1932

Abstract

Social insects have the highest rates of meiotic recombination among Metazoa, but there is considerable variation within the Hymenoptera. We synthesize the literature to investigate several hypotheses for these elevated recombination rates. We reexamine the long-standing Red Queen hypothesis, considering how social aspects of immunity could lead to increases in recombination. We examine the possibility of positive feedback between gene duplication and recombination rate in the context of caste specialization. We introduce a novel hypothesis that recombination rate may be driven up by direct selection on recombination activity in response to increases in lifespan. Finally, we find that the role of population size in recombination rate evolution remains opaque, despite the long-standing popularity of this hypothesis. Moreover, our review emphasizes how the varied life histories of social insect species provide an effective framework for advancing a broader understanding of adaptively driven variation in recombination rates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102550
2024-11-25
2025-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102550.html?itemId=/content/journals/10.1146/annurev-genet-111523-102550&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ait Saada A, Lambert SAE, Carr AM. 2018.. Preserving replication fork integrity and competence via the homologous recombination pathway. . DNA Repair 71::13547
    [Crossref] [Google Scholar]
  2. 2.
    Anderson KE, Linksvayer TA, Smith CR. 2008.. The causes and consequences of genetic caste determination in ants (Hymenoptera: Formicidae). . Myrmecol. News 11::11932
    [Google Scholar]
  3. 3.
    Avril A, Purcell J, Béniguel S, Chapuisat M. 2020.. Maternal effect killing by a supergene controlling ant social organization. . PNAS 117:(29):1713034
    [Crossref] [Google Scholar]
  4. 4.
    Baer B, Schmid-Hempel P. 2001.. Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. . Evolution 55:(8):163943
    [Google Scholar]
  5. 5.
    Barja G. 2019.. Towards a unified mechanistic theory of aging. . Exp. Gerontol. 124::110627
    [Crossref] [Google Scholar]
  6. 6.
    Barkdull M, Moreau CS. 2023.. Worker reproduction and caste polymorphism impact genome evolution and social genes across the ants. . Genome Biol. Evol. 15:(6):evad095
    [Crossref] [Google Scholar]
  7. 7.
    Barton NH, Charlesworth B. 1998.. Why sex and recombination?. Science 281:(5385):198690
    [Crossref] [Google Scholar]
  8. 8.
    Barton NH, Otto SP. 2005.. Evolution of recombination due to random drift. . Genetics 169:(4):235370
    [Crossref] [Google Scholar]
  9. 9.
    Bell G. 2019.. The Masterpiece of Nature: The Evolution and Genetics of Sexuality. Abingdon, UK:: Routledge
    [Google Scholar]
  10. 10.
    Brand P, Ramírez SR. 2017.. The evolutionary dynamics of the odorant receptor gene family in corbiculate bees. . Genome Biol. Evol. 9:(8):202336
    [Crossref] [Google Scholar]
  11. 11.
    Casillas-Pérez B, Bod'ová K, Grasse AV, Tkačik G, Cremer S. 2023.. Dynamic pathogen detection and social feedback shape collective hygiene in ants. . Nat. Commun. 14:(1):3232
    [Crossref] [Google Scholar]
  12. 12.
    Chau LM, Goodisman MAD. 2017.. Gene duplication and the evolution of phenotypic diversity in insect societies. . Evolution 71:(12):287184
    [Crossref] [Google Scholar]
  13. 13.
    Chen H, Zheng X, Xiao D, Zheng Y. 2016.. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence. . Aging Cell 15:(3):54252
    [Crossref] [Google Scholar]
  14. 14.
    Christiaens JF, Van Mulders SE, Duitama J, Brown BA, Ghequire MG, De Meester L. 2012.. Functional divergence of gene duplicates through ectopic recombination. . EMBO Rep. 13:(12):114551
    [Crossref] [Google Scholar]
  15. 15.
    Coop G, Wen X, Ober C, Pritchard JK, Przeworski M. 2008.. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. . Science 319:(5868):139598
    [Crossref] [Google Scholar]
  16. 16.
    Corona M, Libbrecht R, Wurm Y, Riba-Grognuz O, Studer RA, Keller L. 2013.. Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. . PLOS Genet. 9:(8):e1003730
    [Crossref] [Google Scholar]
  17. 17.
