, Gokhale K, Liebig J, Goodisman MAD. 2016.. The caste- and sex-specific DNA methylome of the termite Zootermopsis nevadensis. . Sci. Rep. 6::37110
    [Crossref] [Google Scholar]
  40. 40.
    Glastad KM, Graham RJ, Ju L, Roessler J, Brady CM, Berger SL. 2020.. Epigenetic regulator CoREST controls social behavior in ants. . Mol. Cell 77:(2):33851.e6
    [Crossref] [Google Scholar]
  41. 41.
    Glastad KM, Ju L, Berger SL. 2021.. Tramtrack acts during late pupal development to direct ant caste identity. . PLOS Genet. 17:(9):e1009801
    [Crossref] [Google Scholar]
  42. 42.
    Godlewski J, Wang S, Wilson TG. 2006.. Interaction of bHLH-PAS proteins involved in juvenile hormone reception in Drosophila. . Biochem. Biophys. Res. Commun. 342:(4):130511
    [Crossref] [Google Scholar]
  43. 43.
    Gospocic J, Glastad KM, Sheng L, Shields EJ, Berger SL, Bonasio R. 2021.. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones. . Cell 184:(23):580723.e14
    [Crossref] [Google Scholar]
  44. 44.
    Gospocic J, Shields EJ, Glastad KM, Lin Y, Penick CA, et al. 2017.. The neuropeptide corazonin controls social behavior and caste identity in ants. . Cell 170:(4):74859.e12
    [Crossref] [Google Scholar]
  45. 45.
    Hakala SM, Meurville M-P, Stumpe M, LeBoeuf AC. 2021.. Biomarkers in a socially exchanged fluid reflect colony maturity, behavior, and distributed metabolism. . eLife 10::e74005
    [Crossref] [Google Scholar]
  46. 46.
    Hamilton AR, Shpigler H, Bloch G, Wheeler DE, Robinson GE. 2017.. Endocrine influences on insect societies. . In Hormones, Brain and Behavior, ed. DW Pfaff, M Joëls, pp. 42151. Oxford, UK:: Academic. , 3rd ed..
    [Google Scholar]
  47. 47.
    Hamilton WD. 1964.. The genetical evolution of social behaviour. I. . J. Theor. Biol. 7:(1):116
    [Crossref] [Google Scholar]
  48. 48.
    Hartfelder K. 2000.. Insect juvenile hormone: from “status quo” to high society. . Braz. J. Med. Biol. Res. 33::15777
    [Crossref] [Google Scholar]
  49. 49.
    Holland JG, Bloch G. 2020.. The complexity of social complexity: a quantitative multidimensional approach for studies of social organization. . Am. Nat. 196:(5):52540
    [Crossref] [Google Scholar]
  50. 50.
    Holman L, Helanterä H, Trontti K, Mikheyev AS. 2019.. Comparative transcriptomics of social insect queen pheromones. . Nat. Commun. 10:(1):1593
    [Crossref] [Google Scholar]
  51. 51.
    Holze H, Schrader L, Buellesbach J. 2021.. Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation. . Heredity 126:(2):21934
    [Crossref] [Google Scholar]
  52. 52.
    Hunt JH, Amdam GV. 2005.. Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. . Science 308:(5719):26467
    [Crossref] [Google Scholar]
  53. 53.
    Ikeya T, Galic M, Belawat P, Nairz K, Hafen E. 2002.. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. . Curr. Biol. 12:(15):1293300
    [Crossref] [Google Scholar]
  54. 54.
    Jedlička P, Ernst UR, Votavová A, Hanus R, Valterová I. 2016.. Gene expression dynamics in major endocrine regulatory pathways along the transition from solitary to social life in a bumblebee. , Bombus terrestris. Front. Physiol. 7::574
    [Google Scholar]
  55. 55.
    Jindra M, Bellés X, Shinoda T. 2015.. Molecular basis of juvenile hormone signaling. . Curr. Opin. Insect Sci. 11::3946
    [Crossref] [Google Scholar]
  56. 56.
