1932

Abstract

Meiotic drive is the biased transmission of alleles from heterozygotes, contrary to Mendel's laws, and reflects intragenomic conflict rather than organism-level Darwinian selection. Theory has been developed as to how centromeric properties can promote female meiotic drive and how conflict between the X and Y chromosomes in males can promote male meiotic drive. There are empirical data that fit both the centromere drive and sex chromosome drive models. Sex chromosome drive may have relevance to speciation through the buildup of Dobzhansky-Muller incompatibilities involving drive and suppressor systems, studied particularly in . Centromere drive may promote fixation of chromosomal rearrangements involving the centromere, and those fixed rearrangements may contribute to reproductive isolation, studied particularly in the house mouse. Genome-wide tests suggest that meiotic drive promotes allele fixation with regularity, and those studying the genomics of speciation need to be aware of the potential impact of such fixations on reproductive isolation. New species can originate in many different ways (including multiple factors acting together), and a substantial body of work on meiotic drive point to it being one of the processes involved.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-111523-102603
2024-11-25
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/58/1/annurev-genet-111523-102603.html?itemId=/content/journals/10.1146/annurev-genet-111523-102603&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aguillon SM, Walsh J, Lovette IJ. 2021.. Extensive hybridization reveals multiple coloration genes underlying a complex plumage phenotype. . Proc. R. Soc. B 288:( 1943.):20201805
    [Crossref] [Google Scholar]
  2. 2.
    Akera T, Chmátal L, Trimm E, Yang K, Aonbangkhen C, et al. 2017.. Spindle asymmetry drives non-Mendelian chromosome segregation. . Science 358:(6363):66872
    [Crossref] [Google Scholar]
  3. 3.
    Akera T, Trimm E, Lampson MA. 2019.. Molecular strategies of meiotic cheating by selfish centromeres. . Cell 178:(5):113244
    [Crossref] [Google Scholar]
  4. 4.
    Bachtrog D. 2020.. The Y chromosome as a battleground for intragenomic conflict. . Trends Genet. 36:(7):51022
    [Crossref] [Google Scholar]
  5. 5.
    Baker RJ, Bickham JW. 1986.. Speciation by monobrachial centric fusions. . PNAS 83:(21):824548
    [Crossref] [Google Scholar]
  6. 6.
    Barton NH. 2020.. On the completion of speciation. . Phil. Trans. R. Soc. B 375:( 1806.):20190530
    [Crossref] [Google Scholar]
  7. 7.
    Barton NH, de Cara MA. 2009.. The evolution of strong reproductive isolation. . Evolution 63:(5):117190
    [Crossref] [Google Scholar]
  8. 8.
    Barton NH, Hewitt GM. 1985.. Analysis of hybrid zones. . Annu. Rev. Ecol. Syst. 16::11348
    [Crossref] [Google Scholar]
  9. 9.
    Basset P, Yannic G, Brünner H, Hausser J. 2006.. Restricted gene flow at specific parts of the shrew genome in chromosomal hybrid zones. . Evolution 60:(8):171830
    [Google Scholar]
  10. 10.
    Bastide H, Cazemajor M, Ogereau D, Derome N, Hospital F, Montchamp-Moreau C. 2011.. Rapid rise and fall of selfish sex-ratio X chromosomes in Drosophila simulans: spatiotemporal analysis of phenotypic and molecular data. . Mol. Biol. Evol. 28:(9):246170
    [Crossref] [Google Scholar]
  11. 11.
    Bastide H, Gérard PR, Ogereau D, Cazemajor M, Montchamp-Moreau C. 2013.. Local dynamics of a fast-evolving sex-ratio system in Drosophila simulans. . Mol. Ecol. 22:(21):535267
    [Crossref] [Google Scholar]
  12. 12.
    Bayes JJ, Malik HS. 2009.. Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species. . Science 326:(5959):153841
    [Crossref] [Google Scholar]
  13. 13.
    Berdan EL, Aubier TG, Cozzolino S, Faria R, Feder JL, et al. 2024.. Structural variants and speciation: multiple processes at play. . Cold Spring Harb. Perspect. Biol. 16::a041446
    [Crossref] [Google Scholar]
  14. 14.
    Bierne N, Welch J, Loire E, Bonhomme F, David P. 2011.. The coupling hypothesis: why genome scans may fail to map local adaptation genes. . Mol. Ecol. 20:(10):204472
    [Crossref] [Google Scholar]
  15. 15.
    Blackmon H, Justison J, Mayrose I, Goldberg EE. 2019.. Meiotic drive shapes rates of karyotype evolution in mammals. . Evolution 73:(3):51123
    [Crossref] [Google Scholar]
  16. 16.
    Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, et al. 2023.. Genomics of plant speciation. . Plant Commun. 4:(5):100599
    [Crossref] [Google Scholar]
  17. 17.
    Bracewell RR, Bentz BJ, Sullivan BT, Good JM. 2017.. Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest. . Nat. Commun. 8:(1):1593
    [Crossref] [Google Scholar]
  18. 18.