    Cremer S, Armitage SA, Schmid-Hempel P. 2007.. Social immunity. . Curr. Biol. 17:(16):R693702
    [Crossref] [Google Scholar]
  18. 18.
    Cui R, Medeiros T, Willemsen D, Iasi LNM, Collier GE, et al. 2019.. Relaxed selection limits lifespan by increasing mutation load. . Cell 178:(2):38599.e20
    [Crossref] [Google Scholar]
  19. 19.
    Da Silva J. 2018.. Red Queen theory. . In Encyclopedia of Life Sciences, ed. John Wiley & Sons, Ltd. , pp. 17. Hoboken, NJ:: Wiley. https://doi.org/10.1002/9780470015902.a0028127
    [Google Scholar]
  20. 20.
    Da Silva J, Galbraith JD. 2017.. Hill–Robertson interference maintained by Red Queen dynamics favours the evolution of sex. . J. Evol. Biol. 30:(5):9941010
    [Crossref] [Google Scholar]
  21. 21.
    Danforth BN, Minckley RL, Neff JL. 2019.. The Solitary Bees: Biology, Evolution, Conservation. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  22. 22.
    Defoort EN, Kim PM, Winn LM. 2006.. Valproic acid increases conservative homologous recombination frequency and reactive oxygen species formation: a potential mechanism for valproic acid-induced neural tube defects. . Mol. Pharmacol. 69:(4):130410
    [Crossref] [Google Scholar]
  23. 23.
    Dennis S, Sheth U, Feldman JL, English KA, Priess JR. 2012.. C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotransposon. . PLOS Pathog. 8:(3):e1002591
    [Crossref] [Google Scholar]
  24. 24.
    Ebert D, Fields PD. 2020.. Host-parasite co-evolution and its genomic signature. . Nat. Rev. Genet. 21:(12):75468
    [Crossref] [Google Scholar]
  25. 25.
    Elsner D, Meusemann K, Korb J. 2018.. Longevity and transposon defense, the case of termite reproductives. . PNAS 115:(21):55049
    [Crossref] [Google Scholar]
  26. 26.
    Eves JD, Mayer DF, Johansen CA. 1980.. Parasites, Predators, and Nest Destroyers of the Alfalfa Leafcutting Bee, Megachile rotundata. Pullman, WA:: West. Reg. Ext. Publ.
    [Google Scholar]
  27. 27.
    Ewart KM, Ho SYW, Chowdhury A-A, Jaya FR, Kinjo Y, et al. 2023.. Pervasive relaxed selection in termite genomes. . bioRxiv 2023.11.01.565207. https://doi.org/10.1101/2023.11.01.565207
  28. 28.
    Fuchs S, Moritz RFA. 1999.. Evolution of extreme polyandry in the honeybee Apis mellifera L. . Behav. Ecol. Sociobiol. 45:(3):26975
    [Crossref] [Google Scholar]
  29. 29.
    Gadagkar R. 1997.. The evolution of caste polymorphism in social insects: genetic release followed by diversifying evolution. . J. Genet. 76:(3):16779
    [Crossref] [Google Scholar]
  30. 30.
    Gadau J, Fewell JH. 2022.. Supergenes, supergenomes, and complex social traits. . PNAS 119:(2):e2118971118
    [Crossref] [Google Scholar]
  31. 31.
    Galbraith DA, Fuller ZL, Ray AM, Brockmann A, Frazier M, et al. 2018.. Investigating the viral ecology of global bee communities with high-throughput metagenomics. . Sci. Rep. 8:(1):8879
    [Crossref] [Google Scholar]
  32. 32.
    Gandon S, Otto SP. 2007.. The evolution of sex and recombination in response to abiotic or coevolutionary fluctuations in epistasis. . Genetics 175:(4):183553
    [Crossref] [Google Scholar]
  33. 33.
    Gao Q, Xiong Z, Larsen RS, Zhou L, Zhao J, et al. 2020.. High-quality chromosome-level genome assembly and full-length transcriptome analysis of the pharaoh ant Monomorium pharaonis. . GigaScience 9:(12):giaa143
    [Crossref] [Google Scholar]
  34. 34.
    Goodell K. 2003.. Food availability affects Osmia pumila (Hymenoptera: Megachilidae) foraging, reproduction, and brood parasitism. . Oecologia 134::51827
    [Crossref] [Google Scholar]
  35. 35.