    Jindra M, Palli SR, Riddiford LM. 2013.. The juvenile hormone signaling pathway in insect development. . Annu. Rev. Entomol. 58::181204
    [Crossref] [Google Scholar]
  57. 57.
    Jones BM, Rubin BER, Dudchenko O, Kingwell CJ, Traniello IM, et al. 2023.. Convergent and complementary selection shaped gains and losses of eusociality in sweat bees. . Nat. Ecol. Evol. 7:(4):55769
    [Crossref] [Google Scholar]
  58. 58.
    Ju L, Glastad KM, Sheng L, Gospocic J, Kingwell CJ, et al. 2023.. Hormonal gatekeeping via the blood-brain barrier governs caste-specific behavior in ants. . Cell 186:(20):4289309.e23
    [Crossref] [Google Scholar]
  59. 59.
    Judd TM, Teal PEA, Hernandez EJ, Choudhury T, Hunt JH. 2015.. Quantitative differences in nourishment affect caste-related physiology and development in the paper wasp Polistes metricus. . PLOS ONE 10:(2):e0116199
    [Crossref] [Google Scholar]
  60. 60.
    Kaatz H-H, Hildebrandt H, Engels W. 1992.. Primer effect of queen pheromone on juvenile hormone biosynthesis in adult worker honey bees. . J. Comp. Physiol. B 162:(7):58892
    [Crossref] [Google Scholar]
  61. 61.
    Kamakura M. 2011.. Royalactin induces queen differentiation in honeybees. . Nature 473:(7348):47883
    [Crossref] [Google Scholar]
  62. 62.
    Kamhi JF, Arganda S, Moreau CS, Traniello JFA. 2017.. Origins of aminergic regulation of behavior in complex insect social systems. . Front. Syst. Neurosci. 11::74
    [Crossref] [Google Scholar]
  63. 63.
    Kapheim KM. 2017.. Nutritional, endocrine, and social influences on reproductive physiology at the origins of social behavior. . Curr. Opin. Insect Sci. 22::6270
    [Crossref] [Google Scholar]
  64. 64.
    Kapheim KM, Johnson MM. 2017.. Juvenile hormone, but not nutrition or social cues, affects reproductive maturation in solitary alkali bees (Nomia melanderi). . J. Exp. Biol. 220:(Part 20):3794801
    [Google Scholar]
  65. 65.
    Kapheim KM, Jones BM, Pan H, Li C, Harpur BA, et al. 2020.. Developmental plasticity shapes social traits and selection in a facultatively eusocial bee. . PNAS 117:(24):1361525
    [Crossref] [Google Scholar]
  66. 66.
    Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D, et al. 2015.. Genomic signatures of evolutionary transitions from solitary to group living. . Science 348:(6239):113943
    [Crossref] [Google Scholar]
  67. 67.
    Kelstrup HC, Hartfelder K, Nascimento FS, Riddiford LM. 2014.. The role of juvenile hormone in dominance behavior, reproduction and cuticular pheromone signaling in the caste-flexible epiponine wasp, Synoeca surinama. . Front. Zool. 11:(1):78
    [Crossref] [Google Scholar]
  68. 68.
    Knapp RA, Norman VC, Duncan EJ. 2022.. Environmentally responsive reproduction: neuroendocrine signalling and the evolution of eusociality. . Curr. Opin. Insect Sci. 53::100958
    [Crossref] [Google Scholar]
  69. 69.
    Kocher SD, Paxton RJ. 2014.. Comparative methods offer powerful insights into social evolution in bees. . Apidologie 45:(3):289305
    [Crossref] [Google Scholar]
  70. 70.
    Korb J, Meusemann K, Aumer D, Bernadou A, Elsner D, et al. 2021.. Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects. . Philos. Trans. R. Soc. B 376:(1823):20190728
    [Crossref] [Google Scholar]
  71. 71.
    Koyama T, Mendes CC, Mirth CK. 2013.. Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. . Front. Physiol. 4::263
    [Crossref] [Google Scholar]
  72. 72.
    Kucharski R, Maleszka J, Foret S, Maleszka R. 2008.. Nutritional control of reproductive status in honeybees via DNA methylation. . Science 319:(5871):182730
    [Crossref] [Google Scholar]
  73. 73.