    Bravo Núñez MA, Nuckolls NL, Zanders SE. 2018.. Genetic villains: killer meiotic drivers. . Trends Genet. 34:(6):42433
    [Crossref] [Google Scholar]
  19. 19.
    Brideau NJ, Flores HA, Wang J, Maheshwari S, Wang XU, Barbash DA. 2006.. Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila. . Science 314:(5803):129295
    [Crossref] [Google Scholar]
  20. 20.
    Brünner H, Lugon-Moulin N, Balloux F, Fumagalli L, Hausser J. 2002.. A taxonomical re-evaluation of the Valais chromosome race of the common shrew Sorex araneus (Insectivora: Soricidae). . Acta Theriol. 47::24575
    [Crossref] [Google Scholar]
  21. 21.
    Brünner H, Lugon-Moulin N, Hausser J. 2002.. Alps, genes, and chromosomes: their role in the formation of species in the Sorex araneus group (Mammalia, Insectivora), as inferred from two hybrid zones. . Cytogenet. Cell Genet. 96:(1–4):8596
    [Crossref] [Google Scholar]
  22. 22.
    Carabajal Paladino LZ, Provazníková I, Berger M, Bass C, Aratchige NS, et al. 2019.. Sex chromosome turnover in moths of the diverse superfamily Gelechioidea. . Genome Biol. Evol. 11:(4):130719
    [Crossref] [Google Scholar]
  23. 23.
    Charlesworth B, Wall JD. 1999.. Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. . Proc. R. Soc. B 266:( 1414.):5156
    [Crossref] [Google Scholar]
  24. 24.
    Charlesworth D, Charlesworth B. 1980.. Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. . Genet. Res. 35:(2):20514
    [Crossref] [Google Scholar]
  25. 25.
    Chmátal L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J, et al. 2014.. Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. . Curr. Biol. 24:(19):2295300
    [Crossref] [Google Scholar]
  26. 26.
    Chou JY, Hsu PC, Leu JY. 2022.. Enforcement of postzygotic species boundaries in the fungal kingdom. . Microbiol. Mol. Biol. Rev. 86:(4):e00098-22
    [Crossref] [Google Scholar]
  27. 27.
    Clark FE, Akera T. 2021.. Unravelling the mystery of female meiotic drive: where we are. . Open Biol. 11:(9):210074
    [Crossref] [Google Scholar]
  28. 28.
    Clark FE, Greenberg NL, Silva DMZA, Trimm E, Skinner M, et al. 2024.. An egg-sabotaging mechanism drives non-Mendelian transmission in mice. . Curr. Biol. 34:(17):384554.E4
    [Crossref] [Google Scholar]
  29. 29.
    Cocquet J, Ellis PJ, Mahadevaiah SK, Affara NA, Vaiman D, Burgoyne PS. 2012.. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse. . PLOS Genet. 8:(9):e1002900
    [Crossref] [Google Scholar]
  30. 30.
    Collab. Cross Consort. 2012.. The genome architecture of the Collaborative Cross mouse genetic reference population. . Genetics 190:(2):389401
    [Crossref] [Google Scholar]
  31. 31.
    Corbett-Detig R, Jacobs-Palmer E, Hartl D, Hoekstra H. 2015.. Direct gamete sequencing reveals no evidence for segregation distortion in house mouse hybrids. . PLOS ONE 10:(6):e0131933
    [Crossref] [Google Scholar]
  32. 32.
    Corbett-Detig R, Medina P, Frerot H, Blassiau C, Castric V. 2019.. Bulk pollen sequencing reveals rapid evolution of segregation distortion in the male germline of Arabidopsis hybrids. . Evol. Lett. 3:(1):93103
    [Crossref] [Google Scholar]
  33. 33.
    Cotton AJ, Földvári M, Cotton S, Pomiankowski A. 2014.. Male eyespan size is associated with meiotic drive in wild stalk-eyed flies (Teleopsis dalmanni). . Heredity 112:(4):36369
    [Crossref] [Google Scholar]
  34. 34.
    Coughlan JM. 2023.. The role of conflict in shaping plant biodiversity. . New Phytol. 240:(6):221017
    [Crossref] [Google Scholar]
  35. 35.
    Coughlan JM, Matute DR. 2020.. The importance of intrinsic postzygotic barriers throughout the speciation process. . Phil. Trans. R. Soc. B 375:( 1806.):20190533
    [Crossref] [Google Scholar]
  36. 36.
    Courret C, Chang CH, Wei KH, Montchamp-Moreau C, Larracuente AM. 2019.. Meiotic drive mechanisms: lessons from Drosophila. . Proc. R. Soc. B 286:( 1913.):20191430
    [Crossref] [Google Scholar]
  37. 37.
    Coyne JA. 1989.. A test of the role of meiotic drive in fixing a pericentric inversion. . Genetics 123:(1):24143
    [Crossref] [Google Scholar]
  38. 38.
    Coyne JA, Orr HA. 2004.. Speciation. Sunderland, MA:: Sinauer
    [Google Scholar]
  39. 39.