    Guarna MM, Melathopoulos AP, Huxter E, Iovinella I, Parker R, et al. 2015.. A search for protein biomarkers links olfactory signal transduction to social immunity. . BMC Genom. 16:(1):63
    [Crossref] [Google Scholar]
  36. 36.
    Haigh J. 1978.. The accumulation of deleterious genes in a population—Muller's ratchet. Theor. . Popul. Biol. 14:(2):25167
    [Crossref] [Google Scholar]
  37. 37.
    Hamilton WD. 2001.. Land of the rising sun: kinship, recognition, disease, and intelligence: constraints of social evolution. . In Narrow Roads of Gene Land, Vol. 2, pp. 367412. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  38. 38.
    Heinze J, Walter B. 2010.. Moribund ants leave their nests to die in social isolation. . Curr. Biol. 20:(3):24952
    [Crossref] [Google Scholar]
  39. 39.
    Hill WG, Robertson A. 1968.. Linkage disequilibrium in finite populations. . Theor. Appl. Genet. 38:(6):22631
    [Crossref] [Google Scholar]
  40. 40.
    Hodgson EE, Otto SP. 2012.. The red queen coupled with directional selection favours the evolution of sex. . J. Evol. Biol. 25:(4):797802
    [Crossref] [Google Scholar]
  41. 41.
    Hughes WOH, Boomsma JJ. 2004.. Genetic diversity and disease resistance in leaf-cutting ant societies. . Evolution 58:(6):125160
    [Google Scholar]
  42. 42.
    Hughes WOH, Boomsma JJ. 2008.. Genetic royal cheats in leaf-cutting ant societies. . PNAS 105:(13):515053
    [Crossref] [Google Scholar]
  43. 43.
    Hunter CM, Huang W, Mackay TFC, Singh ND. 2016.. The genetic architecture of natural variation in recombination rate in Drosophila melanogaster. . PLOS Genet. 12:(4):e1005951
    [Crossref] [Google Scholar]
  44. 44.
    Hunter CM, Robinson MC, Aylor DL, Singh ND. 2016.. Genetic background, maternal age, and interaction effects mediate rates of crossing over in Drosophila melanogaster females. . G3 6:(5):140916
    [Crossref] [Google Scholar]
  45. 45.
    Hunter N. 2015.. Meiotic recombination: the essence of heredity. . Cold Spring Harb. Perspect. Biol. 7:(12):a016618
    [Crossref] [Google Scholar]
  46. 46.
    Hussin J, Roy-Gagnon M-H, Gendron R, Andelfinger G, Awadalla P. 2011.. Age-dependent recombination rates in human pedigrees. . PLOS Genet. 7:(9):e1002251
    [Crossref] [Google Scholar]
  47. 47.
    Iles MM, Walters K, Cannings C. 2003.. Recombination can evolve in large finite populations given selection on sufficient loci. . Genetics 165:(4):224958
    [Crossref] [Google Scholar]
  48. 48.
    Jaimes-Nino LM, Heinze J, Oettler J. 2022.. Late-life fitness gains and reproductive death in Cardiocondyla obscurior ants. . eLife 11::e74695
    [Crossref] [Google Scholar]
  49. 49.
    Ji T, Yin L, Liu Z, Liang Q, Luo Y, et al. 2014.. Transcriptional responses in eastern honeybees (Apis cerana) infected with mites, Varroa destructor. . Genet. Mol. Res. 13:(4):8888900
    [Crossref] [Google Scholar]
  50. 50.
    Jones JC, Wallberg A, Christmas MJ, Kapheim KM, Webster MT. 2019.. Extreme differences in recombination rate between the genomes of a solitary and a social bee. . Mol. Biol. Evol. 36:(10):227791
    [Crossref] [Google Scholar]
  51. 51.
    Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D, et al. 2015.. Genomic signatures of evolutionary transitions from solitary to group living. . Science 348:(6239):113943
    [Crossref] [Google Scholar]
  52. 52.
    Kawakami T, Wallberg A, Olsson A, Wintermantel D, De Miranda JR, et al. 2019.. Substantial heritable variation in recombination rate on multiple scales in honeybees and bumblebees. . Genetics 212:(4):110119
    [Crossref] [Google Scholar]
  53. 53.