    Lafont R, Dauphin-Villemant C, Warren JT, Rees H. 2011.. Ecdysteroid chemistry and biochemistry. . In Insect Endocrinology, ed. LI Gilbert , pp. 10676. Cambridge, MA:: Academic Press
    [Google Scholar]
  74. 74.
    Lawson SP, Ciaccio KN, Rehan SM. 2016.. Maternal manipulation of pollen provisions affects worker production in a small carpenter bee. . Behav. Ecol. Sociobiol. 70:(11):1891900
    [Crossref] [Google Scholar]
  75. 75.
    LeBoeuf AC, Cohanim AB, Stoffel C, Brent CS, Waridel P, et al. 2018.. Molecular evolution of juvenile hormone esterase-like proteins in a socially exchanged fluid. . Sci. Rep. 8:(1):17830
    [Crossref] [Google Scholar]
  76. 76.
    LeBoeuf AC, Waridel P, Brent CS, Gonçalves AN, Menin L, et al. 2016.. Oral transfer of chemical cues, growth proteins and hormones in social insects. . eLife 5::e20375
    [Crossref] [Google Scholar]
  77. 77.
    Leinwand SG, Scott K. 2021.. Juvenile hormone drives the maturation of spontaneous mushroom body neural activity and learned behavior. . Neuron 109:(11):183647.e5
    [Crossref] [Google Scholar]
  78. 78.
    Levis NA, Pfennig DW. 2016.. Evaluating “plasticity-first” evolution in nature: key criteria and empirical approaches. . Trends Ecol. Evol. 31:(7):56374
    [Crossref] [Google Scholar]
  79. 79.
    Lin S, Elsner D, Ams L, Korb J, Rosengaus R. 2024.. A genetic toolkit underlying the queen phenotype in termites with totipotent workers. . Sci. Rep. 14:(1):2214
    [Crossref] [Google Scholar]
  80. 80.
    Linksvayer TA. 2006.. Direct, maternal, and sibsocial genetic effects on individual and colony traits in an ant. . Evolution 60:(12):255261
    [Crossref] [Google Scholar]
  81. 81.
    Linksvayer TA, Wade MJ. 2005.. The evolutionary origin and elaboration of sociality in the aculeate Hymenoptera: maternal effects, sib-social effects, and heterochrony. . Q. Rev. Biol. 80:(3):31736
    [Crossref] [Google Scholar]
  82. 82.
    Lu H-L, Pietrantonio PV. 2011.. Insect insulin receptors: insights from sequence and caste expression analyses of two cloned hymenopteran insulin receptor cDNAs from the fire ant. . Insect Mol. Biol. 20:(5):63749
    [Crossref] [Google Scholar]
  83. 83.
    Malita A, Rewitz K. 2021.. Interorgan communication in the control of metamorphosis. . Curr. Opin. Insect. Sci. 43::5462
    [Crossref] [Google Scholar]
  84. 84.
    Mattens A, Chan KH, Oi CA. 2023.. The effect of juvenile hormone on the chemical profile and fertility of Lasius niger queens. . Chemoecology 33:(6):17782
    [Crossref] [Google Scholar]
  85. 85.
    Melgarejo V, Wilson Rankin EE, Loope KJ. 2018.. Do queen cuticular hydrocarbons inhibit worker reproduction in Bombus impatiens?. Insectes Soc. 65:(4):6018
    [Crossref] [Google Scholar]
  86. 86.
    Michener CD. 1969.. Comparative social behavior of bees. . Annu. Rev. Entomol. 14::299342
    [Crossref] [Google Scholar]
  87. 87.
    Miura T, Maekawa K. 2020.. The making of the defensive caste: physiology, development, and evolution of the soldier differentiation in termites. . Evol. Dev. 22:(6):42537
    [Crossref] [Google Scholar]
  88. 88.
    Nässel DR, Larhammar D. 2013.. Neuropeptides and peptide hormones. . In Neurosciences—From Molecule to Behavior: A University Textbook, ed. CG Galizia, P-M Lledo , pp. 21337. Berlin/Heidelberg, Ger:.: Springer
    [Google Scholar]
  89. 89.