    Crespi B, Nosil P. 2013.. Conflictual speciation: species formation via genomic conflict. . Trends Ecol. Evol. 28:(1):4857
    [Crossref] [Google Scholar]
  40. 40.
    Cutter AD. 2012.. The polymorphic prelude to Bateson–Dobzhansky–Muller incompatibilities. . Trends Ecol. Evol. 27:(4):20918
    [Crossref] [Google Scholar]
  41. 41.
    Davies B, Hatton E, Altemose N, Hussin JG, Pratto F, et al. 2016.. Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice. . Nature 530:(7589):17176
    [Crossref] [Google Scholar]
  42. 42.
    Dawe RK, Hiatt EN. 2004.. Plant neocentromeres: fast, focused, and driven. . Chromosome Res. 12:(6):65569
    [Crossref] [Google Scholar]
  43. 43.
    Didion JP, Morgan AP, Clayshulte AM, McMullan RC, Yadgary L, et al. 2015.. A multi-megabase copy number gain causes maternal transmission ratio distortion on mouse chromosome 2. . PLOS Genet. 11:(2):e1004850
    [Crossref] [Google Scholar]
  44. 44.
    Dobigny G, Britton-Davidian J, Robinson TJ. 2017.. Chromosomal polymorphism in mammals: an evolutionary perspective. . Biol. Rev. Cam. Philos. Soc. 92:(1):121
    [Crossref] [Google Scholar]
  45. 45.
    Dobzhansky T. 1970.. Genetics of the Evolutionary Process. New York:: Columbia Univ. Press
    [Google Scholar]
  46. 46.
    Dopman EB, Shaw KL, Servedio MR, Butlin RK, Smadja CM. 2024.. Coupling of barriers to gene exchange: causes and consequences. . Cold Spring Harb. Perspect. Biol. 16::a041432
    [Crossref] [Google Scholar]
  47. 47.
    Dudka D, Akins RB, Lampson MA. 2023.. FREEDA: an automated computational pipeline guides experimental testing of protein innovation. . J. Cell Biol. 222:(9):e202212084
    [Crossref] [Google Scholar]
  48. 48.
    Dudka D, Lampson MA. 2022.. Centromere drive: model systems and experimental progress. . Chromosome Res. 30:(2–3):187203
    [Crossref] [Google Scholar]
  49. 49.
    Ellegren H, Smeds L, Burri R, Olason PI, Backström N, et al. 2012.. The genomic landscape of species divergence in Ficedula flycatchers. . Nature 491:(7426):75660
    [Crossref] [Google Scholar]
  50. 50.
    Ellis PJ, Bacon J, Affara NA. 2011.. Association of Sly with sex-linked gene amplification during mouse evolution: a side effect of genomic conflict in spermatids?. Hum. Mol. Genet. 20:(15):301021
    [Crossref] [Google Scholar]
  51. 51.
    Escudero M, Hahn M, Hipp AL. 2018.. RAD-seq linkage mapping and patterns of segregation distortion in sedges: meiosis as a driver of karyotypic evolution in organisms with holocentric chromosomes. . J. Evol. Biol. 31:(6):83343
    [Crossref] [Google Scholar]
  52. 52.
    Everett CA, Searle JB, Wallace BMN. 1996.. A study of meiotic pairing, nondisjunction and germ cell death in laboratory mice carrying Robertsonian translocations. . Genet. Res. 67:(3):23947
    [Crossref] [Google Scholar]
  53. 53.
    Fedyk S, Pavlova SV, Chętnicki W, Searle JB. 2019.. Chromosomal hybrid zones. . In Shrews, Chromosomes and Speciation, ed. JB Searle, PD Polly, J Zima , pp. 271312. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  54. 54.
    Finseth F. 2023.. Female meiotic drive in plants: mechanisms and dynamics. . Curr. Op. Genet. Dev. 82::102101
    [Crossref] [Google Scholar]
  55. 55.
    Finseth F, Brown K, Demaree A, Fishman L. 2022.. Supergene potential of a selfish centromere. . Phil. Trans. R. Soc. B 377:( 1856.):20210208
    [Crossref] [Google Scholar]
  56. 56.
    Finseth FR, Nelson TC, Fishman L. 2021.. Selfish chromosomal drive shapes recent centromeric histone evolution in monkeyflowers. . PLOS Genet. 17:(4):e1009418
    [Crossref] [Google Scholar]
  57. 57.
    Fishman L, McIntosh M. 2019.. Standard deviations: the biological bases of transmission ratio distortion. . Annu. Rev. Genet. 53::34772
    [Crossref] [Google Scholar]
  58. 58.
    Fishman L, Saunders A. 2008.. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. . Science 322:(5907):155962
    [Crossref] [Google Scholar]
  59. 59.
    Frank SA. 1991.. Divergence of meiotic drive-suppression systems as an explanation for sex-biased hybrid sterility and inviability. . Evolution 45:(2):26267
    [Google Scholar]
  60. 60.