    Kent CF, Shermineh M, Harpur BA, Zayed A. 2012.. Recombination is associated with the evolution of genome structure and worker behavior in honey bees. . PNAS 109:(44):1801217
    [Crossref] [Google Scholar]
  54. 54.
    Kent CF, Zayed A. 2013.. Evolution of recombination and genome structure in eusocial insects. . Commun. Integr. Biol. 6:(2):e22919
    [Crossref] [Google Scholar]
  55. 55.
    Kent TV, Uzunović J, Wright SI. 2017.. Coevolution between transposable elements and recombination. . Philos. Trans. R. Soc. B 372:(1736):20160458
    [Crossref] [Google Scholar]
  56. 56.
    Kerstes NA, Bérénos C, Schmid-Hempel P, Wegner KM. 2012.. Antagonistic experimental coevolution with a parasite increases host recombination frequency. . BMC Evol. Biol. 12:(1):18
    [Crossref] [Google Scholar]
  57. 57.
    Kidner J, Moritz RFA. 2015.. Host-parasite evolution in male-haploid hosts: an individual based network model. . Evol. Ecol. 29::93105
    [Crossref] [Google Scholar]
  58. 58.
    Klein A. 2015.. Endosymbiosis, co-option and recombination: mechanisms to generate evolutionary novelty in the ant Cardiocondyla obscurior. PhD Thesis , Univ. Regensburg
    [Google Scholar]
  59. 59.
    Koch SI, Groh K, Vogel H, Hannson BS, Kleineidam CJ, Grosse-Wilde E. 2013.. Caste-specific expression patterns of immune response and chemosensory related genes in the leaf-cutting ant, Atta vollenweideri. . PLOS ONE 8:(11):e81518
    [Crossref] [Google Scholar]
  60. 60.
    Kong A, Barnard J, Gudbjartsson DF, Thorleifsson G, Jonsdottir G, et al. 2004.. Recombination rate and reproductive success in humans. . Nat. Genet. 36:(11):12036
    [Crossref] [Google Scholar]
  61. 61.
    Kurze C, Routtu J, Moritz RF. 2016.. Parasite resistance and tolerance in honeybees at the individual and social level. . Zoology 119:(4):29097
    [Crossref] [Google Scholar]
  62. 62.
    Lacy KD, Shoemaker D, Ross KG. 2019.. Joint evolution of asexuality and queen number in an ant. . Curr. Biol. 29:(8):1394400.e4
    [Crossref] [Google Scholar]
  63. 63.
    Langberg K, Phillips M, Rueppell O. 2018.. Testing the effect of paraquat exposure on genomic recombination rates in queens of the western honey bee, Apis mellifera. . Genetica 146:(2):17178
    [Crossref] [Google Scholar]
  64. 64.
    Latrille T, Duret L, Lartillot N. 2017.. The Red Queen model of recombination hot-spot evolution: a theoretical investigation. . Philos. Trans. R. Soc. B 372:(1736):20160463
    [Crossref] [Google Scholar]
  65. 65.
    Legan AW, Jernigan CM, Miller SE, Fuchs MF, Sheehan MJ. 2021.. Expansion and accelerated evolution of 9-exon odorant receptors in Polistes paper wasps. . Mol. Biol. Evol. 38:(9):383246
    [Crossref] [Google Scholar]
  66. 66.
    Li X, Heyer W-D. 2008.. Homologous recombination in DNA repair and DNA damage tolerance. . Cell Res. 18:(1):99113
    [Crossref] [Google Scholar]
  67. 67.
    Lichten M, Borts RH, Haber JE. 1987.. Meiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in Saccharomyces cerevisiae. . Genetics 115:(2):23346
    [Crossref] [Google Scholar]
  68. 68.
    Liu GE, Alkan C, Jiang L, Zhao S, Eichler EE. 2009.. Comparative analysis of Alu repeats in primate genomes. . Genome Res. 19:(5):87685
    [Crossref] [Google Scholar]
  69. 69.
    Liu H, Zhang X, Huang J, Chen J-Q, Tian D, et al. 2015.. Causes and consequences of crossing-over evidenced via a high-resolution recombinational landscape of the honey bee. . Genome Biol. 16:(1):15
    [Crossref] [Google Scholar]
  70. 70.