    Nijhout HF. 2021.. Insect Hormones. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  90. 90.
    Oi CA, Brown RL, da Silva RC, Wenseleers T. 2020.. Reproduction and signals regulating worker policing under identical hormonal control in social wasps. . Sci. Rep. 10:(1):18971
    [Crossref] [Google Scholar]
  91. 91.
    Okada Y, Sasaki K, Miyazaki S, Shimoji H, Tsuji K, Miura T. 2015.. Social dominance and reproductive differentiation mediated by dopaminergic signaling in a queenless ant. . J. Exp. Biol. 218:(Part 7):109198
    [Crossref] [Google Scholar]
  92. 92.
    Okamoto N, Viswanatha R, Bittar R, Li Z, Haga-Yamanaka S, et al. 2018.. A membrane transporter is required for steroid hormone uptake in Drosophila. . Dev. Cell 47:(3):294305.e7
    [Crossref] [Google Scholar]
  93. 93.
    Okamoto N, Yamanaka N. 2020.. Steroid hormone entry into the brain requires a membrane transporter in Drosophila. . Curr. Biol. 30:(2):35966.e3
    [Crossref] [Google Scholar]
  94. 94.
    Opachaloemphan C, Mancini G, Konstantinides N, Parikh A, Mlejnek J, et al. 2021.. Early behavioral and molecular events leading to caste switching in the ant Harpegnathos. . Genes Dev. 35:(5–6):41024
    [Crossref] [Google Scholar]
  95. 95.
    Padilla M, Amsalem E, Altman N, Hefetz A, Grozinger CM. 2016.. Chemical communication is not sufficient to explain reproductive inhibition in the bumblebee Bombus impatiens. . R. Soc. Open Sci. 3:(10):160576
    [Crossref] [Google Scholar]
  96. 96.
    Pan X, Connacher RP, O'Connor MB. 2021.. Control of the insect metamorphic transition by ecdysteroid production and secretion. . Curr. Opin. Insect Sci. 43::1120
    [Crossref] [Google Scholar]
  97. 97.
    Patel A, Fondrk MK, Kaftanoglu O, Emore C, Hunt G, et al. 2007.. The making of a queen: TOR pathway is a key player in diphenic caste development. . PLOS ONE 2:(6):e509
    [Crossref] [Google Scholar]
  98. 98.
    Penick CA, Brent CS, Dolezal K, Liebig J. 2014.. Neurohormonal changes associated with ritualized combat and the formation of a reproductive hierarchy in the ant Harpegnathos saltator. . J. Exp. Biol. 217:(Part 9):1496503
    [Google Scholar]
  99. 99.
    Penick CA, Liebig J, Brent CS. 2011.. Reproduction, dominance, and caste: endocrine profiles of queens and workers of the ant Harpegnathos saltator. . J. Comp. Physiol. A 197:(11):106371
    [Crossref] [Google Scholar]
  100. 100.
    Pérez-Hedo M, Rivera-Perez C, Noriega FG. 2013.. The insulin/TOR signal transduction pathway is involved in the nutritional regulation of juvenile hormone synthesis in Aedes aegypti. . Insect Biochem. Mol. Biol. 43:(6):495500
    [Crossref] [Google Scholar]
  101. 101.
    Piekarski PK, Carpenter JM, Lemmon AR, Moriarty Lemmon E, Sharanowski BJ. 2018.. Phylogenomic evidence overturns current conceptions of social evolution in wasps (Vespidae). . Mol. Biol. Evol. 35:(9):2097109
    [Crossref] [Google Scholar]
  102. 102.
    Piekarski PK, Valdés-Rodríguez S, Kronauer DJC. 2023.. Conditional indirect genetic effects of caregivers on brood in the clonal raider ant. . Behav. Ecol. 34:(4):64252
    [Crossref] [Google Scholar]
  103. 103.
    Prato A, da Silva RC, Oi CA, Turatti ICC, do Nascimento FS. 2022.. Juvenile hormone regulates reproductive physiology and the production of fertility cues in the swarm-founding wasp Polybia occidentalis. . Chemoecology 32:(4):17180
    [Crossref] [Google Scholar]
  104. 104.