    Garagna S, Page J, Fernandez-Donoso R, Zuccotti M, Searle JB. 2014.. The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. . Chromosoma 123::52944
    [Crossref] [Google Scholar]
  61. 61.
    Gardner A, Úbeda F. 2017.. The meaning of intragenomic conflict. . Nat. Ecol. Evol. 1:(12):180715
    [Crossref] [Google Scholar]
  62. 62.
    Gavrilets S. 1997.. Hybrid zones with Dobzhansky-type epistatic selection. . Evolution 51:(4):102735
    [Crossref] [Google Scholar]
  63. 63.
    Gilbert KJ, Moinet A, Peischl S. 2022.. Gene surfing of underdominant alleles promotes formation of hybrid zones. . Phil. Trans. R. Soc. B 377:( 1846.):20210006
    [Crossref] [Google Scholar]
  64. 64.
    Gropp A, Winking H. 1981.. Robertsonian translocations: cytology, meiosis, segregation patterns and biological consequences of heterozygosity. . Symp. Zool. Soc. Lond. 47::14181
    [Google Scholar]
  65. 65.
    Guerrero RF, Kirkpatrick M. 2014.. Local adaptation and the evolution of chromosome fusions. . Evolution 68:(10):274756
    [Crossref] [Google Scholar]
  66. 66.
    Haines BA, Barradale F, Dumont BL. 2021.. Patterns and mechanisms of sex ratio distortion in the Collaborative Cross mouse mapping population. . Genetics 219:(3):iyab136
    [Crossref] [Google Scholar]
  67. 67.
    Hartley G, O'Neill RJ. 2019.. Centromere repeats: hidden gems of the genome. . Genes 10:(3):223
    [Crossref] [Google Scholar]
  68. 68.
    Hauffe HC, Searle JB. 1992.. A disappearing speciation event?. Nature 357:(6373):26
    [Crossref] [Google Scholar]
  69. 69.
    Helleu Q, Gérard PR, Dubruille R, Ogereau D, Prud'homme B. 2016.. Rapid evolution of a Y-chromosome heterochromatin protein underlies sex chromosome meiotic drive. . PNAS 113:(15):411015
    [Crossref] [Google Scholar]
  70. 70.
    Helleu Q, Gérard PR, Montchamp-Moreau C. 2015.. Sex chromosome drive. . Cold Spring Harb. Persp. Biol. 7:(2):a017616
    [Crossref] [Google Scholar]
  71. 71.
    Henikoff S, Ahmad K, Malik HS. 2001.. The centromere paradox: stable inheritance with rapidly evolving DNA. . Science 293:(5532):1098102
    [Crossref] [Google Scholar]
  72. 72.
    Hewitt GM. 1988.. Hybrid zones-natural laboratories for evolutionary studies. . Trends Ecol. Evol. 3:(7):15867
    [Crossref] [Google Scholar]
  73. 73.
    Horn A, Basset P, Yannic G, Banaszek A, Borodin PM, et al. 2012.. Chromosomal rearrangements do not seem to affect the gene flow in hybrid zones between karyotypic races of the common shrew (Sorex araneus). . Evolution 66:(3):88289
    [Crossref] [Google Scholar]
  74. 74.
    Hurst LD, Pomiankowski A. 1991.. Causes of sex ratio bias may account for unisexual sterility in hybrids: A new explanation of Haldane's rule and related phenomena. . Genetics 128:(4):84158
    [Crossref] [Google Scholar]
  75. 75.
    Iwata-Otsubo A, Dawicki-McKenna JM, Akera T, Falk SJ, Chmátal L, et al. 2017.. Expanded satellite repeats amplify a discrete CENP-A nucleosome assembly site on chromosomes that drive in female meiosis. . Curr. Biol. 27:(15):236573
    [Crossref] [Google Scholar]
  76. 76.
    Jaenike J. 2001.. Sex chromosome meiotic drive. . Annu. Rev. Ecol. Syst. 32::2549
    [Crossref] [Google Scholar]
  77. 77.
    Johnson NA. 2010.. Hybrid incompatibility genes: remnants of a genomic battlefield?. Trends Genet. 26:(7):31725
    [Crossref] [Google Scholar]
  78. 78.
    Jutier D, Derome N, Montchamp-Moreau C. 2004.. The sex-ratio trait and its evolution in Drosophila simulans: a comparative approach. . Genetica 120:(1–3):8799
    [Crossref] [Google Scholar]
  79. 79.
    Kanippayoor RL, Alpern JH, Moehring AJ. 2020.. A common suite of cellular abnormalities and spermatogenetic errors in sterile hybrid males in Drosophila. . Proc. R. Soc. B 287:( 1919.):20192291
    [Crossref] [Google Scholar]
  80. 80.
    Kitano J, Ross JA, Mori S, Kume M, Jones FC, et al. 2009.. A role for a neo-sex chromosome in stickleback speciation. . Nature 461:(7267):107983
    [Crossref] [Google Scholar]
  81. 81.