    Liu P, Cuerda-Gil D, Shahid S, Slotkin RK. 2022.. The epigenetic control of the transposable element life cycle in plant genomes and beyond. . Annu. Rev. Genet. 56::6387
    [Crossref] [Google Scholar]
  71. 71.
    Lobkovsky AE, Wolf YI, Koonin EV. 2016.. Evolvability of an optimal recombination rate. . Genome Biol. Evol. 8:(1):7077
    [Crossref] [Google Scholar]
  72. 72.
    Lu RX, Bhatia S, Simone-Finstrom M, Rueppell O. 2023.. Quantitative trait loci mapping for survival of virus infection and virus levels in honey bees. . Infect. Genet. Evol. 116::105534
    [Crossref] [Google Scholar]
  73. 73.
    Ma F, Lau CY, Zheng C. 2022.. Dynamic evolution of recently duplicated genes in Caenorhabditis elegans. . bioRxiv 2022.03.10.483751. https://www.biorxiv.org/content/10.1101/2022.03.10.483751v1
  74. 74.
    Manzano-Winkler B, McGaugh SE, Noor MAF. 2013.. How hot are drosophila hotspots? Examining recombination rate variation and associations with nucleotide diversity, divergence, and maternal age in Drosophila pseudoobscura. . PLOS ONE 8:(8):e71582
    [Crossref] [Google Scholar]
  75. 75.
    Martin HC, Christ R, Hussin JG, O'Connell J, Gordon S, et al. 2015.. Multicohort analysis of the maternal age effect on recombination. . Nat. Commun. 6:(1):7846
    [Crossref] [Google Scholar]
  76. 76.
    Mattila HR, Reeve HK, Smith ML. 2012.. Promiscuous honey bee queens increase colony productivity by suppressing worker selfishness. . Curr. Biol. 22:(21):202731
    [Crossref] [Google Scholar]
  77. 77.
    Maxwell PH, Burhans WC, Curcio MJ. 2011.. Retrotransposition is associated with genome instability during chronological aging. . PNAS 108:(51):2037681
    [Crossref] [Google Scholar]
  78. 78.
    Michener CD. 2000.. The Bees of the World, Vol. 1. Baltimore, MD:: Johns Hopkins Univ. Press
    [Google Scholar]
  79. 79.
    Mondet F, Alaux C, Severac D, Rohmer M, Mercer AR, Le Conte Y. 2015.. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees. . Sci. Rep. 5:(1):10454
    [Crossref] [Google Scholar]
  80. 80.
    Morandin C, Havukainen H, Kulmuni J, Dhaygude K, Trontti K, Helanterä H. 2012.. Not only for egg yolk—functional and evolutionary insights from expression, selection, and structural analyses of Formica ant vitellogenins. . Mol. Biol. Evol. 31:(8):218193
    [Crossref] [Google Scholar]
  81. 81.
    Müller MC, Praz CR, Sotiropoulos AG, Menardo F, Kunz L, et al. 2019.. A chromosome-scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew. . New Phytol. 221:(4):217689
    [Crossref] [Google Scholar]
  82. 82.
    Muñoz-Fuentes V, Marcet-Ortega M, Alkorta-Aranburu G, Linde Forsberg C, Morrell JM, et al. 2015.. Strong artificial selection in domestic mammals did not result in an increased recombination rate. . Mol. Biol. Evol. 32:(2):51023
    [Crossref] [Google Scholar]
  83. 83.
    Neiman M, Lively CM, Meirmans S. 2017.. Why sex? A pluralist approach revisited. . Trends Ecol. Evol. 32:(8):589600
    [Crossref] [Google Scholar]
  84. 84.
    Nomura T, Takahashi J. 2012.. Effective population size in eusocial Hymenoptera with worker-produced males. . Heredity 109:(5):26168
    [Crossref] [Google Scholar]
  85. 85.
    Oettler J, Schrempf A. 2016.. Fitness and aging in Cardiocondyla obscurior ant queens. . Curr. Opin. Insect Sci. 16::5863
    [Crossref] [Google Scholar]
  86. 86.
    Otto SP. 2021.. Selective interference and the evolution of sex. . J. Hered. 112:(1):918
    [Crossref] [Google Scholar]
  87. 87.