    Qiu B, Larsen RS, Chang N-C, Wang J, Boomsma JJ, Zhang G. 2018.. Towards reconstructing the ancestral brain gene-network regulating caste differentiation in ants. . Nat. Ecol. Evol. 2:(11):178291
    [Crossref] [Google Scholar]
  105. 105.
    Rajakumar R, Koch S, Couture M, Favé M-J, Lillico-Ouachour A, et al. 2018.. Social regulation of a rudimentary organ generates complex worker-caste systems in ants. . Nature 562:(7728):57477
    [Crossref] [Google Scholar]
  106. 106.
    Richards MH. 2019.. Social trait definitions influence evolutionary inferences: a phylogenetic approach to improving social terminology for bees. . Curr. Opin. Insect Sci. 34::97104
    [Crossref] [Google Scholar]
  107. 107.
    Richards MH, French D, Paxton RJ. 2005.. It's good to be queen: classically eusocial colony structure and low worker fitness in an obligately social sweat bee. . Mol. Ecol. 14:(13):412333
    [Crossref] [Google Scholar]
  108. 108.
    Richards MH, Packer L. 1994.. Trophic aspects of caste determination in Halictus ligatus, a primitively eusocial sweat bee. . Behav. Ecol. Sociobiol. 34:(6):38591
    [Crossref] [Google Scholar]
  109. 109.
    Robinson GE, Winston ML, Huang Z-Y, Pankiw T. 1998.. Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. . J. Insect Physiol. 44:(7–8):68592
    [Google Scholar]
  110. 110.
    Rodrigues MA, Flatt T. 2016.. Endocrine uncoupling of the trade-off between reproduction and somatic maintenance in eusocial insects. . Curr. Opin. Insect Sci. 16::18
    [Crossref] [Google Scholar]
  111. 111.
    Romiguier J, Borowiec ML, Weyna A, Helleu Q, Loire E, et al. 2022.. Ant phylogenomics reveals a natural selection hotspot preceding the origin of complex eusociality. . Curr. Biol. 32:(13):294247.e4
    [Crossref] [Google Scholar]
  112. 112.
    Röseler P-F, Röseler I, Strambi A. 1986.. Studies of the dominance hierarchy in the paper wasp, Polistes gallicus (L.) (Hymenoptera: Vespidae). . Monitore Zool. Ital. 20:(3):28390
    [Google Scholar]
  113. 113.
    Roy S, Saha TT, Zou Z, Raikhel AS. 2018.. Regulatory pathways controlling female insect reproduction. . Annu. Rev. Entomol. 63::489511
    [Crossref] [Google Scholar]
  114. 114.
    Sasaki K, Okada Y, Shimoji H, Aonuma H, Miura T, Tsuji K. 2021.. Social evolution with decoupling of multiple roles of biogenic amines into different phenotypes in Hymenoptera. . Front. Ecol. Evol. 9::659160
    [Crossref] [Google Scholar]
  115. 115.
    Sasaki K, Ugajin A, Harano K-I. 2018.. Caste-specific development of the dopaminergic system during metamorphosis in female honey bees. . PLOS ONE 13:(10):e0206624
    [Crossref] [Google Scholar]
  116. 116.
    Sasaki K, Yamasaki K, Nagao T. 2007.. Neuro-endocrine correlates of ovarian development and egg-laying behaviors in the primitively eusocial wasp (Polistes chinensis). . J. Insect Physiol. 53:(9):94049
    [Crossref] [Google Scholar]
  117. 117.
    Sasaki K, Yokoi K, Toga K. 2021.. Bumble bee queens activate dopamine production and gene expression in nutritional signaling pathways in the brain. . Sci. Rep. 11:(1):5526
    [Crossref] [Google Scholar]
  118. 118.
    Schmitt F, Vanselow JT, Schlosser A, Wegener C, Rössler W. 2017.. Neuropeptides in the desert ant Cataglyphis fortis: mass spectrometric analysis, localization, and age-related changes. . J. Comp. Neurol. 525:(4):90118
    [Crossref] [Google Scholar]
  119. 119.