    Kitano J, Yoshida K. 2023.. Do sex-linked male meiotic drivers contribute to intrinsic hybrid incompatibilities? Recent empirical studies from flies and rodents. . Curr. Op. Genet. Dev. 81::102068
    [Crossref] [Google Scholar]
  82. 82.
    Knief U, Forstmeier W, Pei Y, Wolf J, Kempenaers B. 2020.. A test for meiotic drive in hybrids between Australian and Timor zebra finches. . Ecol. Evol. 10:(23):1346475
    [Crossref] [Google Scholar]
  83. 83.
    Kopania EE, Watson EM, Rathje CC, Skinner BM, Ellis PJI, et al. 2022.. The contribution of sex chromosome conflict to disrupted spermatogenesis in hybrid house mice. . Genetics 222:(4):iyac151
    [Crossref] [Google Scholar]
  84. 84.
    Kulmuni J, Butlin RK, Lucek K, Savolainen V, Westram AM. 2020.. Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers. . Phil. Trans. R. Soc. B 375:( 1806.):20190528
    [Crossref] [Google Scholar]
  85. 85.
    Kulmuni J, Westram AM. 2017.. Intrinsic incompatibilities evolving as a by-product of divergent ecological selection: considering them in empirical studies on divergence with gene flow. . Mol. Ecol. 26::3093103
    [Crossref] [Google Scholar]
  86. 86.
    Kumon T, Ma J, Akins RB, Stefanik D, Nordgren CE, et al. 2021.. Parallel pathways for recruiting effector proteins determine centromere drive and suppression. . Cell 184:(19):490418
    [Crossref] [Google Scholar]
  87. 87.
    Lamelza P, Lampson MA. 2020.. Mixed knobs in corn cobs. . Genes Dev. 34:(17–18):111012
    [Crossref] [Google Scholar]
  88. 88.
    Lampson MA, Black BE. 2017.. Cellular and molecular mechanisms of centromere drive. . Cold Spring Harb. Symp. Quant. Biol. 82::24957
    [Crossref] [Google Scholar]
  89. 89.
    Lande R. 1979.. Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. . Evolution 33:(1):23451
    [Crossref] [Google Scholar]
  90. 90.
    Leppälä J, Bokma F, Savolainen O. 2013.. Investigating incipient speciation in Arabidopsis lyrata from patterns of transmission ratio distortion. . Genetics 194:(3):697708
    [Crossref] [Google Scholar]
  91. 91.
    Lin C-J, Hu F, Dubruille R, Vedanayagam J, Wen J, et al. 2018.. The hpRNA/RNAi pathway is essential to resolve intragenomic conflict in the Drosophila male germline. . Dev. Cell 46:(3):31626.e5
    [Crossref] [Google Scholar]
  92. 92.
    Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, et al. 2016.. The ecology and evolutionary dynamics of meiotic drive. . Trends Ecol. Evol. 31:(4):31526
    [Crossref] [Google Scholar]
  93. 93.
    López Hernández JF, Zanders SE. 2018.. Veni, vidi, vici: the success of wtf meiotic drivers in fission yeast. . Yeast 35:(7):44753
    [Crossref] [Google Scholar]
  94. 94.
    Lucek K, Giménez MD, Joron M, Rafajlović M, Searle JB, et al. 2023.. The impact of chromosomal rearrangements in speciation: from micro- to macroevolution. . Cold Spring Harb. Persp. Biol. 15:(11):a041447
    [Crossref] [Google Scholar]
  95. 95.
    Lukacs A, Thomae AW, Krueger P, Schauer T, Venkatasubramani AV, et al. 2021.. The integrity of the HMR complex is necessary for centromeric binding and reproductive isolation in Drosophila. . PLOS Genet. 17:(8):e1009744
    [Crossref] [Google Scholar]
  96. 96.
    Madgwick PG, Wolf JB. 2021.. Evolutionary robustness of killer meiotic drives. . Evol. Lett. 5:(5):54150
    [Crossref] [Google Scholar]
  97. 97.
    Malik HS. 2009.. The centromere-drive hypothesis: a simple basis for centromere complexity. . Prog. Mol. Subcell. Biol. 48::3352
    [Crossref] [Google Scholar]
  98. 98.
    Mallet J. 2006.. What does Drosophila genetics tell us about speciation?. Trends Ecol. Evol. 21:(7):38693
    [Crossref] [Google Scholar]
  99. 99.
    Martí E, Larracuente AM. 2023.. Genetic conflict and the origin of multigene families: implications for sex chromosome evolution. . Proc. R. Soc. B 290:( 2010.):20231823
    [Crossref] [Google Scholar]
  100. 100.
    Mayr E. 1963.. Animal Species and Evolution. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  101. 101.
    McDermott SR, Noor MA. 2010.. The role of meiotic drive in hybrid male sterility. . Phil. Trans. R. Soc. B 365:( 1544.):126572
    [Crossref] [Google Scholar]
  102. 102.
    Meiklejohn CD, Landeen EL, Gordon KE, Rzatkiewicz T, Kingan SB, et al. 2018.. Gene flow mediates the role of sex chromosome meiotic drive during complex speciation. . eLife 7::e35468
    [Crossref] [Google Scholar]
  103. 103.