    Otto SP, Barton NH. 2001.. Selection for recombination in small populations. . Evolution 55:(10):192131
    [Google Scholar]
  88. 88.
    Oxley PR, Spivak M, Oldroyd BP. 2010.. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). . Mol. Ecol. 19:(7):145261
    [Crossref] [Google Scholar]
  89. 89.
    Pope NS, Singh A, Childers AK, Kapheim KM, Evans JD, López-Uribe MM. 2023.. The expansion of agriculture has shaped the recent evolutionary history of a specialized squash pollinator. . PNAS 120:(15):e2208116120
    [Crossref] [Google Scholar]
  90. 90.
    Pownall KA, Taylor HN, Altindag UH, Stevison LS. 2020.. Maternal age alters recombination rate in Drosophila pseudoobscura. . bioRxiv 2020.07.20.212548. https://www.biorxiv.org/content/10.1101/2020.07.20.212548v2
  91. 91.
    Price DJ, Bantock CR. 1975.. Marginal populations of Cepaea nemoralis (L.) on the Brendon Hills, England. II. Variation in chiasma frequency. . Evolution 29:(2):27886
    [Crossref] [Google Scholar]
  92. 92.
    Qiu H-L, Cheng D-F. 2017.. A chemosensory protein gene Si-CSP1 associated with necrophoric behavior in red imported fire ants (Hymenoptera: Formicidae). . J. Econ. Entomol. 110:(3):128490
    [Crossref] [Google Scholar]
  93. 93.
    Rehan SM, Toth AL. 2015.. Climbing the social ladder: the molecular evolution of sociality. . Trends Ecol. Evol. 30:(7):42633
    [Crossref] [Google Scholar]
  94. 94.
    Revell LJ. 2013.. Two new graphical methods for mapping trait evolution on phylogenies. . Methods Ecol. Evol. 4:(8):75459
    [Crossref] [Google Scholar]
  95. 95.
    Ritz KR, Noor MA, Singh ND. 2017.. Variation in recombination rate: adaptive or not?. Trends Genet. 33:(5):36474
    [Crossref] [Google Scholar]
  96. 96.
    Robledo-Ruiz DA, Gan HM, Kaur P, Dudchenko O, Weisz D, et al. 2022.. Chromosome-length genome assembly and linkage map of a critically endangered Australian bird: the helmeted honeyeater. . GigaScience 11::giac025
    [Crossref] [Google Scholar]
  97. 97.
    Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, et al. 2014.. Comparative population genomics in animals uncovers the determinants of genetic diversity. . Nature 515:(7526):26163
    [Crossref] [Google Scholar]
  98. 98.
    Ross-Ibarra J. 2004.. The evolution of recombination under domestication: a test of two hypotheses. . Am. Nat. 163:(1):10512
    [Crossref] [Google Scholar]
  99. 99.
    Roze D. 2023.. Causes and consequences of linkage disequilibrium among transposable elements within eukaryotic genomes. . Genetics 224:(2):iyad058
    [Crossref] [Google Scholar]
  100. 100.
    Rueppell O, Johnson N, Rychtář J. 2008.. Variance-based selection may explain general mating patterns in social insects. . Biol. Lett. 4:(3):27073
    [Crossref] [Google Scholar]
  101. 101.
    Rueppell O, Kuster R, Miller K, Fouks B, Rubio Correa S, et al. 2016.. A new metazoan recombination rate record and consistently high recombination rates in the honey bee genus Apis accompanied by frequent inversions but not translocations. . Genome Biol. Evol. 8:(12):365360
    [Google Scholar]
  102. 102.
    Rueppell O, Meier S, Deutsch R. 2012.. Multiple mating but not recombination causes quantitative increase in offspring genetic diversity for varying genetic architectures. . PLOS ONE 7:(10):e47220
    [Crossref] [Google Scholar]
  103. 103.
    Salathé M, Kouyos RD, Bonhoeffer S. 2009.. On the causes of selection for recombination underlying the Red Queen Hypothesis. . Am. Nat. 174:(S1):S3142
    [Crossref] [Google Scholar]
  104. 104.
    Sasaki M, Lange J, Keeney S. 2010.. Genome destabilization by homologous recombination in the germ line. . Nat. Rev. Mol. Cell Biol. 11:(3):18295
    [Crossref] [Google Scholar]
  105. 105.