    Schwarz MP, Richards MH, Danforth BN. 2007.. Changing paradigms in insect social evolution: insights from halictine and allodapine bees. . Annu. Rev. Entomol. 52::12750
    [Crossref] [Google Scholar]
  120. 120.
    Shell WA, Steffen MA, Pare HK, Seetharam AS, Severin AJ, et al. 2021.. Sociality sculpts similar patterns of molecular evolution in two independently evolved lineages of eusocial bees. . Commun. Biol. 4:(1):253
    [Crossref] [Google Scholar]
  121. 121.
    Shorter JR, Tibbetts EA. 2009.. The effect of juvenile hormone on temporal polyethism in the paper wasp Polistes dominulus. . Insectes Soc. 56:(1):713
    [Crossref] [Google Scholar]
  122. 122.
    Sieber KR, Dorman T, Newell N, Yan H. 2021.. (Epi)Genetic mechanisms underlying the evolutionary success of eusocial insects. . Insects 12:(6):498
    [Crossref] [Google Scholar]
  123. 123.
    Small S, Arnosti DN. 2020.. Transcriptional enhancers in Drosophila. . Genetics 216:(1):126
    [Crossref] [Google Scholar]
  124. 124.
    Smith AA, Liebig J. 2017.. The evolution of cuticular fertility signals in eusocial insects. . Curr. Opin. Insect Sci. 22::7984
    [Crossref] [Google Scholar]
  125. 125.
    Smith AR, Kapheim KM, Pérez-Ortega B, Brent CS, Wcislo WT. 2013.. Juvenile hormone levels reflect social opportunities in the facultatively eusocial sweat bee Megalopta genalis (Hymenoptera: Halictidae). . Horm. Behav. 63:(1):14
    [Crossref] [Google Scholar]
  126. 126.
    Sorek M, Berger SL. 2023.. Neuromodulators and neuroepigenetics of social behavior in ants. . Ann. N. Y. Acad. Sci. 1528:(1):512
    [Crossref] [Google Scholar]
  127. 127.
    Sousa-Nunes R, Yee LL, Gould AP. 2011.. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. . Nature 471:(7339):50812
    [Crossref] [Google Scholar]
  128. 128.
    Spannhoff A, Kim YK, Raynal NJ-M, Gharibyan V, Su M-B, et al. 2011.. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. . EMBO Rep. 12:(3):23843
    [Crossref] [Google Scholar]
  129. 129.
    Tibbetts EA, Fearon ML, Wong E, Huang ZY, Tinghitella RM. 2018.. Rapid juvenile hormone downregulation in subordinate wasp queens facilitates stable cooperation. . Proc. Biol. Sci. 285:(1872):20172645
    [Google Scholar]
  130. 130.
    Tibbetts EA, Sheehan MJ. 2012.. The effect of juvenile hormone on Polistes wasp fertility varies with cooperative behavior. . Horm. Behav. 61:(4):55964
    [Crossref] [Google Scholar]
  131. 131.
    Toth AL, Rehan SM. 2017.. Molecular evolution of insect sociality: an Eco-Evo-Devo perspective. . Annu. Rev. Entomol. 62::41942
    [Crossref] [Google Scholar]
  132. 132.
    Toth AL, Varala K, Henshaw MT, Rodriguez-Zas SL, Hudson ME, Robinson GE. 2010.. Brain transcriptomic analysis in paper wasps identifies genes associated with behaviour across social insect lineages. . Proc. Biol. Sci. 277:(1691):213948
    [Google Scholar]
  133. 133.
    Trawinski AM, Fahrbach SE. 2018.. Queen mandibular pheromone modulates hemolymph ecdysteroid titers in adult Apis mellifera workers. . Apidologie 49:(3):34658
    [Crossref] [Google Scholar]
  134. 134.
    Truman JW, Riddiford LM. 2023.. Drosophila postembryonic nervous system development: a model for the endocrine control of development. . Genetics 223:(3):iyac184
    [Crossref] [Google Scholar]
  135. 135.