    Molina WF, Martinez PA, Bertollo LAC, Bidau CJ. 2014.. Preferential accumulation of sex and Bs chromosomes in biarmed karyotypes by meiotic drive and rates of chromosomal changes in fishes. . An. Acad. Bras. Ciênc. 86:(4):180112
    [Crossref] [Google Scholar]
  104. 104.
    Moran RL, Catchen JM, Fuller RC. 2020.. Genomic resources for darters (Percidae: Etheostominae) provide insight into postzygotic barriers implicated in speciation. . Mol. Biol. Evol. 37:(3):71129
    [Crossref] [Google Scholar]
  105. 105.
    Morgan AP, Pardo-Manuel de Villena F. 2017.. Sequence and structural diversity of mouse Y chromosomes. . Mol. Biol. Evol. 34:(12):3186204
    [Crossref] [Google Scholar]
  106. 106.
    Mudd AB, Bredeson JV, Baum R, Hockemeyer D, Rokhsar DS. 2020.. Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution. . Commun. Biol. 3:(1):480
    [Crossref] [Google Scholar]
  107. 107.
    Nishimura H, L'Hernault SW. 2017.. Spermatogenesis. . Curr. Biol. 27:(18):R98894
    [Crossref] [Google Scholar]
  108. 108.
    Nosil P, Schluter D. 2011.. The genes underlying the process of speciation. . Trends Ecol. Evol. 26:(4):16067
    [Crossref] [Google Scholar]
  109. 109.
    O'Neill MJ, O'Neill RJ. 2018.. Sex chromosome repeats tip the balance towards speciation. . Mol. Ecol. 27:(19):378398
    [Crossref] [Google Scholar]
  110. 110.
    Pajpach F, Wu T, Shearwin-Whyatt L, Jones K, Grützner F. 2021.. Flavors of non-random meiotic segregation of autosomes and sex chromosomes. . Genes 12:(9):1338
    [Crossref] [Google Scholar]
  111. 111.
    Pardo-Manuel de Villena F, de la Casa-Esperón E, Briscoe TL, Sapienza C. 2000.. A genetic test to determine the origin of maternal transmission ratio distortion: meiotic drive at the mouse Om locus. . Genetics 154:(1):33342
    [Crossref] [Google Scholar]
  112. 112.
    Pardo-Manuel de Villena F, Sapienza C. 2001.. Female meiosis drives karyotypic evolution in mammals. . Genetics 159:(3):117989
    [Crossref] [Google Scholar]
  113. 113.
    Pardo-Manuel de Villena F, Sapienza C. 2001.. Nonrandom segregation during meiosis: the unfairness of females. . Mamm. Genome 12:(5):33139
    [Crossref] [Google Scholar]
  114. 114.
    Pardo-Manuel de Villena F, Sapienza C. 2001.. Transmission ratio distortion in offspring of heterozygous female carriers of Robertsonian translocations. . Hum. Genet. 108::3136
    [Crossref] [Google Scholar]
  115. 115.
    Patten MM. 2018.. Selfish X chromosomes and speciation. . Mol. Ecol. 27:(19):377282
    [Crossref] [Google Scholar]
  116. 116.
    Pavlova SV, Searle JB. 2018.. Chromosomes and speciation in mammals. . In Mammalian Evolution, Diversity and Systematics, ed. FE Zachos, RJ Asher , pp. 1738. Berlin:: De Gruyter
    [Google Scholar]
  117. 117.
    Peichel CL, Bolnick DI, Brännström A, Dieckmann U, Safran RJ. 2024.. Speciation. . Cold Spring Harb. Perspect. Biol. 10:a041735
    [Google Scholar]
  118. 118.
    Peichel CL, Marques DA. 2017.. The genetic and molecular architecture of phenotypic diversity in sticklebacks. . Phil. Trans. R. Soc. B 372:( 1713.):20150486
    [Crossref] [Google Scholar]
  119. 119.
    Phadnis N, Orr HA. 2009.. A single gene causes both male sterility and segregation distortion in Drosophila hybrids. . Science 323:(5912):37679
    [Crossref] [Google Scholar]
  120. 120.
    Piálek J, Hauffe HC, Searle JB. 2005.. Chromosomal variation in the house mouse. . Biol. J. Linn. Soc. 84:(3):53563
    [Crossref] [Google Scholar]
  121. 121.
    Presgraves DC. 2010.. The molecular evolutionary basis of species formation. . Nat. Rev. Genet. 11:(3):17580
    [Crossref] [Google Scholar]
  122. 122.
    Presgraves DC. 2018.. Evaluating genomic signatures of “the large X-effect” during complex speciation. . Mol. Ecol. 27:(19):382230
    [Crossref] [Google Scholar]
  123. 123.
    Presgraves DC, Meiklejohn CD. 2021.. Hybrid sterility, genetic conflict and complex speciation: lessons from the Drosophila simulans clade species. . Front. Genet. 12::66904
    [Crossref] [Google Scholar]
  124. 124.