    Schield DR, Perry BW, Adams RH, Holding ML, Nikolakis ZL, et al. 2022.. The roles of balancing selection and recombination in the evolution of rattlesnake venom. . Nat. Ecol. Evol. 6:(9):136780
    [Crossref] [Google Scholar]
  106. 106.
    Schmid-Hempel P. 1998.. Parasites in Social Insects, Vol. 60. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  107. 107.
    Schmidt CV, Schrempf A, Trindl A, Heinze J. 2016.. Microsatellite markers for the tramp ant, Cardiocondyla obscurior (Formicidae: Myrmicinae). . J. Genet. 95:(Suppl. 1):14
    [Crossref] [Google Scholar]
  108. 108.
    Schoonvaere K, Smagghe G, Francis F, de Graaf DC. 2018.. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. . Front. Microbiol. 9::177
    [Crossref] [Google Scholar]
  109. 109.
    Schultner E, Oettler J, Helanterä H. 2017.. The role of brood in eusocial Hymenoptera. . Q. Rev. Biol. 92:(1):3978
    [Crossref] [Google Scholar]
  110. 110.
    Schwartz M, Zlotorynski E, Goldberg M, Ozeri E, Rahat A, et al. 2005.. Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. . Genes Dev. 19:(22):271526
    [Crossref] [Google Scholar]
  111. 111.
    Seistrup A-S, Choppin M, Govind S, Feldmeyer B, Kever M, et al. 2023.. Age- and caste-independent piRNAs in the germline and miRNA profiles linked to caste and fecundity in the ant Temnothorax rugatulus. . Mol. Ecol. 32::602743
    [Crossref] [Google Scholar]
  112. 112.
    Shen B, Freebern E, Jiang J, Maltecca C, Cole JB, et al. 2021.. Effect of temperature and maternal age on recombination rate in cattle. . Front. Genet. 12::682718
    [Crossref] [Google Scholar]
  113. 113.
    Shipilina D, Näsvall K, Höök L, Vila R, Talavera G, Backström N. 2022.. Linkage mapping and genome annotation give novel insights into gene family expansions and regional recombination rate variation in the painted lady (Vanessa cardui) butterfly. . Genomics 114:(6):110481
    [Crossref] [Google Scholar]
  114. 114.
    Singh ND. 2019.. Wolbachia infection associated with increased recombination in Drosophila. . G3 9:(1):22937
    [Crossref] [Google Scholar]
  115. 115.
    Singh ND, Criscoe DR, Skolfield S, Kohl KP, Keebaugh ES, Schlenke TA. 2015.. Fruit flies diversify their offspring in response to parasite infection. . Science 349:(6249):74750
    [Crossref] [Google Scholar]
  116. 116.
    Sirviö A, Gadau J, Rueppell O, Lamatsch D, Boomsma JJ, et al. 2006.. High recombination frequency creates genotypic diversity in colonies of the leaf-cutting ant Acromyrmex echinatior. . J. Evol. Biol. 19:(5):147585
    [Crossref] [Google Scholar]
  117. 117.
    Sirviö A, Johnston JS, Wenseleers T, Pamilo P. 2011.. A high recombination rate in eusocial Hymenoptera: evidence from the common wasp Vespula vulgaris. . BMC Genet. 12:(1):95
    [Crossref] [Google Scholar]
  118. 118.
    Slone JD, Pask GM, Ferguson ST, Millar JG, Berger SL, et al. 2017.. Functional characterization of odorant receptors in the ponerine ant, Harpegnathos saltator. . PNAS 114:(32):858691
    [Crossref] [Google Scholar]
  119. 119.
    Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. 2017.. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. . Philos. Trans. R. Soc. B 372:(1736):20160455
    [Crossref] [Google Scholar]
  120. 120.
    Stroeymeyt N, Grasse AV, Crespi A, Mersch DP, Cremer S, Keller L. 2018.. Social network plasticity decreases disease transmission in a eusocial insect. . Science 362:(6417):94145
    [Crossref] [Google Scholar]
  121. 121.
    Strotz LC, Simões M, Girard MG, Breitkreuz L, Kimmig J, Lieberman BS. 2018.. Getting somewhere with the Red Queen: chasing a biologically modern definition of the hypothesis. . Biol. Lett. 14:(5):20170734
    [Crossref] [Google Scholar]
  122. 122.