    Tu M-P, Yin C-M, Tatar M. 2005.. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. . Gen. Comp. Endocrinol. 142:(3):34756
    [Crossref] [Google Scholar]
  136. 136.
    Tufail M, Nagaba Y, Elgendy AM, Takeda M. 2014.. Regulation of vitellogenin genes in insects. . Entomol. Sci. 17:(3):26982
    [Crossref] [Google Scholar]
  137. 137.
    Uy FMK, Jernigan CM, Zaba NC, Mehrotra E, Miller SE, Sheehan MJ. 2021.. Dynamic neurogenomic responses to social interactions and dominance outcomes in female paper wasps. . PLOS Genet. 17:(9):e1009474
    [Crossref] [Google Scholar]
  138. 138.
    Vojvodic S, Johnson BR, Harpur BA, Kent CF, Zayed A, et al. 2015.. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development. . Ecol. Evol. 5:(21):4795807
    [Crossref] [Google Scholar]
  139. 139.
    Walton A, Dolezal AG, Bakken MA, Toth AL. 2018.. Hungry for the queen: Honeybee nutritional environment affects worker pheromone response in a life stage-dependent manner. . Funct. Ecol. 32:(12):2699706
    [Crossref] [Google Scholar]
  140. 140.
    Warner MR, Qiu L, Holmes MJ, Mikheyev AS, Linksvayer TA. 2019.. Convergent eusocial evolution is based on a shared reproductive groundplan plus lineage-specific plastic genes. . Nat. Commun. 10:(1):2651
    [Crossref] [Google Scholar]
  141. 141.
    West-Eberhard MJ. 1987.. Flexible strategy and social evolution. . In Animal Societies: Theories and Facts, ed. Y Ito, JL Brown, J Kikkawa , pp. 3551. Tokyo:: Jpn. Sci. Soc. Press
    [Google Scholar]
  142. 142.
    West-Eberhard MJ. 2003.. Developmental Plasticity and Evolution. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  143. 143.
    Wheeler DE, Buck N, Evans JD. 2006.. Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. . Insect Mol. Biol. 15:(5):597602
    [Crossref] [Google Scholar]
  144. 144.
    Wheeler DE, Nijhout FH. 1983.. Soldier determination in Pheidole bicarinata: effect of methoprene on caste and size within castes. . J. Insect Physiol. 29:(11):84754
    [Crossref] [Google Scholar]
  145. 145.
    Wilson TG, Fabian J. 1986.. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. . Dev. Biol. 118:(1):190201
    [Crossref] [Google Scholar]
  146. 146.
    Wolschin F, Mutti NS, Amdam GV. 2011.. Insulin receptor substrate influences female caste development in honeybees. . Biol. Lett. 7:(1):11215
    [Crossref] [Google Scholar]
  147. 147.
    Wyatt CDR, Bentley MA, Taylor D, Favreau E, Brock RE, et al. 2023.. Social complexity, life-history and lineage influence the molecular basis of castes in vespid wasps. . Nat. Commun. 14:(1):1046
    [Crossref] [Google Scholar]
  148. 148.
    Yamanaka N. 2021.. Ecdysteroid signalling in insects—from biosynthesis to gene expression regulation. . Adv. Insect Physiol. 60::136
    [Crossref] [Google Scholar]
  149. 149.
    Yoshimura H, Yamada YY, Sasaki K. 2021.. Identification of biogenic amines involved in photoperiod-dependent caste-fate determination during the adult stage in a temperate paper wasp. . J. Insect Physiol. 131::104223
    [Crossref] [Google Scholar]
  150. 150.
    Zhu J, Chen L, Sun G, Raikhel AS. 2006.. The competence factor βFtz-F1 potentiates ecdysone receptor activity via recruiting a p160/SRC coactivator. . Mol. Cell. Biol. 26:(24):940212
    [Crossref] [Google Scholar]
  151. 151.
    Zhu S, Liu F, Zeng H, Li N, Ren C, et al. 2020.. Insulin/IGF signaling and TORC1 promote vitellogenesis via inducing juvenile hormone biosynthesis in the American cockroach. . Development 147:(20):dev188805
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102510
Loading
/content/journals/10.1146/annurev-genet-111523-102510
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error