    Rabosky DL. 2016.. Reproductive isolation and the causes of speciation rate variation in nature. . Biol. J. Linn. Soc. 118:(1):1325
    [Crossref] [Google Scholar]
  125. 125.
    Rabosky DL, Matute DR. 2013.. Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. . PNAS 110:(38):1535459
    [Crossref] [Google Scholar]
  126. 126.
    Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N, et al. 2017.. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. . J. Evol. Biol. 35:(8):145077
    [Crossref] [Google Scholar]
  127. 127.
    Rosenblum EB, Sarver BA, Brown JW, Des Roches S, Hardwick KM, et al. 2012.. Goldilocks meets Santa Rosalia: an ephemeral speciation model explains patterns of diversification across time scales. . Evol. Biol. 39:(2):25561
    [Crossref] [Google Scholar]
  128. 128.
    Rosin LF, Mellone BG. 2017.. Centromeres drive a hard bargain. . Trends Genet. 33:(2):10117
    [Crossref] [Google Scholar]
  129. 129.
    Roux C, Fraïsse C, Romiguier J, Anciaux Y, Galtier N, Bierne N. 2016.. Shedding light on the grey zone of speciation along a continuum of genomic divergence. . PLOS Biol. 14:(12):e2000234
    [Crossref] [Google Scholar]
  130. 130.
    Sano Y. 1990.. The genic nature of gamete eliminator in rice. . Genetics 125:(1):18391
    [Crossref] [Google Scholar]
  131. 131.
    Satyaki PR, Cuykendall TN, Wei KH, Brideau NJ, Kwak H, et al. 2014.. The Hmr and Lhr hybrid incompatibility genes suppress a broad range of heterochromatic repeats. . PLOS Genet. 10:(3):e1004240
    [Crossref] [Google Scholar]
  132. 132.
    Saupe SJ, Johannesson H. 2022.. On the mechanistic basis of killer meiotic drive in fungi. . Annu. Rev. Microbiol. 76::30523
    [Crossref] [Google Scholar]
  133. 133.
    Searle JB. 1993.. Chromosomal hybrid zones in eutherian mammals. . In Hybrid Zones and the Evolutionary Process, ed. RG Harrison , pp. 30953. New York:: Oxford Univ. Press
    [Google Scholar]
  134. 134.
    Searle JB, Pardo-Manuel de Villena F. 2022.. The evolutionary significance of meiotic drive. . Heredity 129:(1):4447
    [Crossref] [Google Scholar]
  135. 135.
    Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, et al. 2014.. Genomics and the origin of species. . Nat. Rev. Genet. 15:(3):17692
    [Crossref] [Google Scholar]
  136. 136.
    Soh YS, Alföldi J, Pyntikova T, Brown LG, Graves T, et al. 2014.. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. . Cell 159:(4):80013
    [Crossref] [Google Scholar]
  137. 137.
    Stankowski S, Ravinet M. 2021.. Defining the speciation continuum. . Evolution 75:(6):125673
    [Crossref] [Google Scholar]
  138. 138.
    Sweigart AL, Brandvain Y, Fishman L. 2019.. Making a murderer: The evolutionary framing of hybrid gamete-killers. . Trends Genet. 35:(4):24552
    [Crossref] [Google Scholar]
  139. 139.
    Swentowsky KW, Gent JI, Lowry EG, Schubert V, Ran X, et al. 2020.. Distinct kinesin motors drive two types of maize neocentromeres. . Genes Dev. 34:(17–18):123951
    [Crossref] [Google Scholar]
  140. 140.
    Tao Y, Araripe L, Kingan SB, Ke Y, Xiao H, Hartl DL. 2007.. A sex-ratio meiotic drive system in Drosophila simulans. II: an X-linked distorter. . PLOS Biol. 5:(11):e293
    [Crossref] [Google Scholar]
  141. 141.
    Tao Y, Hartl DL, Laurie CC. 2001.. Sex-ratio segregation distortion associated with reproductive isolation in Drosophila. . PNAS 98:(23):1318388
    [Crossref] [Google Scholar]
  142. 142.
    Taylor DR, Ingvarsson PK. 2003.. Common features of segregation distortion in plants and animals. . Genetica 117::2735
    [Crossref] [Google Scholar]
  143. 143.
    Taylor SA, Larson EL. 2019.. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. . Nat. Ecol. Evol. 3:(2):17077
    [Crossref] [Google Scholar]
  144. 144.
    Thakur J, Packiaraj J, Henikoff S. 2021.. Sequence, chromatin and evolution of satellite DNA. . Int. J. Mol. Sci. 22:(9):4309
    [Crossref] [Google Scholar]
  145. 145.
    Vedanayagam J, Lin CJ, Papareddy R, Nodine M, Flynt AS, et al. 2023.. Regulatory logic of endogenous RNAi in silencing de novo genomic conflicts. . PLOS Genet. 19:(6):e1010787
    [Crossref] [Google Scholar]
  146. 146.