    Swanson JA, Torto B, Kells SA, Mesce KA, Tumlinson JH, Spivak M. 2009.. Odorants that induce hygienic behavior in honeybees: identification of volatile compounds in chalkbrood-infected honeybee larvae. . J. Chem. Ecol. 35::110816
    [Crossref] [Google Scholar]
  123. 123.
    Tarpy DR. 2003.. Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. . Proc. R. Soc. Lond. B 270:(1510):99103
    [Crossref] [Google Scholar]
  124. 124.
    Tellier A, Moreno-Gámez S, Stephan W. 2014.. Speed of adaptation and genomic footprints of host–parasite coevolution under arms race and trench warfare dynamics. . Evolution 68:(8):221124
    [Google Scholar]
  125. 125.
    Thomas GWC, Dohmen E, Hughes DST, Murali SC, Poelchau M, et al. 2020.. Gene content evolution in the arthropods. . Genome Biol. 21:(1):15
    [Crossref] [Google Scholar]
  126. 126.
    Tian T, Piot N, Meeus I, Smagghe G. 2018.. Infection with the multi-host micro-parasite Apicystis bombi (Apicomplexa: Neogregarinorida) decreases survival of the solitary bee Osmia bicornis. . J. Invertebr. Pathol. 158::4345
    [Crossref] [Google Scholar]
  127. 127.
    Tiley GP, Burleigh JG. 2015.. The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms. . BMC Evol. Biol. 15:(1):194
    [Crossref] [Google Scholar]
  128. 128.
    Tschinkel WR, King JR. 2017.. Ant community and habitat limit colony establishment by the fire ant, Solenopsis invicta. . Funct. Ecol. 31:(4):95564
    [Crossref] [Google Scholar]
  129. 129.
    Tsuruda JM, Harris JW, Bourgeois L, Danka RG, Hunt GJ. 2012.. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees. . PLOS ONE 7:(11):e48276
    [Crossref] [Google Scholar]
  130. 130.
    Waiker P, De Abreu FCP, Luna-Lucena D, Freitas FCP, Simões ZLP, Rueppell O. 2021.. Recombination mapping of the Brazilian stingless bee Frieseomelitta varia confirms high recombination rates in social hymenoptera. . BMC Genom. 22:(1):673
    [Crossref] [Google Scholar]
  131. 131.
    Wang W, Ashby R, Ying H, Maleszka R, Forêt S. 2017.. Contrasting sex-and caste-dependent piRNA profiles in the transposon depleted haplodiploid honeybee Apis mellifera. . Genome Biol. Evol. 9:(5):134156
    [Crossref] [Google Scholar]
  132. 132.
    Weyna A, Romiguier J. 2021.. Relaxation of purifying selection suggests low effective population size in eusocial Hymenoptera and solitary pollinating bees. . Peer Community J. 1::e2
    [Crossref] [Google Scholar]
  133. 133.
    Wilson EO. 1963.. The social biology of ants. . Annu. Rev. Entomol. 8::34568
    [Crossref] [Google Scholar]
  134. 134.
    Winn LM. 2003.. Homologous recombination initiated by benzene metabolites: a potential role of oxidative stress. . Toxicol. Sci. 72:(1):14349
    [Crossref] [Google Scholar]
  135. 135.
    Winn LM, Kim PM, Nickoloff JA. 2003.. Oxidative stress-induced homologous recombination as a novel mechanism for phenytoin-initiated toxicity. . J. Pharmacol. Exp. Ther. 306:(2):52327
    [Crossref] [Google Scholar]
  136. 136.
    Wyka S, Mondo S, Liu M, Nalam V, Broders K. 2022.. A large accessory genome and high recombination rates may influence global distribution and broad host range of the fungal plant pathogen Claviceps purpurea. . PLOS ONE 17:(2):e0263496
    [Crossref] [Google Scholar]
  137. 137.
    Zilio G, Moesch L, Bovet N, Sarr A, Koella JC. 2018.. The effect of parasite infection on the recombination rate of the mosquito Aedes aegypti. . PLOS ONE 13:(10):e0203481
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102550
Loading
/content/journals/10.1146/annurev-genet-111523-102550
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error