    Verspoor RL, Smith JM, Mannion NL, Hurst GD, Price TA. 2018.. Strong hybrid male incompatibilities impede the spread of a selfish chromosome between populations of a fly. . Evol. Lett. 2:(3):16979
    [Crossref] [Google Scholar]
  147. 147.
    Vogan AA, Svedberg J, Grudzinska-Sterno M, Johannesson H. 2022.. Meiotic drive is associated with sexual incompatibility in Neurospora. . Evolution 76:(11):268796
    [Crossref] [Google Scholar]
  148. 148.
    Walker PMB. 1971.. Origin of satellite DNA. . Nature 229:(5283):3068
    [Crossref] [Google Scholar]
  149. 149.
    Waller H, Blankers T, Xu M, Shaw KL. 2023.. Quantitative trait loci underlying a speciation phenotype. . Insect Mol. Biol. 32:(6):592602
    [Crossref] [Google Scholar]
  150. 150.
    Wang S, Nalley MJ, Chatla K, Aldaimalani R, MacPherson A, et al. 2022.. Neo-sex chromosome evolution shapes sex-dependent asymmetrical introgression barrier. . PNAS 119:(19):e2119382119
    [Crossref] [Google Scholar]
  151. 151.
    Westram AM, Stankowski S, Surendranadh P, Barton NH. 2022.. What is reproductive isolation?. J. Evol. Biol. 35:(9):114364
    [Crossref] [Google Scholar]
  152. 152.
    White MJD. 1973.. Animal Cytology and Evolution. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  153. 153.
    White MJD. 1978.. Modes of Speciation. San Francisco, CA:: Freeman
    [Google Scholar]
  154. 154.
    White NJ, Butlin RK. 2021.. Multidimensional divergent selection, local adaptation, and speciation. . Evolution 75:(9):216778
    [Crossref] [Google Scholar]
  155. 155.
    Wilkinson GS, Christianson SJ, Brand CL, Ru G, Shell W. 2014.. Haldane's rule is linked to extraordinary sex ratios and sperm length in stalk-eyed flies. . Genetics 198:(3):116781
    [Crossref] [Google Scholar]
  156. 156.
    Xie Y, Tang J, Xie X, Li X, Huang J, et al. 2019.. An asymmetric allelic interaction drives allele transmission bias in interspecific rice hybrids. . Nat. Commun. 10:(1):2501
    [Crossref] [Google Scholar]
  157. 157.
    Yang F, O'Brien PCM, Wienberg J, Ferguson-Smith MA. 1997.. A reappraisal of the tandem fusion theory of karyotype evolution in the Indian muntjac using chromosome painting. . Chromosome Res. 5:(2):10917
    [Crossref] [Google Scholar]
  158. 158.
    Yang J, Zhao X, Cheng K, Du H, Ouyang Y, et al. 2012.. A killer-protector system regulates both hybrid sterility and segregation distortion in rice. . Science 337:(6100):133640
    [Crossref] [Google Scholar]
  159. 159.
    Yannic G, Basset P, Horn A, Hausser J. 2019.. Gene flow between chromosomal races and species. . In Shrews, Chromosomes and Speciation, ed. JB Searle, PD Polly, J Zima , pp. 31335. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  160. 160.
    Yasuno Y, Inoue YH, Yamamoto MT. 2013.. Elimination of Y chromosome-bearing spermatids during spermiogenesis in an autosomal sex-ratio mutant of Drosophila simulans. . Genes Genet. Syst. 88:(2):11326
    [Crossref] [Google Scholar]
  161. 161.
    Yoshida K, Kitano J. 2012.. The contribution of female meiotic drive to the evolution of neo-sex chromosomes. . Evolution 66:(10):3198208
    [Crossref] [Google Scholar]
  162. 162.
    Zanders SE, Eickbush MT, Yu JS, Kang JW, Fowler KR, et al. 2014.. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast. . eLife 3::e02630
    [Crossref] [Google Scholar]
  163. 163.
    Zanders SE, Johannesson H. 2021.. Molecular mechanisms and evolutionary consequences of spore killers in ascomycetes. . Microbiol. Mol. Biol. Rev. 85:(4):e00016-21
    [Crossref] [Google Scholar]
  164. 164.
    Zanders SE, Malik HS. 2015.. R2d2 and hyperdrive mechanisms (in mouse meiosis). . PLOS Genet. 11:(2):e1004950
    [Crossref] [Google Scholar]
  165. 165.
    Zanders SE, Unckless RL. 2019.. Fertility costs of meiotic drivers. . Curr. Biol. 29:(11):R51220
    [Crossref] [Google Scholar]
  166. 166.
    Zhang L, Sun T, Woldesellassie F, Xiao H, Tao Y. 2015.. Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility. . PLOS Genet. 11:(3):e1005073
    [Crossref] [Google Scholar]
  167. 167.
    Zimmering S, Sandler L, Nicoletti B. 1970.. Mechanisms of meiotic drive. . Annu. Rev. Genet. 4::40936
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genet-111523-102603
Loading
/content/journals/10.1146/annurev-genet-111523-102603
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error